One Bit to Rule Them All - Imperfect Randomness Harms
Lattice Signatures

Simon Damm, Nicolai Kraus, Alexander May, Julian Nowakowski, Jonas Thietke

Ruhr University Bochum - PKC 2025

Fiat-Shamir with Aborts Signature Schemes (like ML-DSA)

Key Recovery from Public Key. Secret key s;,s, € Z". Public key gives equations
t; = (a,s1) + s, mod q,

where a € Zg. Solve hard problem Learning With Errors (LWE) to recover secret key.

Key Recovery from Signatures. Challenge ¢ € Z", randomness y € Z. Signature
z={c,s1) +y.

No reduction modulo g! In general, easy problem (Integer LWE) but rejection sampling ensures
zero-knowledge.

1/14

Fiat-Shamir with Aborts Signature Schemes (like ML-DSA)

Key Recovery from Public Key. Secret key s;,s, € Z". Public key gives equations
ti = (a,s1) + s2,; mod q,

where a € Zj. Solve hard problem Learning With Errors (LWE) to recover secret key.

Key Recovery from Signatures. Challenge ¢ € Z", randomness y € Z. Signature
z= <C, 51> +y.

No reduction modulo g! In general, easy problem (Integer LWE) but rejection sampling ensures
zero-knowledge.

1/14

Fiat-Shamir with Aborts Signature Schemes (like ML-DSA)

Key Recovery from Public Key. Secret key s;,s, € Z". Public key gives equations
ti = (a,s1) + s2,; mod q,

where a € Zj. Solve hard problem Learning With Errors (LWE) to recover secret key.

Key Recovery from Signatures. Challenge ¢ € Z", randomness y € Z. Signature
z= <C, 51> +y.

No reduction modulo g! In general, easy problem (Integer LWE) but rejection sampling ensures
zero-knowledge.

What about side-channel attacks?

1/14

Breaking Zero-knowledge via Leak Bit: The Attack of [LZS"20]

Attack setting:

» Assume an oracle that gives signatures
z={(c,s1) +y, with y € [£2'7],

with a leak bit y; at index j > 6, where
y=Wo.y1,.--,y17) € {0,1}18.
The attack:
1. Extract Integer LWE samples

7 = (c,s1) +y with y € [£2]].

2. Key recovery via linear regression and
rounding [BDE'18].

Number of signatures for key recovery:

k)

(9]

? 930 | —8—175+20 attack
0

[e)

= 225

4]

S5 920

®

& 215

H 5 7 9 11 13 15 17

leakage index j

> Attack is infeasible for large j due to space

requirement! How to improve?

2/14

Breaking Zero-knowledge via Leak Bit: The Attack of [LZS"20]

Attack setting:
» Assume an oracle that gives signatures
z=(c,s1) +y, with y € [£2"7],

with a leak bit y; at index j > 6, where
y=Wo.y1,.--,y17) € {0,1}18.
The attack:
1. Extract Integer LWE samples

z = (c,s1) +y with ¥ € [£2]].

2. Key recovery via linear regression and
rounding [BDE™18].

signatures [log scale]

Number of signatures for key recovery:

30 ‘ —B— LZS"20 attack

225

220 B/Z/Z/Z/E

215 ‘ ‘ ‘ ‘ ‘ ‘
5 7 9 11 13 15 17

leakage index j

> Attack is infeasible for large j due to space

requirement! How to improve?

3/14

Breaking Zero-knowledge via Leak Bit: The Attack of [LZS"20]

Attack setting:
» Assume an oracle that gives signatures
z=(c,s1) +y, with y € [+2"],

with a leak bit y; at index j > 6, where
y=Wo.y1,.--,y17) € {0,1}18.
The attack:
1. Extract Integer LWE samples

z = (c,s1) +y with ¥ € [£2]].

2. Key recovery via linear regression and
rounding [BDE™18].

signatures [log scale]

Number of signatures for key recovery:

930 |~ 175420 attack

225

220 ././././.

215 ‘ ‘ ‘ ‘ ‘ ‘
5 7 9 11 13 15 17

leakage index j

» Attack is infeasible for large j due to space

requirement! How to improve?

4/14

Breaking Zero-knowledge via Leak Bit: The Attack of [LZS"20]

Attack setting:
» Assume an oracle that gives signatures
z=(c,s1) +y, with y € [+2'7],

with a leak bit y; at index j > 6, where
y=Wo.y1,.--,y17) € {0,1}18.
The attack:
1. Extract Integer LWE samples

z = (c,s1) +y with ¥ € [£2]].

2. Key recovery via linear regression and
rounding [BDE™18].

Number of signatures for key recovery:

)

(9]

? 930 |~ 175420 attack
o0

Ke)

$ 225

5 920

=

& 215

S 5 7 9 11 13 15 17

leakage index j

» Attack is infeasible for large j due to space
requirement! How to improve?

Leakage Model: Leak one bit y; per signature. Leakage index j.

4/14

Our Work: Enable the Attack for Higher-Order Leakage Indices

1. Improved sample extraction & analysis
2. Sample extraction independent of leakage index |
3. Accurate sample number prediction

5/14

Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)] < B and y € [£217].
» Notice that the equation holds over Z.

Pr[z = x]

27 _g 24 27 _ g 27 4 8

6/14

Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)| < B and y € [+217].
» Notice that the equation holds over Z.

z=2"+p = (c,81) =

Pr[z = x]

27 _g 24 27 _ g 27 4 8

6/14

Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)| < B and y € [+217].
» Notice that the equation holds over Z.

z=2"15-1 = (es)>0-1

Pr[z = x]

27 _g 24 27 _ g 27 4 8

6/14

Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)| < B and y € [+217].
» Notice that the equation holds over Z.

z2=2"15-2 = (es)>02

Pr[z = x]

27 _g 24 27 _ g 27 4 8

6/14

Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)| < B and y € [+217].
» Notice that the equation holds over Z.

z=2"-§ — (c,81) =2 0

Pr[z = x]

27 _g 24 27 _ g 27 4 8

6/14

Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)| < B and y € [+217].
» Notice that the equation holds over Z.

Pr[z = x]

2743 27 _ g
X

Rejecting |z| > 217 — 3 ensures zero-knowledge. Notice that the threshold for
zero-knowledge depends on the range of y.

7/14

Analysis - What Causes the Space Requirement?

Pr[z = x|

Pr[z = x]

-2 -p 24+ - 243

The sample extraction yields Z = (c,s;) + ¥ with ¥ € [£2]].
Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j, the number of zero-knowledge samples doubles.

8/14

Analysis - What Causes the Space Requirement?

Pr[z = x|

Pr[z = x]

-2 -5 -2+ d—-p 2+

The sample extraction yields Z = (c,s;) + ¥ with ¥ € [£2]].
Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j, the number of zero-knowledge samples doubles.

8/14

Analysis - What Causes the Space Requirement?

Pr[z = x|

Pr[z = x]

22— 248 2B 24B

The sample extraction yields Z = (c,s;) + ¥ with ¥ € [£2]].
Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j, the number of zero-knowledge samples doubles.

8/14

Analysis - What Causes the Space Requirement?

Pr[z = x|

Pr[z = x]

22— 248 2B 24B

The sample extraction yields Z = (c,s;) + ¥ with ¥ € [£2]].
Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j, the number of zero-knowledge samples doubles.

To fix the space issue, get rid of the zero-knowledge samples!

8/14

How to Achieve Independence of the Leakage Index j & Reduce the Error

A
A

Pr[z = x]
>~

1. We use only informative samples from the
tails. We discard zero-knowledge samples. *

Pr[z =]
™

9/14

How to Achieve Independence of the Leakage Index j & Reduce the Error

A
A

Pr[z = x]
>~

1. We use only informative samples from the
tails. We discard zero-knowledge samples. *

2. We transform informative samples
resulting in

Pr[z = x]
™

2= (c,x) + with § € [£], v

where /3 depends on the ML-DSA
parameter set.

Pr[Z = x]

23 23

9/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c,y;).

4: Compute [LZST20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZST20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZS20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZS20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c,y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = [§;].

10/14

Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c,y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |§1].

10/14

A Constant Number of Informative Samples for Key Recovery

informative samples [million]

w

N

[y

—4— ML-DSA-44
—6— ML-DSA-65
—e— ML-DSA-87

5 7 9 11 13 15 17 19

leakage index j

11/14

But the Number of Signatures Doubles for Every Increment of j ...

o

s 230 1 —o— ML-DSA-44
7] —e— ML-DSA-65
%D —e— ML-DSA-78
= 225 1

0

[]

=1

= 220 1

c

.20

n

oy 215 1

5 7 9 11 13 15 17 19
leakage index j

12/14

But the Number of Signatures Doubles for Every Increment of j ...

o

8 230 1 +ML—DSA—44
a —6— ML-DSA-65
gﬂ —e— ML-DSA-78
fm 225 1

7]

(0]

3

-:%l 220 is

oy

.20

0

oy 215 is

5 7 9 11 13 15 17 19
leakage index j
... because the number of zero-knowledge samples doubles with every increment of j! And the

best we can do is discard them.

12/14

Comparison with [LZS*20]: We Achieve More With Less Work

N
o 230 —m— 175720 attack
:D —4— Our attack
.—3. 225
(7]
g
3
H 220
c
.00
(7]
15
3 2

5 7 9 11 13 15 17
leakage index j

We require less signatures as we discard zero-knowledge samples and reduce the error.

By processing signatures on the fly, we enable the attack for higher-order leakage indices.

13/14

Comparison with [LZS*20]: We Achieve More With Less Work

N
o 230 —m— 175720 attack
:D —4— Our attack
.—3. 225
(7]
g
3
H 220
c
.00
(7]
15
3 2

5 7 9 11 13 15 17
leakage index j

We require less signatures as we discard zero-knowledge samples and reduce the error.

By processing signatures on the fly, we enable the attack for higher-order leakage indices.

Our Attack Runtime: ML-DSA-44 | ML-DSA-65 | ML-DSA-87

4s 40s 7s

13/14

Summary

ML-DSA is susceptible to randomness leakage attacks.

Leaking a single bit y; at index j > 6 is sufficient for key recovery.

The attack requires 500.000, 800.000, or 2.500.000 samples, independent of ;.
But the number of required signatures doubles for every increment of j.

The attack is applicable to noisy side-channels as a bias is already sufficient.

vVvvyVvyyvyy

We did not cover module lattices in this talk, but the attack translates directly.

ePrint: 2025/820

14/14

Summary

ML-DSA is susceptible to randomness leakage attacks.

Leaking a single bit y; at index j > 6 is sufficient for key recovery.

The attack requires 500.000, 800.000, or 2.500.000 samples, independent of ;.
But the number of required signatures doubles for every increment of j.

The attack is applicable to noisy side-channels as a bias is already sufficient.

vvyVYyVvVvyyYyy

We did not cover module lattices in this talk, but the attack translates directly.

ePrint: 2025/820

14/14

Summary

ML-DSA is susceptible to randomness leakage attacks.

Leaking a single bit y; at index j > 6 is sufficient for key recovery.

The attack requires 500.000, 800.000, or 2.500.000 samples, independent of j.
But the number of required signatures doubles for every increment of j.

The attack is applicable to noisy side-channels as a bias is already sufficient.

vvyVYyVvVvyyYyy

We did not cover module lattices in this talk, but the attack translates directly.

ePrint: 2025/820

14/14

Summary

ML-DSA is susceptible to randomness leakage attacks.

Leaking a single bit y; at index j > 6 is sufficient for key recovery.

The attack requires 500.000, 800.000, or 2.500.000 samples, independent of j.
But the number of required signatures doubles for every increment of j.

The attack is applicable to noisy side-channels as a bias is already sufficient.

vvyVYyVvVvyyYyy

We did not cover module lattices in this talk, but the attack translates directly.

ePrint: 2025/820

14/14

ﬁ Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and Mehdi
Tibouchi.

LWE without modular reduction and improved side-channel attacks against BLISS.
pages 494-524, 2018.

ﬁ Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian Ming.
On the security of lattice-based fiat-shamir signatures in the presence of randomness
leakage.

IEEE Transactions on Information Forensics and Security, 16:1868-1879, 2020.

14/14

Transferring the Attack to Module Lattices (ML-DSA)

Let R = Z[X]/(X" +1). Secret key s; € R, s, € R¥. Signing produces for a challenge c and
a random mask y € R’ a signature
zZ=cs; t+Y.

The attack is not applicable to z, but it does apply to the signature coefficients
z=(c,x)+y,

where x € R is a partial key of s; = (x,...).

Now, only a %—fraction of the secret key can be recovered from a single bit leak. To recover the
entire secret key, one must leak ¢ bits, one for each of the £ rings in the module.

14/14

Noisy Side-Channel - What if the Leak Bit is Incorrect?

Always incorrect leakage. Assume the oracle gives (z, c,yj’) with an incorrect leak bit
yj’ = y; @ 1. Then, the attack returns —s;, the negation of the secret key!

Partly incorrect leakage. For probabilities p € (0.5, 1] the attack returns

p~sl+(1—p)-(—sl)=(2p—1)~51.

Scale by =X to recover the secret key.
Y 5p—1 Y.

14/14

