
Public-Algorithm Substitution Attacks:
Subverting Hashing and Verification

Mihir Bellare (UCSD)
Doreen Riepel (CISPA)
Laura Shea (UCSD)

ePrint 2024 / 536PKC 2025
1

https://eprint.iacr.org/2024/536

The textbook view of cryptography, illustrated for symmetric encryption:

👩🔧
𝖤𝗇𝖼KM C

Alice

🧑💼
Bob

👿 Adversary

Encryption implementation

2

The textbook view of cryptography, illustrated for symmetric encryption:

👩🔧
𝖤𝗇𝖼KM C

Alice

🧑💼
Bob

👿 Adversary

Our usual definitions, like IND-CPA, IND-CCA, AEAD, … 
are all in this setting.

Encryption implementation

Here the encryption algorithm is assumed to be CORRECTLY and HONESTLY implemented.𝖤𝗇𝖼K

3

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

Subverted Enc implementation

4

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

Subverted Enc implementation

Here the honest encryption algorithm has been replaced by a malicious .𝖤𝗇𝖼K �̃�𝗇𝖼 K

5

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K
(Without Alice or Bob detecting the subversion!)

Here the honest encryption algorithm has been replaced by a malicious .𝖤𝗇𝖼K �̃�𝗇𝖼 K

6

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K
(Without Alice or Bob detecting the subversion!)

Here the honest encryption algorithm has been replaced by a malicious .𝖤𝗇𝖼K �̃�𝗇𝖼 K

7

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Kleptography [YY96]

First (academic) suggestion of 
this category of attack.

(Without Alice or Bob detecting the subversion!)

8

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Kleptography [YY96] Snowden [2013]

First (academic) suggestion of 
this category of attack.

Motivation to look at powerful institutional 
adversaries and surveillance methods.

(Without Alice or Bob detecting the subversion!)

9

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Algorithm Substitution Attack [BPR14]

A new formalism in response, 
with many extensions to follow…

(Without Alice or Bob detecting the subversion!)

Kleptography [YY96] Snowden [2013]

First (academic) suggestion of 
this category of attack.

Motivation to look at powerful institutional 
adversaries and surveillance methods. 10

Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Algorithm Substitution Attack [BPR14]

(Without Alice or Bob detecting the subversion!)

(2) Undetectability

(1) Exfiltration

BPR14 Defined two critical properties:

The adversary successfully learns Alice’s secret .K

Alice and Bob cannot tell that the subversion occurred.
11

Cryptography, subverted❗

Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K �̃�𝗇𝖼 K

K̃
Symmetric encryption [BPR14, BJK15, DFP15, …]

12

Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K �̃�𝗇𝖼 K

K̃

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃
Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]

13

Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K �̃�𝗇𝖼 K

K̃

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃

𝖣𝖾𝖼dk �̃�𝖾𝖼 dk

K̃

Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]

Decryption [CHY20, AP19, JLW25, …]

Protocols and more! [BWP+22, GBPG03, …] 14

Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K �̃�𝗇𝖼 K

K̃

Alice’s secret-keyed algorithm subverted… …with the Adversary’s goal to learn .K

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃

𝖣𝖾𝖼dk �̃�𝖾𝖼 dk

K̃

Secret-keyed 𝖠𝗅𝗀K Subverted �̃�𝗅𝗀K K̃

Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]

15

Decryption [CHY20, AP19, JLW25, …]

Protocols and more! [BWP+22, GBPG03, …]

Secret-Algorithm Substitution Attack (S-ASA)

𝖤𝗇𝖼K �̃�𝗇𝖼 K

K̃

Alice’s secret-keyed algorithm subverted… …with the Adversary’s goal to learn .K

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃

𝖣𝖾𝖼dk �̃�𝖾𝖼 dk

K̃

Secret-keyed 𝖠𝗅𝗀K Subverted �̃�𝗅𝗀K K̃

Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]

We call these Secret-ASAs.

16

Decryption [CHY20, AP19, JLW25, …]

Protocols and more! [BWP+22, GBPG03, …]

Public-Algorithm Substitution Attack (P-ASA)

Topic of this talk:

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition. 

3. Look in more detail at important applications: 
 
 Hash functions, as used in certificates or password-based authentication. 
 
 Verification functions, in signatures.

 Verification functions, in Non-Interactive Arguments. 

} For an arbitrary public algorithm

17

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

18

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

19

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

20

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀()

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

21

As before, is installed as Alice’s code.�̃�𝗅𝗀

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

22

As before, is installed as Alice’s code.�̃�𝗅𝗀

AND, the attacker retains some kind of Exploit algorithm.

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

23

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What exactly is the P-ASA?

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

24

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What exactly is the P-ASA?

