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Parallel Random Oracle Model

Random oracle: 7: {0,1}* — {0,1}*

Qi = {Qi,j}T lT(Qi) ={7(¢i,)}
Unbounded A™() with initial state S0
Time(A™0)) := N
Space(A™0)) := max{|so|,. .., |sn|}

Total number of queries ¢ := |Qq| + -+ + |QN]
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PoSWs

[Mahmoody-Moran-Vadhan'13]

Parameter: NV

V7 ()

PINSR

Completeness: Honest P always makes V accept

Efficiency:
Time(P) = N, || € poly(log N, A), Time(V) € polylog(N)

(o, q, €)-Soundness: P making at most ¢ queries and running
in Time(P) < a - N makes V accept with prob. < e(\)
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Graph-Labeling PoSWs

Parameters: G on {0,..., N} vertices, t

p7() X V()
(@) ) L(N) . (ele)
i cclo,... N} é

(P's messages are graph labels)

Random oracle 7 : {0,1}* — {0, 1}* with 7 := 7(x, )

7 (1) if parents(¢) = 0,

L(i) := < 7_(i,L(parents(fzj))) otherwise.

\
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he Skiplist PoSW

[Abusalah-Fuchsbauer-Gazi-Klein'22]
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L(X‘f € path(i) » polylog(N) time

Completeness and efficiency: satisfied




he Skiplist PoSW

[Abusalah-Fuchsbauer-Gazi-Klein'22]

Parameters: Gt

p7() X V()

OO N
C: — ﬁ
I

. hi
L(X‘f € path() » polylog(N) time

(o, g, €)-Soundness: € < at 4 3 - ¢?/2*
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Space Efficiency of Known PoSWs

For all schemes: P has two extreme strategies to answer its

challenges:
1. stores all labels L(0),..., L(N)

Time(P) =N Space(P) =N - A
2. stores nothing and recomputes L(0),..., L(N)
Time(P) = 2N Space(P) depends but hopefully small

For some schemes: [CP'18, AFGK'22] P has more strategies
3. stores S labels and additionlly recomputes N/S labels
Time(P) =N+ N/S Space(P) =5 -\
Time(P) = N + VN Space(P) = VN - A

Can we get the best of both worlds?
Time(P) =N Space(P) € poly(log N, \)
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IPoSW

[Dottling-Lai-Malavolta'19][this work]

Inc™) Parameter: N
NCS o
P N = Ng + Ny

An iPoSW is a non-interactive proof system (P, V, Inc) where

e (P,V) is a space-efficient and tight PoSW

Time(P) = N Space(P) € poly(log N, \)

| € poly(log N, \) Time(V) € polylog(N)
e Inc: given an accepting my,, It produces an accepting my

with
Time(Inc) = NV, Space(P) € poly(log N, \)
| € poly(log N, \) Time(V) € polylog(N)

—» ) —» 7T ——» T2 ——p -
No + Ny, + Ny -+
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Graphs of Known PoSWs

1. [Abusalah-Kamath-Klein-Walter-Pietrzak'19] constructed reversible
PoSWs (a precursor to VDFs)

[Abusalah-Fuchsbauer-GaZi-Klein'22] adapted it to blockchain applications
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2. [Cohen-Pietrzak'18]: Merkle-tree like graphs

[Abusalah-Fuchsbauer-GaZi-Klein'22] adapted it to blockchain applications

3. [Mahmoody-Moran-Vadhan'13]| gave the first PoSW from “highly”
depth-robust graphs with a Merkle-tree on top
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Graphs of Known iPoSWs
1. [Abusalah-Cini'23] by transforming the skiplist PoSW

0= RO =N O () = R = YRy YR ()
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2. [Dottling-Lai-Malavolta'19] by transforming [CP'18]

(Both schemes use the on-the-fly/incremental sampling of [DLM'19])
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Solutions

1. Can we transform [MMV'13] into an iPoSW? No

1. Define incremental graphs and show that (graph-labeling)
iIPoSWs have incremental graphs (reling on efficiency of Inc)

2. Show that depth-robust graphs are not incremental
(a) Show incrementable graphs have small space pebbling complexity

(b) DRGs have high space pebbling complexity [Alwen-Blocki-Pietrzak'17]

3. Conclude [MMV'13] can’t be made into an iPoSW; it uses DRGs

2. Can we generalize [DLM19| and [AC'23]? Yes

Any PoSW with underlying incremental and dynamic graphs can
be transformed into an iPoSW.

+ a unified transformation
+ corollary: modified CP [AFGK'22] is also incremental
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Dynamic Graphs: An Example

Easy to see that all known PoSW graphs [MMV'13, CP'18,
AKKWP'19, AFGK'22] are dynamic — with a minor
generalization to this example

Dynamic graphs are friendly to the incremental sampling
technique [DLM'19] used by all iPoSWs [DLM'19, AC'23]
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Incremental Graphs
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Definition of Incremental Graphs:
Given pebbles on T' C V(G;), G;41 can be pebbled in time
and space complexities

V(Git1) \ V(Gi)| and polylog(|V(Giy1)])
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o Conclude

1. We generalized iPoSWs relying on dynamic and
incremental graphs of PoSWs

2. We proved that [MMV’13] is not incremental by showing
Incremental graphs are necessary and depth-robust graphs
are not incremental

An open problem:
What are the necessary and sufficient graph conditions that
allow (standalone) PoSWs?



