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Random oracle: τ : {0, 1}∗ → {0, 1}λ

Qi = {qi,j} τ(Qi) = {τ(qi,j)}

Unbounded Aτ(·) with initial state s0

Time(Aτ(·)) := N

Space(Aτ(·)) := max{|s0|, . . . , |sN |}

Total number of queries q := |Q0|+ · · ·+ |QN |
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Parameter: N
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Completeness: Honest P always makes V accept

Efficiency:
Time(P) = N, |π| ∈ poly(logN,λ), Time(V) ∈ polylog(N)

π

(α, q, ε)-Soundness: P̃ making at most q queries and running
in Time(P̃) ≤ α ·N makes V accept with prob. ≤ ε(λ)

P̃τ(·)
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Graph-Labeling PoSWs

χ

ri

i
$← C ⊆ {0, . . . , N}

L(N)

t

Parameters: G on {0, . . . , N} vertices, t

Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

(P’s messages are graph labels)
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The Skiplist PoSW

χ

t

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(N)

i = 13

∀j ∈ path(i)
L(j), L(parents(j))

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

polylog(N) time

Parameters: G, t

(α, q, ε)-Soundness: ε ≤ αt + 3 · q2/2λ
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Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its
challenges:
1. stores all labels L(0), . . . , L(N)

2. stores nothing and recomputes L(0), . . . , L(N)

Time(P) = N Space(P) = N · λ

Time(P) = 2N Space(P) depends but hopefully small

For some schemes: [CP’18, AFGK’22] P has more strategies

3. stores S labels and additionlly recomputes N/S labels

Time(P) = N +N/S Space(P) = S · λ

Can we get the best of both worlds?

Time(P) = N Space(P) ∈ poly(logN,λ)

Time(P) = N +
√
N Space(P) =

√
N · λ
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[Döttling-Lai-Malavolta’19][this work]



iPoSW

Vτ(·)Pτ(·)

πN

An iPoSW is a non-interactive proof system (P,V, Inc) where
• (P,V) is a space-efficient and tight PoSW

Time(P) = N Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

Parameter: N
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3. [Mahmoody-Moran-Vadhan’13] gave the first PoSW from “highly”
depth-robust graphs with a Merkle-tree on top

2. [Cohen-Pietrzak’18]: Merkle-tree like graphs

1. [Abusalah-Kamath-Klein-Walter-Pietrzak’19] constructed reversible
PoSWs (a precursor to VDFs)

[Abusalah-Fuchsbauer-Gaži-Klein’22] adapted it to blockchain applications
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2. [Döttling-Lai-Malavolta’19] by transforming [CP’18]

1. [Abusalah-Cini’23] by transforming the skiplist PoSW
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(Both schemes use the on-the-fly/incremental sampling of [DLM’19])
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Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak’17]

3. Conclude [MMV’13] can’t be made into an iPoSW; it uses DRGs

Any PoSW with underlying incremental and dynamic graphs can
be transformed into an iPoSW.

+ a unified transformation
+ corollary: modified CP [AFGK’22] is also incremental

No

Yes
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Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G2

Easy to see that all known PoSW graphs [MMV’13, CP’18,
AKKWP’19, AFGK’22] are dynamic – with a minor
generalization to this example

Dynamic graphs are friendly to the incremental sampling
technique [DLM’19] used by all iPoSWs [DLM’19, AC’23]
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Incremental Graphs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gi+1

Definition of Incremental Graphs:
Given pebbles on T ⊆ V (Gi), Gi+1 can be pebbled in time
and space complexities

|V (Gi+1) \ V (Gi)| and polylog(|V (Gi+1)|)
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To Conclude

1. We generalized iPoSWs relying on dynamic and
incremental graphs of PoSWs

2. We proved that [MMV’13] is not incremental by showing
incremental graphs are necessary and depth-robust graphs
are not incremental

An open problem:
What are the necessary and sufficient graph conditions that

allow (standalone) PoSWs?


