
On Graphs of Incremental Proofs of
Sequential Work

Hamza Abusalah

PKC’25, Røros, Norway

Outline

1. Proofs of Sequential Work (PoSWs): Definition and an
Example Construction

2. Incremental PoSWs (iPoSW): Motivation and a Definition

3. Main Results: Generalizing iPoSWs and an Impossibility
Result

4. An Open Problem

Parallel Random Oracle Model

s0 · · ·s1 si sN· · ·

Random oracle: τ : {0, 1}∗ → {0, 1}λ

Qi = {qi,j} τ(Qi) = {τ(qi,j)}

Unbounded Aτ(·) with initial state s0

Parallel Random Oracle Model

s0 · · ·s1 si sN· · ·

Random oracle: τ : {0, 1}∗ → {0, 1}λ

Qi = {qi,j} τ(Qi) = {τ(qi,j)}

Unbounded Aτ(·) with initial state s0

Time(Aτ(·)) := N

Parallel Random Oracle Model

s0 · · ·s1 si sN· · ·

Random oracle: τ : {0, 1}∗ → {0, 1}λ

Qi = {qi,j} τ(Qi) = {τ(qi,j)}

Unbounded Aτ(·) with initial state s0

Time(Aτ(·)) := N

Space(Aτ(·)) := max{|s0|, . . . , |sN |}

Parallel Random Oracle Model

s0 · · ·s1 si sN· · ·

Random oracle: τ : {0, 1}∗ → {0, 1}λ

Qi = {qi,j} τ(Qi) = {τ(qi,j)}

Unbounded Aτ(·) with initial state s0

Time(Aτ(·)) := N

Space(Aτ(·)) := max{|s0|, . . . , |sN |}

Total number of queries q := |Q0|+ · · ·+ |QN |

PoSWs

Vτ(·)Pτ(·)
Parameter: N

[Mahmoody-Moran-Vadhan’13]

Completeness: Honest P always makes V accept

π

PoSWs

Vτ(·)Pτ(·)
Parameter: N

[Mahmoody-Moran-Vadhan’13]

Completeness: Honest P always makes V accept

Efficiency:
Time(P) = N, |π| ∈ poly(logN,λ), Time(V) ∈ polylog(N)

π

PoSWs

Vτ(·)
Parameter: N

[Mahmoody-Moran-Vadhan’13]

Completeness: Honest P always makes V accept

Efficiency:
Time(P) = N, |π| ∈ poly(logN,λ), Time(V) ∈ polylog(N)

π

(α, q, ε)-Soundness: P̃ making at most q queries and running
in Time(P̃) ≤ α ·N makes V accept with prob. ≤ ε(λ)

P̃τ(·)

Graph-Labeling PoSWs

χ

Parameters: G on {0, . . . , N} vertices

Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

Graph-Labeling PoSWs

χ

L(N)

Parameters: G on {0, . . . , N} vertices

Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

Graph-Labeling PoSWs

χ

ri

i
$← C ⊆ {0, . . . , N}

L(N)

t

Parameters: G on {0, . . . , N} vertices, t

Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

Graph-Labeling PoSWs

χ

ri

i
$← C ⊆ {0, . . . , N}

L(N)

t

Parameters: G on {0, . . . , N} vertices, t

Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

(P’s messages are graph labels)

The Skiplist PoSW

χ

L(16)

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

Parameters: G, t

The Skiplist PoSW

χ

i = 13

L(16)

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

Parameters: G, t

The Skiplist PoSW

χ

t

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

L(16)

i = 13

∀j ∈ path(i)
L(j), L(parents(j))

Parameters: G, t

The Skiplist PoSW

χ

t

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(N)

i = 13

∀j ∈ path(i)
L(j), L(parents(j))

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

Parameters: G, t

The Skiplist PoSW

χ

t

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(N)

i = 13

∀j ∈ path(i)
L(j), L(parents(j))

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

polylog(N) time

Parameters: G, t

Completeness and efficiency: satisfied

The Skiplist PoSW

χ

t

Pτ(·) Vτ(·)

[Abusalah-Fuchsbauer-Gaži-Klein’22]

L(N)

i = 13

∀j ∈ path(i)
L(j), L(parents(j))

