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Fiat-Shamir with Aborts Signature Schemes (like ML-DSA)

Key Recovery from Public Key. Secret key s;,s, € Z". Public key gives equations
t; = (a,s1) + s, mod q,

where a € Zg. Solve hard problem Learning With Errors (LWE) to recover secret key.

Key Recovery from Signatures. Challenge ¢ € Z", randomness y € Z. Signature
z={c,s1) +y.

No reduction modulo g! In general, easy problem (Integer LWE) but rejection sampling ensures
zero-knowledge.
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where a € Zj. Solve hard problem Learning With Errors (LWE) to recover secret key.

Key Recovery from Signatures. Challenge ¢ € Z", randomness y € Z. Signature
z= <C, 51> +y.

No reduction modulo g! In general, easy problem (Integer LWE) but rejection sampling ensures
zero-knowledge.

What about side-channel attacks?
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Breaking Zero-knowledge via Leak Bit: The Attack of [LZS"20]

Attack setting:

» Assume an oracle that gives signatures
z={(c,s1) +y, with y € [£2'7],

with a leak bit y; at index j > 6, where
y=Wo.y1,.--,y17) € {0,1}18.
The attack:
1. Extract Integer LWE samples

7 = (c,s1) +y with y € [£2]].

2. Key recovery via linear regression and
rounding [BDE'18].

Number of signatures for key recovery:
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> Attack is infeasible for large j due to space

requirement! How to improve?
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» Attack is infeasible for large j due to space
requirement! How to improve?

Leakage Model: Leak one bit y; per signature. Leakage index j.
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Our Work: Enable the Attack for Higher-Order Leakage Indices

1. Improved sample extraction & analysis
2. Sample extraction independent of leakage index |
3. Accurate sample number prediction
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Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)] < B and y € [£217].
» Notice that the equation holds over Z.

Pr[z = x]

27 _g 24 27 _ g 27 4 8
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Gain an Intuition - The Necessity of Rejecting

> Let z = (c,s1) + y with |{c,s1)| < B and y € [+217].
» Notice that the equation holds over Z.

Pr[z = x]

2743 27 _ g
X

Rejecting |z| > 217 — 3 ensures zero-knowledge. Notice that the threshold for
zero-knowledge depends on the range of y.
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Analysis - What Causes the Space Requirement?

Pr[z = x|

Pr[z = x]
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The sample extraction yields Z = (c,s;) + ¥ with ¥ € [£2]].
Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j, the number of zero-knowledge samples doubles.
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The sample extraction yields Z = (c,s;) + ¥ with ¥ € [£2]].
Essentially, back to situation before rejection sampling. Back to the easy problem.

But for every increment of j, the number of zero-knowledge samples doubles.

To fix the space issue, get rid of the zero-knowledge samples!
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How to Achieve Independence of the Leakage Index j & Reduce the Error

A
A

Pr[z = x]
>~

1. We use only informative samples from the
tails. We discard zero-knowledge samples. *

Pr[z = ]
™
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How to Achieve Independence of the Leakage Index j & Reduce the Error

A
A

Pr[z = x]
>~

1. We use only informative samples from the
tails. We discard zero-knowledge samples. *

2. We transform informative samples
resulting in

Pr[z = x]
™

2= (c,x) + with § € [£], v

where /3 depends on the ML-DSA
parameter set.

Pr[Z = x]

23 23

9/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c,y;).

4: Compute [LZST20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51 ].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZST20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51 ].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZS20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51 ].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1: repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZS20] extraction.

5 until sample is informative

6: Apply j-independence transformation.

7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51 ].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51 ].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c, y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |51 ].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c,y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = [§;].

10/14



Putting Things Together: Our Attack

Algorithm Secret Key Recovery

Input: Oracle for signatures (z,c, y;) with z = (c,x) + y and leak bit y;

1. repeat

2: repeat

3 Obtain (z,c,y;).

4: Compute [LZST20] extraction.
5 until sample is informative

¢

Apply j-independence transformation.
7: until sufficiently many samples collected.
8: Compute §; € R” via linear regression.

Output: Secret key s; = |§1].

10/14



A Constant Number of Informative Samples for Key Recovery

# informative samples [million]
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But the Number of Signatures Doubles for Every Increment of j ...

o

s 230 1 —o— ML-DSA-44
7] —e— ML-DSA-65
%D —e— ML-DSA-78
= 225 1

0

[]

=1

= 220 1

c

.20

n

oy 215 1

5 7 9 11 13 15 17 19
leakage index j

12/14



But the Number of Signatures Doubles for Every Increment of j ...

o

8 230 1 +ML—DSA—44
a —6— ML-DSA-65
gﬂ —e— ML-DSA-78
fm 225 1

7]

(0]

3

-:%l 220 is

oy

.20

0

oy 215 is

5 7 9 11 13 15 17 19
leakage index j
... because the number of zero-knowledge samples doubles with every increment of j! And the

best we can do is discard them.
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Comparison with [LZS*20]: We Achieve More With Less Work
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We require less signatures as we discard zero-knowledge samples and reduce the error.

By processing signatures on the fly, we enable the attack for higher-order leakage indices.
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We require less signatures as we discard zero-knowledge samples and reduce the error.

By processing signatures on the fly, we enable the attack for higher-order leakage indices.

Our Attack Runtime: ML-DSA-44 | ML-DSA-65 | ML-DSA-87
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Summary

ML-DSA is susceptible to randomness leakage attacks.

Leaking a single bit y; at index j > 6 is sufficient for key recovery.

The attack requires 500.000, 800.000, or 2.500.000 samples, independent of ;.
But the number of required signatures doubles for every increment of j.

The attack is applicable to noisy side-channels as a bias is already sufficient.

vVvvyVvyyvyy

We did not cover module lattices in this talk, but the attack translates directly.

ePrint: 2025/820
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Transferring the Attack to Module Lattices (ML-DSA)

Let R = Z[X]/(X" +1). Secret key s; € R, s, € R¥. Signing produces for a challenge c and
a random mask y € R’ a signature
zZ=cs; t+Y.

The attack is not applicable to z, but it does apply to the signature coefficients
z=(c,x)+y,

where x € R is a partial key of s; = (x,...).

Now, only a %—fraction of the secret key can be recovered from a single bit leak. To recover the
entire secret key, one must leak ¢ bits, one for each of the £ rings in the module.
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Noisy Side-Channel - What if the Leak Bit is Incorrect?

Always incorrect leakage. Assume the oracle gives (z, c,yj’) with an incorrect leak bit
yj’ = y; @ 1. Then, the attack returns —s;, the negation of the secret key!

Partly incorrect leakage. For probabilities p € (0.5, 1] the attack returns

p~sl+(1—p)-(—sl)=(2p—1)~51.

Scale by =X to recover the secret key.
Y 5p—1 Y.
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