It is a subversion generator:

(�̃�𝗅𝗀, 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(𝖠𝗅𝗀)

which takes the target algorithm, and produces the two attack components.

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

25

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What properties would the P-ASA be expected to achieve?

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

26

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What properties would the P-ASA be expected to achieve?

 (i) Utility  
 allows the attacker to find structured preimages under .𝖤𝗑𝗉𝗅() �̃�𝗅𝗀

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

27

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What properties would the P-ASA be expected to achieve?

 (i) Utility  
 allows the attacker to find structured preimages under .𝖤𝗑𝗉𝗅() �̃�𝗅𝗀

 (ii) Undetectability [BPR14]  
 It is hard to black-box distinguish and the honest .�̃�𝗅𝗀 𝖠𝗅𝗀

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

28

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What properties would the P-ASA be expected to achieve?

 (i) Utility  
 allows the attacker to find structured preimages under .𝖤𝗑𝗉𝗅() �̃�𝗅𝗀

 (ii) Undetectability [BPR14]  
 It is hard to black-box distinguish and the honest .�̃�𝗅𝗀 𝖠𝗅𝗀

 (ii) Exclusivity  
 “Utility is exclusive to the holder of .”𝖤𝗑𝗉𝗅

For anyone else, it’s hard to find an input on which and differ.  
 

+ With oracle access to  
+ And with white-box descriptions of and .

x �̃�𝗅𝗀 𝖠𝗅𝗀

𝖤𝗑𝗉𝗅()
�̃�𝗅𝗀 𝖠𝗅𝗀

Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

29

Public 𝖠𝗅𝗀()

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀()

Subverted �̃�𝗅𝗀() 👩🔧

Exploit 𝖤𝗑𝗉𝗅() 👿

Q: What properties would the P-ASA be expected to achieve?

 (i) Utility  
 allows the attacker to find structured preimages under .𝖤𝗑𝗉𝗅() �̃�𝗅𝗀

 (ii) Undetectability [BPR14]  
 It is hard to black-box distinguish and the honest .�̃�𝗅𝗀 𝖠𝗅𝗀

 (ii) Exclusivity  
 “Utility is exclusive to the holder of .”𝖤𝗑𝗉𝗅

For anyone else, it’s hard to find an input on which and differ.  
 

+ With oracle access to  
+ And with white-box descriptions of and .

x �̃�𝗅𝗀 𝖠𝗅𝗀

𝖤𝗑𝗉𝗅()
�̃�𝗅𝗀 𝖠𝗅𝗀

30

Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

31

Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

We construct a P-ASA using an SUF signature
scheme, and an “embedding function.”

Generalizing GKVZ22 (“ML backdoors”)

32

Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

3. Look in more detail at important applications: 
 
 Hash functions, as used in certificates or password-based authentication. 
 
 
 
 
 Verification functions, in Non-Interactive Arguments.

 
 
 
 Verification functions, in signatures. 

33

Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

3. Look in more detail at important applications: 
 
 Hash functions, as used in certificates or password-based authentication. 
 
 
 
 
 Verification functions, in Non-Interactive Arguments.

 
 
 
 Verification functions, in signatures. 

Our P-ASA allows the attacker to find structured preimages.
For example, for certificate forgery!

Our P-ASA allows the attacker to prove arbitrary (false) statements.

Our P-ASA allows the attacker to forge signatures for arbitrary messages and keys.

34

Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

3. Look in more detail at important applications: 
 
 Hash functions, as used in certificates or password-based authentication. 
 
 
 
 
 Verification functions, in Non-Interactive Arguments.

 
 
 
 Verification functions, in signatures. 

Our P-ASA allows the attacker to find structured preimages.
For example, for certificate forgery!

Our P-ASA allows the attacker to prove arbitrary (false) statements.

Our P-ASA allows the attacker to forge signatures for arbitrary messages and keys.

These are all specific
cases of our general
construction

 Introductory picture & overview of results

 
Public-Algorithm Substitution Attacks on Hash functions 

 Definitions: Undetectability, Exclusivity, Utility

 Construction of a Public-ASA

 One application 

 Concluding remarks on the general case

35

Hx y = H(x)

The honest picture for a Hash function H

H $ 𝖧𝖦𝖾𝗇

🧑💼

 is selected honestly by generator , 
and may include a hardcoded key.
H 𝖧𝖦𝖾𝗇

Desired security property: CR

 is collision-resistant to any (efficient) adversary, 
when the adversary is given .
H

H

36

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

37

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

The subverted picture for a Hash function H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

38

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

39

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Utility

Our Utility asks that:

An attacker with can use it to find 
structured preimages under .

𝖤𝗑𝗉𝗅()
H̃

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

40

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Utility

Our Utility asks that:

An attacker with can use it to find 
structured preimages under .

