Efficient Permutation Correlations and

Batched Random Access for Two-Party
Computation

Stan Peceny
Joint work with

Srini Raghuraman, Peter Rindal, Harshal Shah

Georgia Institute
of Technology. VISA

Array Access

Array Access

1: can depend on program input }—

Array Access

A_ ‘ Bottleneck ‘

1: can depend on program input }—

Array Access

A_ ‘ Bottleneck ‘

()
1: can depend on program input }—
must remain hidden —

Linear Scan

i\

[T T[]

Linear Scan

[T T[]

Linear Scan

[T T[]

Linear Scan

[T T[]

Linear Scan

Linear Scan

[T T[]

Linear Scan

[T T[]

Linear Scan

[T T[T
[
>

Linear Overhead

Linear Scan

Linear Overhead

Low Constants

Linear Scan

Linear Scan

Linear Overhead >< o —) A—Z

Low Constants]

Polylog Overhead

Oblivious RAM

—> A;

[T T[]

Polylog Overhead

High Constants

Oblivious RAM

Polylog Overhead

High Constants

Oblivious RAM

X L

Oblivious RAM

Secret Sharing Schemes Garbled RAM

Oblivious RAM

Secret Sharing Schemes Garbled RAM

‘ Mostly sequential accesses

-Adds polylog rounds

Oblivious RAM

Secret Sharing Schemes Garbled RAM

‘ Mostly sequential accesses - Constant rounds

‘Adds polylog rounds ‘ K overhead

Batched Array Access

Many MPC applications with RAM can
be implemented in a batched manner

Batched Array Access

o

A
Ay
91— Egl

(o2 B N2

-

NN

-_—

EIEERERRS

o a Permutation

=

Reorderlng

Permutation

A key primitive for batched RAM

We show they allow for more complex batched RAM

Permutation

A key primitive for batched RAM
We show they allow for more complex batched RAM

Amortized O(1) overhead per access

Contribution

Suite of 2-party semi-honest protocols:

Contribution

Suite of 2-party semi-honest protocols:
2 novel permutation correlations
Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort

Contribution

Suite of 2-party semi-honest protocols:/ Sresent 1
2 novel permutation correlations
Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort

Permutation Correlation

e T
F, perm

Permutation Correlation

2

Permutation Correlation

iﬁi

F, perm

(A, B) C——

(e
)

m(A)=B+C

Permutation-equivalent to random OLE in MPC

s
C

Permutation Correlation

(A, B) C——

F, perm

(e
)

m(A)=B+C

Permutation equivalent to random OLE in MPC

‘Share translation’ in [CGP20]

s
C

2 Novel Protocols

Weak PRF-based
O(nl) comm., 3 rounds
7.3 seconds and 182MB for n=2%°, =128

2 Novel Protocols

Weak PRF-based
O(nl) comm., 3 rounds
7.3 seconds and 182MB for n=2%°, =128

PCG-based
First sublinear protocol
O(n log 1) comm., O(log (I/ k2?)) rounds
Higher constants

Weak PRF

)

prrf

(e

L

Weak PRF

X iIs random

prrf

(e
)

[Fr ()5

Weak PRF

k —) e
)

Fuwprf

[Fr ()5

X iIs random

Alternating Moduli [APRR24], LowMC [ARS+15]

WPRF Permutation Correlation

~

k <+ IC T

WPRF Permutation Correlation

- ~
P Q
k< K T

WPRF Permutation Correlation

A @

k< IC Tr
Bi (= wprf) C’L

WPRF Permutation Correlation

o~

i @

k+— K T
B’i (= wprf) C’L

WPRF Permutation Correlation

A @

k< IC Tr
B’i (= wprf) C’L

m(A) =B+ C

WPRF Permutation Correlation

WPRF Permutation Correlation

~

k< K
A; == Fy(H (7))

Ours vs Related Work

Chosen-input, n=2%°, 1=128
Ours: 7.3s, 182MB
Chase et al. [CGP20]: 44s, 4GB

Gazelle [JVC18]: 303s, 215MB

Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed

Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed
Dominant cost: Sort
O(n log n) time and O(log n) rounds

n accesses with amortized O(1) overhead

Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed
Dominant cost: Sort

O(n log n) time and O(log n) rounds

n accesses with amortized O(1) overhead

n accesses to n=2"° array ~10s and ~160MB

Batched-RAM-Read Tool

Aggregation Tree [BDG+22]:
Input: List of blocks B, List of control bits c

[[B]] BO B'] B2 BS B4 B5

[c]:0 o0 1 1 0 1

c partitions B into sublists: [B;, (B, |8 18 B, B,

Output: Copy first item of each sublist into rest of sublist

B, B, |B, |[B, |B, |B,

Batched Array Access

o

A
Ay
91— Egl

(o2 B N2

-

NN

-_—

Dummies <

A <

Dummies < —

A «

- N W b OO O

Dummies <

Dummies <

A «

- N W b OO O

\.

Stable sort using the indices J

O O O O O O

Dummies < —

A «

- N W b OO O
O O O O O O

\.

Returns sorting permutation 7T
Permute with 7T

Stable sort using the indices J

- = QO O T O O O T O

0 O O U T T M N — =

Aggregation Tree

- = N W A BHE O O O O
o - O O O = O O — -

Blocks J L Control Bits

Aggregation Tree

- = N W A BHE O O O O

Blocks J L Control Bits

Aggregation Tree

0

1
Blocks J L Control Bits

O O O U T F M N T

Unpermute with 771

Accessed Elements <

= A O O

A «

Toolbox

Derandomize:
Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation

Toolbox

Derandomize:
Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation

Additive < composition secret-shared permutation

Sorting and extraction protocols

Efficient Permutation Correlations and

Batched Random Access for Two-Party
Computation

Suite of 2-party semi-honest protocols:
2 novel permutation correlations
Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort

