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Oblivious RAM

Secret Sharing Schemes Garbled RAM

‘ Mostly sequential accesses - Constant rounds

‘Adds polylog rounds ‘ K overhead



Batched Array Access

Many MPC applications with RAM can
be implemented in a batched manner
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Permutation

A key primitive for batched RAM
We show they allow for more complex batched RAM

Amortized O(1) overhead per access
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‘Share translation’ in [CGP20]
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2 Novel Protocols

Weak PRF-based
O(nl) comm., 3 rounds
7.3 seconds and 182MB for n=2%°, =128

PCG-based
First sublinear protocol
O(n log 1) comm., O(log (I/ k2?)) rounds
Higher constants
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Alternating Moduli [APRR24], LowMC [ARS+15]
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Ours vs Related Work

Chosen-input, n=2%°, 1=128
Ours: 7.3s, 182MB
Chase et al. [CGP20]: 44s, 4GB

Gazelle [JVC18]: 303s, 215MB
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Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed
Dominant cost: Sort

O(n log n) time and O(log n) rounds

n accesses with amortized O(1) overhead

n accesses to n=2"° array ~10s and ~160MB



Batched-RAM-Read Tool

Aggregation Tree [BDG+22]:
Input: List of blocks B, List of control bits c

[[B]] BO B'] B2 BS B4 B5

[c]:0 o0 1 1 0 1

c partitions B into sublists: [B;, (B, |8 18 B, B,

Output: Copy first item of each sublist into rest of sublist

B, B, |B, |[B, |B, |B,
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Returns sorting permutation 7T
Permute with 7T

Stable sort using the indices J
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Unpermute with 771
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Derandomize:
Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation



Toolbox

Derandomize:
Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation

Additive < composition secret-shared permutation

Sorting and extraction protocols
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Suite of 2-party semi-honest protocols:
2 novel permutation correlations
Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort



