
Efficient Permutation Correlations and 
Batched Random Access for Two-Party 

ComputationJoint work with:
Srinivasan Raghuraman, Peter Rindal, Harshal Shah

Stan Peceny

Joint work with

Srini Raghuraman, Peter Rindal, Harshal Shah



Array Access



Array Access

: can depend on program input



Array Access

Bottleneck

: can depend on program input



Array Access

: can depend on program input
  must remain hidden

Bottleneck



Linear Scan



Linear Scan



Linear Scan



Linear Scan



Linear Scan



Linear Scan



Linear Scan



Linear Scan



Linear Scan

Linear Overhead



Linear Scan

Linear Overhead

Low Constants



Linear Scan

Linear Overhead

Low Constants  



Oblivious RAM

Polylog Overhead



Oblivious RAM

Polylog Overhead

High Constants



Oblivious RAM

Polylog Overhead

High Constants



Oblivious RAM

Secret Sharing Schemes Garbled RAM



Oblivious RAM

Secret Sharing Schemes

  Mostly sequential accesses
         
        Adds polylog rounds

Garbled RAM



Oblivious RAM

Secret Sharing Schemes

  Mostly sequential accesses
         
        Adds polylog rounds

Garbled RAM

  Constant rounds
         
              overhead



Batched Array Access

Many MPC applications with RAM can 
be implemented in a batched manner
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Permutation

A key primitive for batched RAM

We show they allow for more complex batched RAM

Amortized O(1) overhead per access
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Permutation Correlation

Permutation equivalent to random OLE in MPC

‘Share translation’ in [CGP20]
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2 Novel Protocols
Weak PRF-based

O(nl) comm., 3 rounds
7.3 seconds and 182MB for n=220, l=128

PCG-based
First sublinear protocol
O(n log l) comm., O(log (l/   2)) rounds
Higher constants
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Weak PRF

x is random

Alternating Moduli [APRR24], LowMC [ARS+15]
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Ours vs Related Work
Chosen-input, n=220, l=128

Ours:  7.3s, 182MB

Chase et al. [CGP20]: 44s, 4GB

Gazelle [JVC18]: 303s, 215MB
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Batched Array Access
(1) Batched read and (2) batched write

Multiple reads/write to single index allowed

Dominant cost: Sort

O(n log n) time and O(log n) rounds

n accesses with amortized O(1) overhead

n accesses to n=216 array ~10s and ~160MB



B4

Batched-RAM-Read Tool
Aggregation Tree [BDG+22]:
Input: List of blocks B, List of control bits c

⟦B⟧:

⟦c⟧:

c partitions B into sublists: 

Output: Copy first item of each sublist into rest of sublist

0 0 1 1 0

B0 B1 B2 B3

B0 B1 B2 B3 B4

B0 B1 B1 B1 B4

B5

B5

B4

1
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Toolbox
Derandomize:

Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation



Toolbox
Derandomize:

Chosen input and permutation
Input list is secret-shared
Permutation is secret-shared (as composition)
Many permutations with 1 correlation
Inverse permutation

Additive ⇔ composition secret-shared permutation

Sorting and extraction protocols



Suite of 2-party semi-honest protocols:

2 novel permutation correlations

Expressive batched RAM read/write gates

Toolbox: derandomization protocols, extraction, sort 
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