Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3

Sabrina Kunzweiler, Luciano Maino, Tomoki Moriya, Christophe Petit, Giacomo Pope, Damien Robert, **Miha Stopar**, and Yan Bo Ti

Isogeny graphs (genus 1)

- The pure isogeny problem—finding an explicit isogeny between two elliptic curves.
- Most isogeny-based protocols rely on the pure isogeny problem or on some variants of this problem.

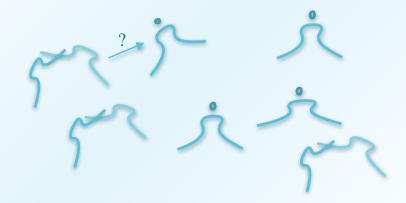
Genus 1 $(y^2 = x^3 + ax + b)$



Isogeny graphs (genus 2)

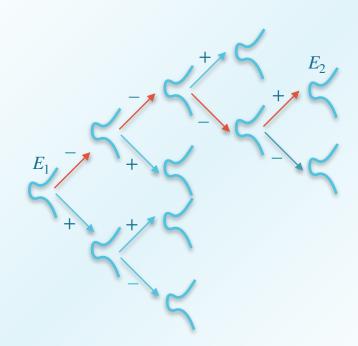
- The isogeny problem can be generalized to higher dimensions (genus 2, genus 3,...).
- Genus 2: abelian surfaces (picture ⇒).
- Genus 3: abelian threefold.

Genus 2 $y^2 = f(x), deg(f) \in \{5,6\}$



CGL hash function '08

- Random walks in an *l*-isogeny graph.
- For l=2, each node has exactly 3 outgoing 2-isogenies.
- The hash of the message is the j-invariant of the final curve.
- For example, the message m=0001 corresponds to the path --+: $H(m)=j(E_2)$.

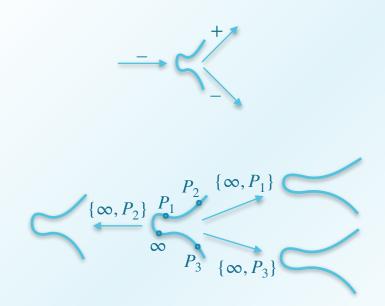


CGL hash function '08

- For l=2 isogeny, one needs to compute 2-torsion point (3 possibilities: +, -, backtracking).
- To compute 2-torsion point, one needs to do a square root computation in \mathbb{F}_{p^2} with a handful of extra operations.

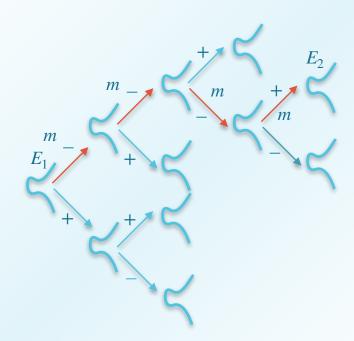
•
$$y^2 = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3) \implies$$

 $E[2] = \{(\alpha_1, 0), (\alpha_2, 0), (\alpha_3, 0), \infty\}$



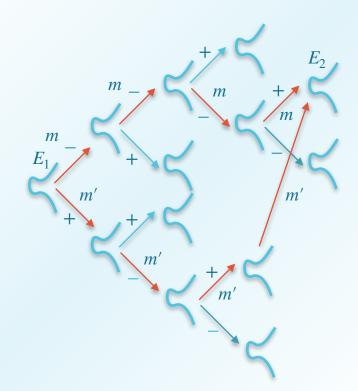
Preimage resistance

- Given $j \in \mathbb{F}_{p^2}$, it is hard to find m with H(m) = j.
- It is the same as finding a 2*-isogeny between two supersingular elliptic curves.



Collision resistance

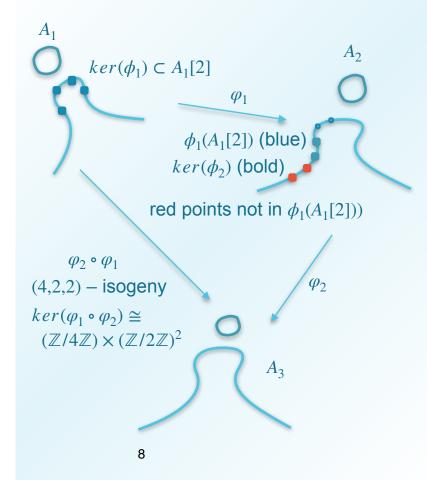
- It is hard to find two messages $m \neq m'$ with $H(m) \neq H(m')$.
- The same as finding an endomorphism of degree 2^* of E_1 (path of m and the "inverse" of path of m' give a cycle).
- Finding a non-scalar endomorphism of a random supersingular elliptic curve is a common hardness assumption in isogenybased cryptography.



