Vanishing Short Integer Solution, Revisited

Reductions, Trapdoors, Homomorphic Signatures for Low-Degree Polynomials

Kalle Jyrkinen¹ and Russell W. F. Lai¹

¹Aalto University

PKC 2025. ePrint: ia.cr/2025/360.

Short Integer Solution (SIS)

 $\begin{array}{l} \underbrace{\operatorname{SIS}_{\mathbb{Z},n,m,q,\beta}}{\dagger \quad \operatorname{Given:} \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m} \\ \dagger \quad \operatorname{Find:} \mathbf{x} \in \mathbb{Z}^m \text{ such that} \\ & \ddagger \quad \mathbf{Ax} = \mathbf{0} \mod q \text{ and} \\ & \ddagger \quad \|\mathbf{x}\| \leq \beta \end{array}$

- † (Worst-case to average-case) reduction from SIVP [Ajt96]
 - \implies Conjectured post-quantum security
- † Trapdoors [GPV08; MP12]
- † Many applications, in particular homomorphic signatures [GVW15]
- \dagger Generalisation to rings and modules [LPR10; LS15] \implies Concrete efficiency
- † More or less the same story for learning with errors (LWE) [Reg05]

- † Beyond ring/module structures?
 - \ddagger Hinted and structured lattice assumptions \Longrightarrow
 - ‡‡ Practical advanced primitives
 - 11 New functionalities
 - ‡ Hardness poorly understood. More research needed!
- † A hinted/structured SIS family:
 - ‡ BASIS (basis-augmented SIS) [WW23]
 - \leq kRISIS (k-ring inhomogeneous SIS) [ACLMT22]
 - \leq vSIS (vanishing SIS) [CLM23]
 - $\stackrel{\scriptstyle imes}{}$ (Strong-)hinted-vSIS [DKLW25] \leq vSIS
- † Applications:
 - Proof-friendly signatures (e.g. for practical anonymous credentials) [DKLW25]
 - Functional commitments for polynomials [ACLMT22] and circuits [WW23; BCFL23]
 - ‡ Practical lattice-based SNARKs [KLNO24; OKCLM25]
- † This work: vSIS Revisited

- † Beyond ring/module structures?
 - \ddagger Hinted and structured lattice assumptions \Longrightarrow
 - ‡‡ Practical advanced primitives
 - 11 New functionalities
 - ‡ Hardness poorly understood. More research needed!
- † A hinted/structured SIS family:
 - ‡ BASIS (basis-augmented SIS) [WW23]
 - \leq kRISIS (k-ring inhomogeneous SIS) [ACLMT22]
 - \leq vSIS (vanishing SIS) [CLM23]
 - ‡ (Strong-)hinted-vSIS [DKLW25] \leq vSIS

† Applications:

- Proof-friendly signatures (e.g. for practical anonymous credentials) [DKLW25]
- Functional commitments for polynomials [ACLMT22] and circuits [WW23; BCFL23]
- Practical lattice-based SNARKs [KLNO24; OKCLM25]

† This work: vSIS Revisited

- † Beyond ring/module structures?
 - \ddagger Hinted and structured lattice assumptions \implies
 - ‡‡ Practical advanced primitives
 - 11 New functionalities
 - ‡ Hardness poorly understood. More research needed!
- † A hinted/structured SIS family:
 - ‡ BASIS (basis-augmented SIS) [WW23]
 - \leq kRISIS (k-ring inhomogeneous SIS) [ACLMT22]
 - \leq vSIS (vanishing SIS) [CLM23]
 - \ddagger (Strong-)hinted-vSIS [DKLW25] \leq vSIS
- † Applications:
 - [‡] Proof-friendly signatures (e.g. for practical anonymous credentials) [DKLW25]
 - [‡] Functional commitments for polynomials [ACLMT22] and circuits [WW23; BCFL23]
 - ‡ Practical lattice-based SNARKs [KLNO24; OKCLM25]

† This work: vSIS Revisited

- † Beyond ring/module structures?
 - \ddagger Hinted and structured lattice assumptions \implies
 - ‡‡ Practical advanced primitives
 - 11 New functionalities
 - ‡ Hardness poorly understood. More research needed!
- † A hinted/structured SIS family:
 - ‡ BASIS (basis-augmented SIS) [WW23]
 - \leq kRISIS (k-ring inhomogeneous SIS) [ACLMT22]
 - \leq vSIS (vanishing SIS) [CLM23]
 - \ddagger (Strong-)hinted-vSIS [DKLW25] \leq vSIS
- † Applications:
 - [‡] Proof-friendly signatures (e.g. for practical anonymous credentials) [DKLW25]
 - [‡] Functional commitments for polynomials [ACLMT22] and circuits [WW23; BCFL23]
 - Practical lattice-based SNARKs [KLNO24; OKCLM25]
- † This work: vSIS Revisited

What is Vanishing SIS? A simple variant

"Simple vSIS"

- Parameter: Degree d = O(1)
- Given: Random point v mod q
- † Find: Degree-*d* polynomial *p* with short coefficients such that $p(v) = 0 \mod q$

Overview of Results

1. Reduction

(Worst-case) simple vSIS is as hard as IdSVP (over some class of ideals, with a lot of caveats).

2. Trapdoor

Decision NTRU \implies Trapdoors for simple vSIS. (Allows sampling of short polynomials evaluating to given values at given points.)

3. Homomorphic Signatures

vSIS trapdoors \implies Fully algebraic homomorphic signatures. (Not practical (yet?), mostly for demonstrative purposes.)

Setting

Notation	Description	Example 1	Example 2
f	conductor / cyclotomic index	1	2 ^{<i>k</i>+1}
$\zeta=\zeta_{\mathfrak{f}}$	a primitive \mathfrak{f} -th root of unity	1	$e^{2\pi i/\mathfrak{f}}$
$\mathcal{K}=\mathbb{Q}(\zeta)$	${\mathfrak f}$ -th cyclotomic field	$\mathcal{K}=\mathbb{Q}$	$\mathcal{K}\cong \mathbb{Q}[X]/\langle X^{2^k}+1 angle$
$\mathcal{R} = \mathbb{Z}[\zeta]$	ring of integers of ${\cal K}$	$\mathcal{R}=\mathbb{Z}$	$\mathcal{R}\cong\mathbb{Z}[X]/\langle X^{2^k}+1 angle$
$arphi=arphi(\mathfrak{f})$	degree of ${\cal K}$	1	2 ^{<i>k</i>}

SIS - Two Points of View

Traditional point of view

 $SIS_{\mathcal{R},n,m,q,\beta}$

- † Given: $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- † Find: $\mathbf{x} \in \mathcal{R}^m$ such that ‡ $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and ‡ $\|\mathbf{x}\| < \beta$

Function point of view

 $\mathsf{SIS}_{\mathcal{R},n,m,q,eta}$

† Given: $\mathbf{a}_1, \ldots, \mathbf{a}_n \leftarrow \mathcal{R}_q^m$

† Find: linear function $f \in \mathcal{R}^m \to \mathcal{R}$ such that ‡ $f(\mathbf{a}_i) = 0 \mod q$ for all $i \in [n]$ and

‡ norm of coefficients $\|f\| \leq eta$

SIS - Two Points of View

Traditional point of view

 $SIS_{\mathcal{R},n,m,q,\beta}$

- † Given: $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- † Find: $\mathbf{x} \in \mathcal{R}^m$ such that ‡ $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and ‡ $\|\mathbf{x}\| \le \beta$

Function point of view

 $SIS_{\mathcal{R},n,m,q,\beta}$

† Given: $\mathbf{a}_1, \ldots, \mathbf{a}_n \leftarrow \mathcal{R}_q^m$

 \dagger Find: linear function $f\in\mathcal{R}^m
ightarrow\mathcal{R}$ such that

- $f(\mathbf{a}_i) = 0 \mod q$ for all $i \in [n]$ and
- ‡ norm of coefficients $\|f\| \leq \beta$

Vanishing Short Integer Solution (vSIS)

- † Many ways to define, many parameters.
- † Here we focus on one of the simplest cases univariate polynomial vanishing at a single point:
 - $\mathsf{vSIS}_{\mathcal{R},d,q,\beta}$
 - \ddagger Given: $v \leftarrow R_q$
 - ‡ Find: degree-*d* polynomial $p \in \mathcal{R}[X]$ such that

 $\begin{array}{ll} \ddagger & p(v) = 0 \mod q \text{ and} \\ \ddagger & \text{norm of coefficients } \|p\| \leq \beta \end{array}$

† Think of ring degree $\varphi = \Theta(\lambda)$, polynomial degree d = O(1), $q = \text{poly}(\lambda)$, $\beta = \text{poly}(\lambda)$. † If d = 1, we essentially recover (search-)NTRU, except that NTRU restricts v to be of the form

 $v = f/g \mod q$

where $f, g \leftarrow R$ are low-norm.

Vanishing Short Integer Solution (vSIS)

- † Many ways to define, many parameters.
- † Here we focus on one of the simplest cases univariate polynomial vanishing at a single point:

 $\mathsf{vSIS}_{\mathcal{R},d,q,\beta}$

- \ddagger Given: $v \leftarrow R_q$
- ‡ Find: degree-*d* polynomial $p \in \mathcal{R}[X]$ such that

 $\begin{array}{l} \ddagger & p(v) = 0 \mod q \text{ and} \\ \ddagger & \text{norm of coefficients } \|p\| \leq \beta \end{array}$

† Think of ring degree $\varphi = \Theta(\lambda)$, polynomial degree d = O(1), $q = \text{poly}(\lambda)$, $\beta = \text{poly}(\lambda)$.

† If d = 1, we essentially recover (search-)NTRU, except that NTRU restricts v to be of the form

 $v = f/g \mod q$

where $f, g \leftarrow R$ are low-norm.

Vanishing Short Integer Solution (vSIS)

- † Many ways to define, many parameters.
- † Here we focus on one of the simplest cases univariate polynomial vanishing at a single point:

 $\mathsf{vSIS}_{\mathcal{R},d,q,\beta}$

- \ddagger Given: $v \leftarrow R_q$
- ‡ Find: degree-*d* polynomial $p \in \mathcal{R}[X]$ such that

 $\begin{array}{l} \ddagger & p(v) = 0 \mod q \text{ and} \\ \ddagger & \text{norm of coefficients } \|p\| \leq \beta \end{array}$

† Think of ring degree $\varphi = \Theta(\lambda)$, polynomial degree d = O(1), $q = \text{poly}(\lambda)$, $\beta = \text{poly}(\lambda)$.

† If d = 1, we essentially recover (search-)NTRU, except that NTRU restricts v to be of the form

$$v = f/g \mod q$$

where $f, g \leftarrow \mathcal{R}$ are low-norm.

$\mathbf{IdHSVP} \leq \mathbf{vSIS}$

Ideal Hermite Shortest Vector Problem γ -IdHSVP $_{\mathcal{R}}$

Given an ideal $\mathcal{I} \subseteq \mathcal{R}$, find an element $x \in \mathcal{I}$ at most γ times longer than the shortest^{*}, i.e.

 $\|\mathbf{x}\| \leq \gamma \cdot \varphi \cdot \mathcal{N}(\mathcal{I})^{1/\varphi}.$

Theorem: IdHSVP \leq vSIS

Let $d \in \mathbb{N}$ be constant, $\varphi, \theta, n = \mathsf{poly}(\lambda)$,

$$\beta = \varphi^{d+1} \cdot n, \qquad q > \varphi^{d+2} \cdot n^2 \cdot \max\left\{4\theta^{d-1}, \, 2\varphi^d\right\}, \qquad \gamma \ge \varphi^d \cdot n.$$

Worst-case vSIS_{$\mathcal{R}, d, q^d, \beta$} is as hard as γ -IdHSVP_{\mathcal{R}} for ideals $\mathcal{I} \subseteq \mathcal{R}$ satisfying the following: † $\mathcal{N}(\mathcal{I}) \leq n^{\varphi}$, † $\mathcal{I} = \langle z^d \rangle \cap \mathcal{R}$ is represented by some $z \in \mathcal{K}$ with $||z^{-1}||_{\infty} \leq \theta/2$.

$\mathbf{IdHSVP} \leq \mathbf{vSIS}$

Ideal Hermite Shortest Vector Problem γ -IdHSVP $_{\mathcal{R}}$

Given an ideal $\mathcal{I} \subseteq \mathcal{R}$, find an element $x \in \mathcal{I}$ at most γ times longer than the shortest^{*}, i.e.

 $\|\mathbf{x}\| \leq \gamma \cdot \varphi \cdot \mathcal{N}(\mathcal{I})^{1/\varphi}.$

Theorem: IdHSVP \leq vSIS

Let
$$d \in \mathbb{N}$$
 be constant, $\varphi, \theta, n = \mathsf{poly}(\lambda)$,

$$\beta = \varphi^{d+1} \cdot n, \qquad q > \varphi^{d+2} \cdot n^2 \cdot \max\left\{ 4\theta^{d-1}, \, 2\varphi^d \right\}, \qquad \gamma \ge \varphi^d \cdot n.$$

Worst-case vSIS_{\mathcal{R},d,q^d,β} is as hard as γ -IdHSVP_{\mathcal{R}} for ideals $\mathcal{I} \subseteq \mathcal{R}$ satisfying the following: † $\mathcal{N}(\mathcal{I}) \leq n^{\varphi}$, † $\mathcal{I} = \langle z^d \rangle \cap \mathcal{R}$ is represented by some $z \in \mathcal{K}$ with $||z^{-1}||_{\infty} \leq \theta/2$.

Proof Idea

[†] Generalisation of [PS21] who considered d = 1 (i.e. search NTRU).

$$\begin{array}{|} \hline & \mathsf{IdHSVP-to-vSIS}_{\mathcal{R},d,q^d,\beta}^{\mathcal{A}}(\mathcal{I}) \\ \hline & v := \left\lfloor \frac{q}{z} \right\rceil \mod q^d \\ p \leftarrow \mathcal{A}(v) \\ \textit{I } p(v) = 0 \mod q^d, \|p\| \le \beta \\ \hline & \mathsf{return} \ \text{leading coefficient of } p \end{array}$$

t Let α ∈ I \ {0} be the shortest element. (No need to find explicitly.)
t Examine α/z^d times the leading coefficient p_d of p and show that

$$\alpha \cdot \frac{p_d}{z^d} = \alpha \cdot r$$

for some $r \in \mathcal{R}$.

Proof Idea

[†] Generalisation of [PS21] who considered d = 1 (i.e. search NTRU).

$$\begin{array}{|} \hline & \mathsf{IdHSVP-to-vSIS}_{\mathcal{R},d,q^d,\beta}^{\mathcal{A}}(\mathcal{I}) \\ \hline & v := \left\lfloor \frac{q}{z} \right\rceil \mod q^d \\ & \rho \leftarrow \mathcal{A}(v) \\ & \textit{I } p(v) = 0 \mod q^d, \|p\| \le \beta \\ & \mathsf{return} \ \text{leading coefficient of } p \end{array}$$

t Let α ∈ I \ {0} be the shortest element. (No need to find explicitly.)
 t Examine α/z^d times the leading coefficient p_d of p and show that

$$\alpha \cdot \frac{p_d}{z^d} = \alpha \cdot r$$

for some $r \in \mathcal{R}$.

Proof Idea

[†] Generalisation of [PS21] who considered d = 1 (i.e. search NTRU).

$$\begin{array}{|} \hline \mathsf{IdHSVP-to-vSIS}^{\mathcal{A}}_{\mathcal{R},d,q^d,\beta}(\mathcal{I}) \\ \hline v := \left\lfloor \frac{q}{z} \right\rceil \mod q^d \\ p \leftarrow \mathcal{A}(v) \\ \textit{I } p(v) = 0 \mod q^d, \|p\| \le \beta \\ \hline \mathbf{return} \ \text{leading coefficient of } p \end{array}$$

t Let α ∈ I \ {0} be the shortest element. (No need to find explicitly.)
t Examine α/z^d times the leading coefficient p_d of p and show that

$$\alpha \cdot \frac{p_d}{z^d} = \alpha \cdot r$$

for some $r \in \mathcal{R}$.

- † Multi-point?
- † Multivariate?
- † Beyond constant degree?
- † Remove restrictions on ideal \mathcal{I} ?
- † Modulus q instead of q^d ?
- † Worst-case to average-case?

- † Multi-point?
- † Multivariate?
- † Beyond constant degree?
- $\dagger\,$ Remove restrictions on ideal $\mathcal{I}\ref{eq:constraint}$
- † Modulus q instead of q^d ?
- † Worst-case to average-case?

- † Multi-point?
- † Multivariate?
- † Beyond constant degree?
- $^\dagger\,$ Remove restrictions on ideal $\mathcal{I}?$
- † Modulus q instead of q^d ?
- † Worst-case to average-case?

Trapdoors for vSIS

 \dagger Recall: Trapdoor for SIS instance $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$ allows to sample short vector $\mathbf{x} \in \mathbb{Z}^m$ satisfying

 $\mathbf{A}\mathbf{x} = \mathbf{y} \mod q$

for any given $\mathbf{y} \in \mathbb{Z}_q^n$.

 $^+$ vSIS Trapdoor for a point $v\in \mathcal{R}_q$: Allows to sample short degree-d polynomial $p\in \mathcal{R}[X]$ such that

 $p(v) = r \bmod q$

for any given $r \in \mathcal{R}_q$.

Result: vSIS Trapdoors

There exists a generalisation of the heuristic PPT NTRU trapdoor algorithm (i.e. d = 1) which samples degree-d vSIS trapdoors of near optimal (Gram-Schmidt) norm

$$\|\mathbf{\tilde{T}}\| \approx \beta_d \coloneqq \sqrt{\varphi} \cdot q^{1/(d+1)}.$$

Trapdoors for vSIS

 \dagger Recall: Trapdoor for SIS instance $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$ allows to sample short vector $\mathbf{x} \in \mathbb{Z}^m$ satisfying

 $\mathbf{A}\mathbf{x} = \mathbf{y} \mod q$

for any given $\mathbf{y} \in \mathbb{Z}_{a}^{n}$.

 \dagger vSIS Trapdoor for a point $v \in \mathcal{R}_q$: Allows to sample short degree-*d* polynomial $p \in \mathcal{R}[X]$ such that

 $p(v) = r \mod q$

for any given $r \in \mathcal{R}_q$.

Result: vSIS Trapdoors

There exists a generalisation of the heuristic PPT NTRU trapdoor algorithm (i.e. d = 1) which samples degree-d vSIS trapdoors of near optimal (Gram-Schmidt) norm

$$\|\mathbf{\tilde{T}}\| \approx \beta_d \coloneqq \sqrt{\varphi} \cdot q^{1/(d+1)}.$$

Trapdoors for vSIS

 \dagger Recall: Trapdoor for SIS instance $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$ allows to sample short vector $\mathbf{x} \in \mathbb{Z}^m$ satisfying

 $\mathbf{A}\mathbf{x} = \mathbf{y} \mod q$

for any given $\mathbf{y} \in \mathbb{Z}_{a}^{n}$.

 \dagger vSIS Trapdoor for a point $v \in \mathcal{R}_q$: Allows to sample short degree-*d* polynomial $p \in \mathcal{R}[X]$ such that

 $p(v) = r \mod q$

for any given $r \in \mathcal{R}_q$.

Result: vSIS Trapdoors

There exists a generalisation of the heuristic PPT NTRU trapdoor algorithm (i.e. d = 1) which samples degree-*d* vSIS trapdoors of near optimal (Gram-Schmidt) norm

$$\|\mathbf{\tilde{T}}\| \approx \beta_d \coloneqq \sqrt{\varphi} \cdot q^{1/(d+1)}.$$

Empirical values of $\| \boldsymbol{\widetilde{t}}_{d+1} \|$ against $\| \boldsymbol{\widetilde{t}}_1 \|$

[†]
$$\mathbf{f} = 128$$

[†] $q = 1000193 = 2^8 \cdot 3907 + 1$
[†] $\beta_d = \sqrt{\varphi} \cdot q^{1/(d+1)} \le \|\mathbf{\tilde{T}}\|$
[†] Optimal: $\|\mathbf{\tilde{t}}_{d+1}\| \approx \|\mathbf{\tilde{t}}_1\| \approx \beta_d$

 $\frac{\beta_3}{\|\mathbf{\tilde{t}}_1\|}$

• $\|\tilde{\mathbf{t}}_{d+1}\|$

 $2\beta_3$

 $\frac{1}{2}\beta_3$

— ||ĩ₁||

vSIS Revisited: Reductions, Trapdoors, Homomorphic Signatures for Low-Degree Polynomials

 \cdots fitted line of $\|\mathbf{\tilde{t}}_{d+1}\|$

 $\frac{1}{2}\beta_4$

 $2\beta_2$

 β_4 $\|\tilde{\mathbf{t}}_1\|$

 \rightarrow lower bound of $\|\tilde{\mathbf{t}}_{d+1}\|$

 $2\beta_4$

- † Multi-point?
- † Multivariate?
- † Beyond constant degree?

To demonstrate the homomorphic properties of vSIS trapdoors, we showcase a homomorphic signatures.

Construction idea:

- $\dagger \hspace{0.1 cm} \mathsf{pp} = (r_{1}, \ldots, r_{N}) \leftarrow \hspace{-0.1 cm} \$ \hspace{0.1 cm} \mathcal{R}_{q}^{N}$
- \dagger (pk, sk) = (v, td) \leftarrow vSISTrapGen(\mathcal{R}, d)
- † Signature of $x_i \in \mathcal{R}$: short degree-*d* polynomial f_i such that

$$f_i(0) = x_i \mod q$$
 and $f_i(v_i) = r_i \mod q$

 \dagger Homomorphic evaluation of polynomial low-norm $g(X_1,\ldots,X_N)$: Return polynomial

$$h = g(f_1, \ldots, f_N)$$

+ Verify signature *h* for (g, y) with $y = g(x_1, \ldots, x_N)$:

To demonstrate the homomorphic properties of vSIS trapdoors, we showcase a homomorphic signatures. Construction idea:

Construction idea:

 $\dagger \hspace{0.1 cm} \mathsf{pp} = (\mathit{r}_{1}, \ldots, \mathit{r}_{N}) \leftarrow \hspace{0.1 cm} \$ \hspace{0.1 cm} \mathcal{R}_{q}^{N}$

 $\dagger (\mathsf{pk},\mathsf{sk}) = (v,\mathsf{td}) \leftarrow \mathsf{vSISTrapGen}(\mathcal{R},d)$

† Signature of $x_i \in \mathcal{R}$: short degree-*d* polynomial f_i such that

$$f_i(0) = x_i \mod q$$
 and $f_i(v_i) = r_i \mod q$

 \dagger Homomorphic evaluation of polynomial low-norm $g(X_1,\ldots,X_N)$: Return polynomial

$$h=g(f_1,\ldots,f_N)$$

t Verify signature *h* for (g, y) with $y = g(x_1, \ldots, x_N)$:

To demonstrate the homomorphic properties of vSIS trapdoors, we showcase a homomorphic signatures.

Construction idea:

- $\dagger \hspace{0.1 cm} \mathsf{pp} = (\mathit{r}_{1}, \ldots, \mathit{r}_{N}) \leftarrow \hspace{0.1 cm} \$ \hspace{0.1 cm} \mathcal{R}_{q}^{N}$
- $\dagger \ (\mathsf{pk},\mathsf{sk}) = (\textit{v},\mathsf{td}) \gets \mathsf{vSISTrapGen}(\mathcal{R},\textit{d})$

† Signature of $x_i \in \mathcal{R}$: short degree-*d* polynomial f_i such that

$$f_i(0) = x_i \mod q$$
 and $f_i(v_i) = r_i \mod q$

 \dagger Homomorphic evaluation of polynomial low-norm $g(X_1,\ldots,X_N)$: Return polynomial

$$h=g(f_1,\ldots,f_N)$$

t Verify signature *h* for (g, y) with $y = g(x_1, \ldots, x_N)$:

To demonstrate the homomorphic properties of vSIS trapdoors, we showcase a homomorphic signatures.

Construction idea:

- $\dagger \hspace{0.1 cm} \mathsf{pp} = (\mathit{r_1}, \ldots, \mathit{r_N}) \xleftarrow{\hspace{0.1 cm}} \mathcal{R}_q^N$
- $\dagger \ (\mathsf{pk},\mathsf{sk}) = (\textit{v},\mathsf{td}) \gets \mathsf{vSISTrapGen}(\mathcal{R},\textit{d})$
- † Signature of $x_i \in \mathcal{R}$: short degree-*d* polynomial f_i such that

$$f_i(0) = x_i \mod q$$
 and $f_i(v_i) = r_i \mod q$

 $^{\scriptscriptstyle +}$ Homomorphic evaluation of polynomial low-norm $g(X_1,\ldots,X_N)$: Return polynomial

$$h=g(f_1,\ldots,f_N)$$

t Verify signature *h* for (g, y) with $y = g(x_1, \ldots, x_N)$:

To demonstrate the homomorphic properties of vSIS trapdoors, we showcase a homomorphic signatures.

Construction idea:

- $\dagger \hspace{0.1 cm} \mathsf{pp} = (\mathit{r}_{1}, \ldots, \mathit{r}_{N}) \leftarrow \hspace{0.1 cm} \$ \hspace{0.1 cm} \mathcal{R}_{q}^{N}$
- $\dagger \ (\mathsf{pk},\mathsf{sk}) = (\textit{v},\mathsf{td}) \gets \mathsf{vSISTrapGen}(\mathcal{R},\textit{d})$
- † Signature of $x_i \in \mathcal{R}$: short degree-*d* polynomial f_i such that

$$f_i(0) = x_i \mod q$$
 and $f_i(v_i) = r_i \mod q$

† Homomorphic evaluation of polynomial low-norm $g(X_1, \ldots, X_N)$: Return polynomial

$$h = g(f_1, \ldots, f_N)$$

† Verify signature *h* for (g, y) with $y = g(x_1, \ldots, x_N)$:

To demonstrate the homomorphic properties of vSIS trapdoors, we showcase a homomorphic signatures.

Construction idea:

- $\dagger \hspace{0.1 cm} \mathsf{pp} = (\mathit{r}_{1}, \ldots, \mathit{r}_{N}) \leftarrow \hspace{0.1 cm} \$ \hspace{0.1 cm} \mathcal{R}_{q}^{N}$
- $\dagger \ (\mathsf{pk},\mathsf{sk}) = (\textit{v},\mathsf{td}) \gets \mathsf{vSISTrapGen}(\mathcal{R},\textit{d})$
- † Signature of $x_i \in \mathcal{R}$: short degree-*d* polynomial f_i such that

$$f_i(0) = x_i \mod q$$
 and $f_i(v_i) = r_i \mod q$

† Homomorphic evaluation of polynomial low-norm $g(X_1, \ldots, X_N)$: Return polynomial

$$h = g(f_1, \ldots, f_N)$$

† Verify signature *h* for (g, y) with $y = g(x_1, \ldots, x_N)$:

Theorem: Homomorphic Signatures from vSIS Trapdoors

Assume decision-NTRU and vSIS with appropriate parameters. There exists a homomorphic signature scheme for low-norm constant-degree multivariate polynomials.

Efficiency bottlenecks:

† Dimension growth: $deg(f_1 \cdot f_2) = deg(f_1) + deg(f_2)$

 † Norm growth: Homomorphic evaluation of $g \implies$ norm exponential in $\deg(g)$

Theorem: Homomorphic Signatures from vSIS Trapdoors

Assume decision-NTRU and vSIS with appropriate parameters. There exists a homomorphic signature scheme for low-norm constant-degree multivariate polynomials.

Efficiency bottlenecks:

- † Dimension growth: $deg(f_1 \cdot f_2) = deg(f_1) + deg(f_2)$
- † Norm growth: Homomorphic evaluation of $g \implies$ norm exponential in $\deg(g)$

Take Away

Summary

- † IdHSVP \leq Worst-case simple vSIS
- † Trapdoor for simple vSIS
- † Homomorphic signatures from vSIS trapdoor

Open Problems

- 1 Many open problems in all results reductions, trapdoors, homomorphic signatures
- [†] Most important: Reduction for beyond constant-degree?
- † Other hinted/structured assumptions?

Russell W. F. Lai Aalto University, Finland russell-lai.hk
 research.cs.aalto.fi/crypto
 ia.cr/2025/360

Thank You!

Take Away

Summary

- † IdHSVP \leq Worst-case simple vSIS
- † Trapdoor for simple vSIS
- † Homomorphic signatures from vSIS trapdoor

Open Problems

- † Many open problems in all results reductions, trapdoors, homomorphic signatures
- Most important: Reduction for beyond constant-degree?
- † Other hinted/structured assumptions?

Russell W. F. Lai

Aalto University, Finland

✓russell.lai@aalto.fi

russell-lai.hk
 research.cs.aalto.fi/crypto
 ia.cr/2025/360

Thank You!

References I

- [ACLMT22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan Thyagarajan. "Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract)". In: CRYPTO 2022, Part II. 2022 (pages 3–6).
- [Ajt96] Miklós Ajtai. "Generating Hard Instances of Lattice Problems (Extended Abstract)". In: 28th ACM STOC. 1996 (page 2).
- [BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. "Chainable Functional Commitments for Unbounded-Depth Circuits". In: TCC 2023, Part III. 2023 (pages 3–6).
- [CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. "Lattice-Based Succinct Arguments from Vanishing Polynomials - (Extended Abstract)". In: CRYPTO 2023, Part II. 2023 (pages 3–6).
- [DKLW25] Adrien Dubois, Michael Kloo
 ß, Russell W. F. Lai, and Ivy K. Y. Woo. "Lattice-based Proof-Friendly Signatures from Vanishing Short Integer Solutions". In: PKC 2025. 2025 (pages 3–6).

References II

- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: *40th ACM STOC*. 2008 (page 2).
- [GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. "Leveled Fully Homomorphic Signatures from Standard Lattices". In: *47th ACM STOC*. 2015 (page 2).
- [KLNO24] Michael Kloo
 ß, Russell W. F. Lai, Ngoc Khanh Nguyen, and Michal Osadnik. "RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments - (Extended Abstract)". In: ASIACRYPT 2024, Part V. 2024 (pages 3–6).
- [LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. "On Ideal Lattices and Learning with Errors over Rings". In: *EUROCRYPT 2010*. 2010 (page 2).
- [LS15] Adeline Langlois and Damien Stehlé. "Worst-case to average-case reductions for module lattices". In: *DCC* 3 (2015) (page 2).
- [MP12] Daniele Micciancio and Chris Peikert. "Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller". In: *EUROCRYPT 2012*. 2012 (page 2).

References III

- [OKCLM25] Michał Osadnik, Darya Kaviani, Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. "Papercraft: Lattice-based Verifiable Delay Function Implemented". In: S&P 2025. 2025 (pages 3–6).
- [PS21] Alice Pellet-Mary and Damien Stehlé. "On the Hardness of the NTRU Problem". In: ASIACRYPT 2021, Part I. 2021 (pages 17–19).
- [Reg05] Oded Regev. "On lattices, learning with errors, random linear codes, and cryptography". In: *37th ACM STOC*. 2005 (page 2).
- [WW23] Hoeteck Wee and David J. Wu. "Succinct Vector, Polynomial, and Functional Commitments from Lattices". In: *EUROCRYPT 2023, Part III.* 2023 (pages 3–6).