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Fiat-Shamir with Aborts Signature Schemes (like ML-DSA)

Key Recovery from Public Key. Secret key s1, s2 ∈ Zn. Public key gives equations

ti = ⟨a, s1⟩+ s2,i mod q,

where a ∈ Zn
q. Solve hard problem Learning With Errors (LWE) to recover secret key.

Key Recovery from Signatures. Challenge c ∈ Zn, randomness y ∈ Z. Signature

z = ⟨c, s1⟩+ y .

No reduction modulo q! In general, easy problem (Integer LWE) but rejection sampling ensures
zero-knowledge.

What about side-channel attacks?
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Breaking Zero-knowledge via Leak Bit: The Attack of [LZS+20]

Attack setting:

▶ Assume an oracle that gives signatures

z = ⟨c, s1⟩+ y , with y ∈ [±217],

with a leak bit yj at index j ≥ 6, where
y = (y0, y1, . . . , y17) ∈ {0, 1}18.

The attack:

1. Extract Integer LWE samples

z = ⟨c, s1⟩+ y with y ∈ [±2j ].

2. Key recovery via linear regression and
rounding [BDE+18].

Number of signatures for key recovery:
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LZS+20 attack

▷ Attack is infeasible for large j due to space
requirement! How to improve?

Leakage Model: Leak one bit yj per signature. Leakage index j .
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Our Work: Enable the Attack for Higher-Order Leakage Indices

1. Improved sample extraction & analysis

2. Sample extraction independent of leakage index j

3. Accurate sample number prediction

5 / 14



Gain an Intuition - The Necessity of Rejecting

▶ Let z = ⟨c, s1⟩+ y with |⟨c, s1⟩| ≤ β and y ∈ [±217].

▶ Notice that the equation holds over Z.

−217 − β −217 + β 217 − β 217 + β

z = 217 + β − 1 =⇒ ⟨c, s1⟩ = β−1 ≥
•

x

P
r[
z
=

x
]

Rejecting |z | > 217 − β ensures zero-knowledge. Notice that the threshold for
zero-knowledge depends on the range of y .
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Analysis - What Causes the Space Requirement?

P
r[
z
=

x
]

−2j − β −2j + β 2j − β 2j + β

P
r[
z
=

x
]

The sample extraction yields z = ⟨c, s1⟩+ y with y ∈ [±2j ].

Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j , the number of zero-knowledge samples doubles.

To fix the space issue, get rid of the zero-knowledge samples!
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How to Achieve Independence of the Leakage Index j & Reduce the Error

1. We use only informative samples from the
tails. We discard zero-knowledge samples.

2. We transform informative samples
resulting in

z̃ = ⟨c, x⟩+ ỹ with ỹ ∈ [±β],

where β depends on the ML-DSA
parameter set.

P
r[
z
=

x
]

P
r[
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=

x
]

−2β 2β

x

P
r[
z̃
=

x
]
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Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z , c, yj) with z = ⟨c, x⟩+ y and leak bit yj
1: repeat
2: repeat
3: Obtain (z , c, yj).
4: Compute [LZS+20] extraction.
5: until sample is informative
6: Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute ŝ1 ∈ Rn via linear regression.

Output: Secret key s1 = ⌊ŝ1⌉.
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10 / 14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z , c, yj) with z = ⟨c, x⟩+ y and leak bit yj
1: repeat
2: repeat
3: Obtain (z , c, yj).
4: Compute [LZS+20] extraction.
5: until sample is informative
6: Apply j-independence transformation.
7: until sufficiently many samples collected.
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A Constant Number of Informative Samples for Key Recovery

5 7 9 11 13 15 17 19

1

2

3

leakage index j

#
in
fo
rm

at
iv
e
sa
m
p
le
s
[m

ill
io
n
]

ML-DSA-44
ML-DSA-65
ML-DSA-87

11 / 14



But the Number of Signatures Doubles for Every Increment of j . . .
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. . . because the number of zero-knowledge samples doubles with every increment of j! And the
best we can do is discard them.
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Comparison with [LZS+20]: We Achieve More With Less Work
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LZS+20 attack
Our attack

We require less signatures as we discard zero-knowledge samples and reduce the error.

By processing signatures on the fly, we enable the attack for higher-order leakage indices.

Our Attack Runtime: ML-DSA-44 ML-DSA-65 ML-DSA-87
4s 40s 7s
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Summary

▶ ML-DSA is susceptible to randomness leakage attacks.

▶ Leaking a single bit yj at index j ≥ 6 is sufficient for key recovery.

▶ The attack requires 500.000, 800.000, or 2.500.000 samples, independent of j .

▶ But the number of required signatures doubles for every increment of j .

▶ The attack is applicable to noisy side-channels as a bias is already sufficient.

▶ We did not cover module lattices in this talk, but the attack translates directly.

ePrint: 2025/820
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Transferring the Attack to Module Lattices (ML-DSA)

Let R = Z[X ]/(X n + 1). Secret key s1 ∈ Rℓ, s2 ∈ Rk . Signing produces for a challenge c and
a random mask y ∈ Rℓ a signature

z = cs1 + y.

The attack is not applicable to z, but it does apply to the signature coefficients

z = ⟨c, x⟩+ y ,

where x ∈ R is a partial key of s1 = (x, . . . ).

Now, only a 1
ℓ -fraction of the secret key can be recovered from a single bit leak. To recover the

entire secret key, one must leak ℓ bits, one for each of the ℓ rings in the module.
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Noisy Side-Channel - What if the Leak Bit is Incorrect?

Always incorrect leakage. Assume the oracle gives (z , c, y ′
j ) with an incorrect leak bit

y ′
j = yj ⊕ 1. Then, the attack returns −s1, the negation of the secret key!

Partly incorrect leakage. For probabilities p ∈ (0.5, 1] the attack returns

p · s1 + (1− p) · (−s1) = (2p − 1) · s1.

Scale by 1
2p−1 to recover the secret key.
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