Genus > 1 hash functions

- Takashima hash function '18: supersingular graph.
- Flynn-Ti '19: an attack on Takashima hash.
 Problems: supersingular graph, bad extensions.
- Bad extension: $ker(\varphi_2) \cap \phi_1(A_1[2])$ non-trivial (picture \Longrightarrow).
- Note: $A_1[2] \cong (\mathbb{Z}/2\mathbb{Z})^4$, $A_2[2] \cong (\mathbb{Z}/2\mathbb{Z})^4$.

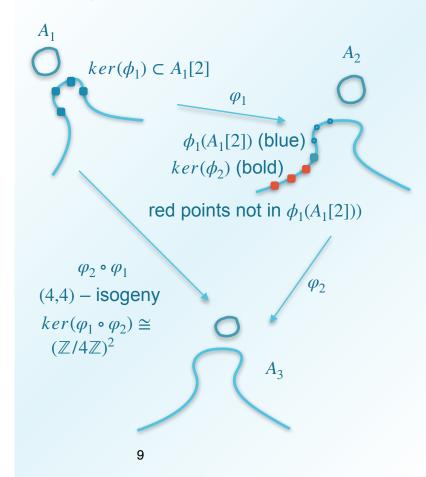
Note: points are actually on the Jacobian of the curve, not on the curve itself!



Genus > 1 hash functions

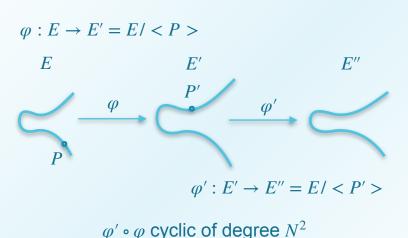
- Castryck-Decru-Smith hash function '20: superspecial graph, using only good extensions.
- Good extension: $ker(\varphi_2) \cap \phi_1(A_2[2]) = \{0\} \text{ (picture } \Longrightarrow).$

Note: points are actually on the Jacobian of the curve, not on the curve itself!



Genus > 1 hash functions

- Castryck-Decru hash function '21: multiradical isogenies.
- Radical isogenies: instead of generating a random N-torsion point on E', a point P' is constructed algebraically (picture \Longrightarrow).
- Multiradical isogenies: generalization to genus g > 1.



Multiradical isogenies

- Input is a tuple (A, P_1, \dots, P_g) .
- Output is a tuple (A', P'_1, \dots, P'_g)
- (P_1',\ldots,P_g') generate the kernel of an N -isogeny φ' .
- $\varphi' \circ \varphi$ is a good extension (type (N^2, \dots, N^2)).

$$\varphi:A\to A'=A/< P_1,P_2>$$

$$A \qquad A' \qquad A''$$

$$P_1 \qquad \varphi \qquad P_1' \qquad \varphi' \qquad P_2'$$

$$\varphi':A'\to A''=A'/< P_1',P_2'>$$

 $\varphi' \circ \varphi$ is of degree N^2

Theta model

- A theta model is an alternative coordinate system for describing abelian varieties.
- Over \mathbb{C} , every principally polarized abelian variety (ppav) of dimension g can be described analytically as a complex torus $A = \mathbb{C}^g/\Lambda$.
- Given lattice Λ , you can define special functions on \mathbb{C}^g called theta functions.
- Instead of working with curve equations, one works with theta constants.

Genus 1
$$(y^2 = x^3 + ax + b)$$

$$\theta(z,\tau) = \sum_{n \in \mathbb{Z}^g} \exp\left(\pi i \, n^{\mathsf{T}} \tau n + 2\pi i \, n^{\mathsf{T}} z\right)$$

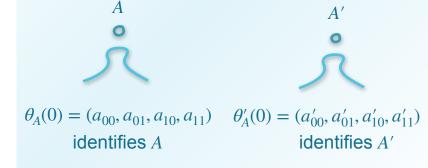
Level-2 theta structure

- Ppav equipped with a level-2 theta structure θ_A (informal and incomplete intuition: choice of labelling of the 2-torsion points).
- Coordinate functions of θ_A : $\theta_A(P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$
- It allows to identify A with a point $a=\theta_A(0)=(a_{0\dots 0},\dots,a_{1\dots 1})\in\mathbb{P}^{2^g-1}$ (known as *level-2 theta null point* of A).

$$g = 1 : a = (a_0, a_1) \in \mathbb{P}^1$$

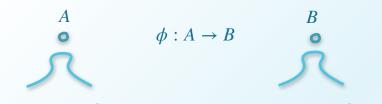
$$g = 2 : a = (a_{00}, a_{01}, a_{10}, a_{11}) \in \mathbb{P}^3$$

$$g = 3 : a = (a_{000}, \dots, a_{111}) \in \mathbb{P}^7$$



2-isogeny in theta model

- Formula for 2-isogeny $\phi:A\to B$ transforms a theta null point $a\in\mathbb{P}^{2^s-1}$ to a theta null point $b\in\mathbb{P}^{2^s-1}$.
- Dartois-Maino-Pope-Robert '24 formula consists only of:
 - Squaring
 - Scaling
 - Hadamard transform (H)



 $\theta_A(0)$ identifies A

 $\theta_B(0)$ identifies B

$$g = 1$$
:

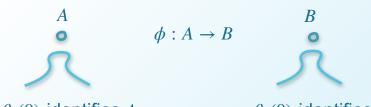
$$\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} \overset{\text{Squaring}}{\Longrightarrow} \begin{pmatrix} q_0 = p_0^2 \\ q_1 = p_1^2 \end{pmatrix} \overset{\text{Hadamard}}{\Longrightarrow} \begin{pmatrix} r_0 = q_0 + q_1 \\ r_1 = q_0 - q_1 \end{pmatrix}$$

Scaling
$$\begin{pmatrix} s_0 = r_0/\tilde{b}_0 \\ s_1 = r_1/\tilde{b}_1 \end{pmatrix}$$
 Hadamard $\begin{pmatrix} t_0 = s_0 + s_1 \\ t_1 = s_0 - s_1 \end{pmatrix}$

$$\begin{pmatrix} \tilde{b_0} \\ \tilde{b_1} \end{pmatrix}$$
 dual theta point of $\theta_B(0): H(\theta_B(0))$

Radical formula

- Idea: $\theta_B(0) = \phi(\theta_A(0))$.
- We have: $\tilde{b}_i^2 = x_i$.
- In general dimension g: $\tilde{b}_i^2 = x_i$ for $i = 0,...,2^g - 1$.



 $\theta_A(0)$ identifies A

 $\theta_B(0)$ identifies B

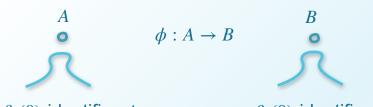
$$g = 1$$
:

$$\begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \overset{\text{Squaring}}{\Longrightarrow} \quad \begin{pmatrix} a_0^2 \\ a_1^2 \end{pmatrix} \overset{\text{Hadamard}}{\Longrightarrow} \quad \begin{pmatrix} x_0 = a_0^2 + a_1^2 \\ x_1 = a_0^2 - a_1^2 \end{pmatrix}$$

$$\begin{pmatrix} \tilde{b_0} \\ \tilde{b_1} \end{pmatrix}$$
 dual theta point of $\theta_B(0): H(\theta_B(0))$

Radical formula

- Idea: $\theta_B(0) = \phi(\theta_A(0))$.
- The operations:
 - Squaring
 - Square roots
 - · Hadamard transform (H)



 $\theta_A(0)$ identifies A

 $\theta_B(0)$ identifies B

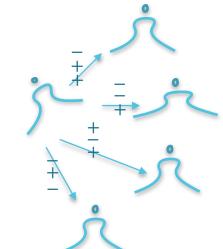
$$g = 1$$
:

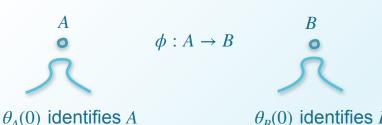
$$\begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \overset{\text{Squaring}}{\Longrightarrow} \begin{pmatrix} a_0^2 \\ a_1^2 \end{pmatrix} \overset{\text{Hadamard}}{\Longrightarrow} \begin{pmatrix} x_0 = a_0^2 + a_1^2 \\ x_1 = a_0^2 - a_1^2 \end{pmatrix}$$

$$\begin{pmatrix} \tilde{b_0} \\ \tilde{b_1} \end{pmatrix}$$
 dual theta point of $\theta_B(0): H(\theta_B(0))$

Theta-CGL

- Public: $a = \theta_A(0)$.
- Input: $m = (m_1, ..., m_n)$, $m_i \in \{-1,1\}^{g(g+1)/2}$.
- We have 2^g sign choices for square roots (note $k = 2^g - 1$), but it turns out fixing g(g+1)/2 square roots determines the others.
- Output: $b = \theta_R(0)$.





 $\theta_{R}(0)$ identifies B

$$a = \begin{pmatrix} a_0 \\ \cdots \\ a_k \end{pmatrix} \implies \begin{pmatrix} a_0^2 \\ \cdots \\ a_k^2 \end{pmatrix} \implies \begin{pmatrix} x_0 \\ \cdots \\ x_k \end{pmatrix} = H(a^2)$$

choosing the signs means choosing the isogeny

Theta-CGL: why go to dimension g > 1?

	g = 1	g = 2	g = 3
superspecial a.v.s.	$\approx p$	$\approx p^3$	$\approx p^6$
solving the isogeny problem	$O(\sqrt{p})$	O(p)	$O(p^2)$

Going to higher dimensions allows us to significantly reduce the size of the prime, essentially at no additional cost!

Theta-CGL: Rust implementation

Dimension	2-radical (µs)	4-radical (µs)	8-radical (µs)
g = 1	3153	2037	1737
g = 2	989	742	-
g = 3	432	-	_

Thank you!