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8) L(9) L(10) L(11) L(12) L(13) L(14) L(15) L(16)

polylog(N) time

Parameters: G, t

(α, q, ε)-Soundness: ε ≤ αt + 3 · q2/2λ

Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its
challenges:
1. stores all labels L(0), . . . , L(N)

2. stores nothing and recomputes L(0), . . . , L(N)

Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its
challenges:
1. stores all labels L(0), . . . , L(N)

2. stores nothing and recomputes L(0), . . . , L(N)

Time(P) = N Space(P) = N · λ

Time(P) = 2N Space(P) depends but hopefully small

Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its
challenges:
1. stores all labels L(0), . . . , L(N)

2. stores nothing and recomputes L(0), . . . , L(N)

Time(P) = N Space(P) = N · λ

Time(P) = 2N Space(P) depends but hopefully small

For some schemes: [CP’18, AFGK’22] P has more strategies

3. stores S labels and additionlly recomputes N/S labels

Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its
challenges:
1. stores all labels L(0), . . . , L(N)

2. stores nothing and recomputes L(0), . . . , L(N)

Time(P) = N Space(P) = N · λ

Time(P) = 2N Space(P) depends but hopefully small

For some schemes: [CP’18, AFGK’22] P has more strategies

3. stores S labels and additionlly recomputes N/S labels

Time(P) = N +N/S Space(P) = S · λ

Time(P) = N +
√
N Space(P) =

√
N · λ

Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its
challenges:
1. stores all labels L(0), . . . , L(N)

2. stores nothing and recomputes L(0), . . . , L(N)

Time(P) = N Space(P) = N · λ

Time(P) = 2N Space(P) depends but hopefully small

For some schemes: [CP’18, AFGK’22] P has more strategies

3. stores S labels and additionlly recomputes N/S labels

Time(P) = N +N/S Space(P) = S · λ

Can we get the best of both worlds?

Time(P) = N Space(P) ∈ poly(logN,λ)

Time(P) = N +
√
N Space(P) =

√
N · λ

iPoSW

Vτ(·)Pτ(·)

πN

An iPoSW is a non-interactive proof system (P,V, Inc) where
• (P,V) is a space-efficient and tight PoSW

Parameter: N

[Döttling-Lai-Malavolta’19][this work]

iPoSW

Vτ(·)Pτ(·)

πN

An iPoSW is a non-interactive proof system (P,V, Inc) where
• (P,V) is a space-efficient and tight PoSW

Time(P) = N Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

Parameter: N

[Döttling-Lai-Malavolta’19][this work]

iPoSW

Vτ(·)Incτ(·)

πN

An iPoSW is a non-interactive proof system (P,V, Inc) where
• (P,V) is a space-efficient and tight PoSW

• Inc: given an accepting πN0
, it produces an accepting πN

with

Time(P) = N Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

N = N0 +N1

πN0

Parameter: N

[Döttling-Lai-Malavolta’19][this work]

iPoSW

Vτ(·)Incτ(·)

πN

An iPoSW is a non-interactive proof system (P,V, Inc) where
• (P,V) is a space-efficient and tight PoSW

• Inc: given an accepting πN0
, it produces an accepting πN

with

Time(P) = N Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

N = N0 +N1

Time(Inc) = N1 Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

πN0

Parameter: NParameter: N

[Döttling-Lai-Malavolta’19][this work]

iPoSW

Vτ(·)Incτ(·)

πN

An iPoSW is a non-interactive proof system (P,V, Inc) where
• (P,V) is a space-efficient and tight PoSW

• Inc: given an accepting πN0
, it produces an accepting πN

with

Time(P) = N Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

N = N0 +N1

Time(Inc) = N1 Space(P) ∈ poly(logN,λ)
|π| ∈ poly(logN,λ) Time(V) ∈ polylog(N)

πN0

· · ·π0 π2π1
· · ·N0 N2N1+ + +

Parameter: N

[Döttling-Lai-Malavolta’19][this work]

Graphs of Known PoSWs

1. [Abusalah-Kamath-Klein-Walter-Pietrzak’19] constructed reversible
PoSWs (a precursor to VDFs)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Graphs of Known PoSWs

2. [Cohen-Pietrzak’18]: Merkle-tree like graphs

1. [Abusalah-Kamath-Klein-Walter-Pietrzak’19] constructed reversible
PoSWs (a precursor to VDFs)

0 1 3 4

2 5

6

7 8

9

10 11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Graphs of Known PoSWs

3. [Mahmoody-Moran-Vadhan’13] gave the first PoSW from “highly”
depth-robust graphs with a Merkle-tree on top

2. [Cohen-Pietrzak’18]: Merkle-tree like graphs

1. [Abusalah-Kamath-Klein-Walter-Pietrzak’19] constructed reversible
PoSWs (a precursor to VDFs)

0 1 3 4

2 5

6

7 8

9

10 11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Graphs of Known PoSWs

3. [Mahmoody-Moran-Vadhan’13] gave the first PoSW from “highly”
depth-robust graphs with a Merkle-tree on top

2. [Cohen-Pietrzak’18]: Merkle-tree like graphs

1. [Abusalah-Kamath-Klein-Walter-Pietrzak’19] constructed reversible
PoSWs (a precursor to VDFs)

[Abusalah-Fuchsbauer-Gaži-Klein’22] adapted it to blockchain applications

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 3 4

2 5

6

7 8

9

10 11

12

13

14

[Abusalah-Fuchsbauer-Gaži-Klein’22] adapted it to blockchain applications

Graphs of Known iPoSWs

2. [Döttling-Lai-Malavolta’19] by transforming [CP’18]

1. [Abusalah-Cini’23] by transforming the skiplist PoSW

0 1 3 4

2 5

6

7 8

9

10 11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Graphs of Known iPoSWs

2. [Döttling-Lai-Malavolta’19] by transforming [CP’18]

1. [Abusalah-Cini’23] by transforming the skiplist PoSW

0 1 3 4

2 5

6

7 8

9

10 11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(Both schemes use the on-the-fly/incremental sampling of [DLM’19])

Open Problems

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

No

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

No

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak’17]

No

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak’17]

3. Conclude [MMV’13] can’t be made into an iPoSW; it uses DRGs

No

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak’17]

3. Conclude [MMV’13] can’t be made into an iPoSW; it uses DRGs

No

Yes

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak’17]

3. Conclude [MMV’13] can’t be made into an iPoSW; it uses DRGs

Any PoSW with underlying incremental and dynamic graphs can
be transformed into an iPoSW.

No

Yes

Solutions

1. Can we transform [MMV’13] into an iPoSW?

2. Can we generalize [DLM19] and [AC’23]?

1. Define incremental graphs and show that (graph-labeling)
iPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak’17]

3. Conclude [MMV’13] can’t be made into an iPoSW; it uses DRGs

Any PoSW with underlying incremental and dynamic graphs can
be transformed into an iPoSW.

+ a unified transformation
+ corollary: modified CP [AFGK’22] is also incremental

No

Yes

Dynamic Graphs: An Example

0 1 2 3 4

G0

Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8

G0 shifted G0

Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8

G1

Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G1 shifted G1

Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G2

Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G2

Easy to see that all known PoSW graphs [MMV’13, CP’18,
AKKWP’19, AFGK’22] are dynamic – with a minor
generalization to this example

Dynamic Graphs: An Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G2

Easy to see that all known PoSW graphs [MMV’13, CP’18,
AKKWP’19, AFGK’22] are dynamic – with a minor
generalization to this example

Dynamic graphs are friendly to the incremental sampling
technique [DLM’19] used by all iPoSWs [DLM’19, AC’23]

Incremental Graphs

0 1 2 3 4 5 6 7 8

Gi

Definition of Incremental Graphs:
Given pebbles on T ⊆ V (Gi)

Incremental Graphs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gi+1

Definition of Incremental Graphs:
Given pebbles on T ⊆ V (Gi), Gi+1 can be pebbled in time
and space complexities

|V (Gi+1) \ V (Gi)| and polylog(|V (Gi+1)|)

To Conclude

1. We generalized iPoSWs relying on dynamic and
incremental graphs of PoSWs

To Conclude

1. We generalized iPoSWs relying on dynamic and
incremental graphs of PoSWs

2. We proved that [MMV’13] is not incremental by showing
incremental graphs are necessary and depth-robust graphs
are not incremental

To Conclude

1. We generalized iPoSWs relying on dynamic and
incremental graphs of PoSWs

2. We proved that [MMV’13] is not incremental by showing
incremental graphs are necessary and depth-robust graphs
are not incremental

An open problem:
What are the necessary and sufficient graph conditions that

allow (standalone) PoSWs?

