
Efficient Permutation Correlations and
Batched Random Access for Two-Party

ComputationJoint work with:
Srinivasan Raghuraman, Peter Rindal, Harshal Shah

Stan Peceny

Joint work with

Srini Raghuraman, Peter Rindal, Harshal Shah

Array Access

Array Access

: can depend on program input

Array Access

Bottleneck

: can depend on program input

Array Access

: can depend on program input
 must remain hidden

Bottleneck

Linear Scan

Linear Scan

Linear Scan

Linear Scan

Linear Scan

Linear Scan

Linear Scan

Linear Scan

Linear Scan

Linear Overhead

Linear Scan

Linear Overhead

Low Constants

Linear Scan

Linear Overhead

Low Constants

Oblivious RAM

Polylog Overhead

Oblivious RAM

Polylog Overhead

High Constants

Oblivious RAM

Polylog Overhead

High Constants

Oblivious RAM

Secret Sharing Schemes Garbled RAM

Oblivious RAM

Secret Sharing Schemes

 Mostly sequential accesses

 Adds polylog rounds

Garbled RAM

Oblivious RAM

Secret Sharing Schemes

 Mostly sequential accesses

 Adds polylog rounds

Garbled RAM

 Constant rounds

 overhead

Batched Array Access

Many MPC applications with RAM can
be implemented in a batched manner

Batched Array Access

6
6
4
1

 a Permutation

Reordering

6
2
4
1

3

5

Permutation

A key primitive for batched RAM

We show they allow for more complex batched RAM

Permutation

A key primitive for batched RAM

We show they allow for more complex batched RAM

Amortized O(1) overhead per access

Contribution

Suite of 2-party semi-honest protocols:

Contribution

Suite of 2-party semi-honest protocols:

2 novel permutation correlations

Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort

Contribution

Suite of 2-party semi-honest protocols:

2 novel permutation correlations

Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort

Present 1

Permutation Correlation

Permutation Correlation

Permutation Correlation

Permutation-equivalent to random OLE in MPC

Permutation Correlation

Permutation equivalent to random OLE in MPC

‘Share translation’ in [CGP20]

2 Novel Protocols
Weak PRF-based

O(nl) comm., 3 rounds
7.3 seconds and 182MB for n=220, l=128

2 Novel Protocols
Weak PRF-based

O(nl) comm., 3 rounds
7.3 seconds and 182MB for n=220, l=128

PCG-based
First sublinear protocol
O(n log l) comm., O(log (l/ 2)) rounds
Higher constants

Weak PRF

x is random

Weak PRF

x is random

Weak PRF

x is random

Alternating Moduli [APRR24], LowMC [ARS+15]

wPRF Permutation Correlation

wPRF Permutation Correlation

wPRF Permutation Correlation

wPRF Permutation Correlation

wPRF Permutation Correlation

wPRF Permutation Correlation

wPRF Permutation Correlation

Ours vs Related Work
Chosen-input, n=220, l=128

Ours: 7.3s, 182MB

Chase et al. [CGP20]: 44s, 4GB

Gazelle [JVC18]: 303s, 215MB

Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed

Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed

Dominant cost: Sort

O(n log n) time and O(log n) rounds

n accesses with amortized O(1) overhead

Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed

Dominant cost: Sort

O(n log n) time and O(log n) rounds

n accesses with amortized O(1) overhead

n accesses to n=216 array ~10s and ~160MB

B4

Batched-RAM-Read Tool
Aggregation Tree [BDG+22]:
Input: List of blocks B, List of control bits c

⟦B⟧:

⟦c⟧:

c partitions B into sublists:

Output: Copy first item of each sublist into rest of sublist

0 0 1 1 0

B0 B1 B2 B3

B0 B1 B2 B3 B4

B0 B1 B1 B1 B4

B5

B5

B4

1

Batched Array Access

6
6
4
1

Dummies

Dummies

6
6
4
1
6
5
4
3
2
1

Dummies

1
1
1
1
0
0
0
0
0
0

6
6
4
1
6
5
4
3
2
1

Dummies

1
1
1
1
0
0
0
0
0
0

6
6
4
1
6
5
4
3
2
1

Stable sort using the indices

Dummies

1
1
1
1
0
0
0
0
0
0

6
6
4
1
6
5
4
3
2
1

Stable sort using the indices
Returns sorting permutation
Permute with

1
1
0
0
1
0
0
0
1
0

6
6
6
5
4
4
3
2
1
1

1
1
0
0
1
0
0
0
1
0

6
6
6
5
4
4
3
2
1
1

Aggregation Tree

Blocks Control Bits

1
1
0
0
1
0
0
0
1
0

6
6
6
5
4
4
3
2
1
1

Aggregation Tree

Blocks Control Bits

1
1
0
0
1
0
0
0
1
0

6
6
6
5
4
4
3
2
1
1

Aggregation Tree

Blocks Control Bits

6
6
6
5
4
4
3
2
1
1

6
6
6
5
4
4
3
2
1
1

Unpermute with

Accessed Elements

6
6
4
1

Toolbox
Derandomize:

Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation

Toolbox
Derandomize:

Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation

Additive ⇔ composition secret-shared permutation

Sorting and extraction protocols

Suite of 2-party semi-honest protocols:

2 novel permutation correlations

Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort

Efficient Permutation Correlations and
Batched Random Access for Two-Party

Computation