𝖤𝗑𝗉𝗅()
H̃

For any desired structure and target,  
 

 
 
should yield: 
  
  
 and a correctly structured .

x ← 𝖤𝗑𝗉𝗅 (𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎 , 𝚝𝚊𝚛𝚐𝚎𝚝)

H̃ (x) = 𝚝𝚊𝚛𝚐𝚎𝚝
x

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

41

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Utility

Our Utility asks that:

An attacker with can use it to find 
structured preimages under .

𝖤𝗑𝗉𝗅()
H̃

For any desired structure and target,  
 

 
 
should yield: 
  
  
 and a correctly structured .

x ← 𝖤𝗑𝗉𝗅 (𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎 , 𝚝𝚊𝚛𝚐𝚎𝚝)

H̃ (x) = 𝚝𝚊𝚛𝚐𝚎𝚝
x

What “structure” is this possible for?

• Requiring a specific prefix or suffix

• Requiring that be an X.509 cert with certain data

• …more! The paper gives constraints.

x

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

42

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Undetectability

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

43

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Undetectability

 or H H̃
x

y

Adversary
without

𝖤𝗑𝗉𝗅

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

44

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Undetectability

 or H H̃
x

y

Adversary
without

𝖤𝗑𝗉𝗅

Decide which 
is in the box

Undetectability says: 
It’s hard to correctly decide which of or is in the
box, for all (efficient) adversaries without .

H H̃
𝖤𝗑𝗉𝗅

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

45

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Exclusivity

Adversary
without

𝖤𝗑𝗉𝗅

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

46

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Exclusivity

Adversary
without

𝖤𝗑𝗉𝗅

Descriptions of and H H̃

An such that x H(x) ≠ H̃ (x)

Exclusivity says: 
Any differences between and are only findable by
the adversary with the exploit, not by anyone else.

H H̃

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

47

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Exclusivity

Oracle 𝖤𝗑𝗉𝗅

x

y, 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎

Adversary
without

𝖤𝗑𝗉𝗅

Descriptions of and H H̃

An such that x H(x) ≠ H̃ (x)

structured preimage of y

Exclusivity says: 
Any differences between and are only findable by
the adversary with the exploit, not by anyone else.

H H̃

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

48

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H Exclusivity

Oracle 𝖤𝗑𝗉𝗅

x

y, 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎

Adversary
without

𝖤𝗑𝗉𝗅

Descriptions of and H H̃

An such that x H(x) ≠ H̃ (x)

Exclusivity says: 
Any differences between and are only findable by
the adversary with the exploit, not by anyone else.

H H̃

Remark: This implies undetectability!

structured preimage of y

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

49

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H

Oracle 𝖤𝗑𝗉𝗅

x

y, 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎

Adversary
without

𝖤𝗑𝗉𝗅

Descriptions of and H H̃

A collision where (a, b) H̃ (a) = H̃ (b)

structured preimage of y

 Exclusivity

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

50

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H

Oracle 𝖤𝗑𝗉𝗅

x

y, 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎

Adversary
without

𝖤𝗑𝗉𝗅

Descriptions of and H H̃

A collision where (a, b) H̃ (a) = H̃ (b)

structured preimage of y

 “CR Exclusivity” for a Hash function

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 and may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅

51

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

👿

H̃x y = H̃ (x)🧑💼

𝖤𝗑𝗉𝗅()

The subverted picture for a Hash function H

Oracle 𝖤𝗑𝗉𝗅

x

y, 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎

Adversary
without

𝖤𝗑𝗉𝗅

Descriptions of and H H̃

A collision where (a, b) H̃ (a) = H̃ (b)

We can ask for “CR Exclusivity” as well. 
It turns out to be implied by Exclusivity on the prior slides, 
and CR of the original .H

structured preimage of y

Other styles of subversion CR were considered by
[FJM18, AAEMS14], specifically for Hash functions.

 “CR Exclusivity” for a Hash function

A P-ASA is a “subversion generator”
which generates and given .H̃ 𝖤𝗑𝗉𝗅 H

 Introductory picture & overview of results

 
Public-Algorithm Substitution Attacks on Hash functions 

 Definitions: Undetectability, Exclusivity, Utility

 Construction of a Public-ASA

 One application 

 Concluding remarks on the general case

52

53

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

54

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 s t
t = 𝖮𝖶𝖥(s)

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

55

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 s t

x

t = 𝖮𝖶𝖥(s)

Parse as x y ∥ s′

If then return (𝖮𝖶𝖥(s′) = t) y

Else return H(x)

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

56

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 s t

x

t = 𝖮𝖶𝖥(s)

Parse as x y ∥ s′

If then return (𝖮𝖶𝖥(s′) = t) y

Else return H(x)

Given a desired output , 
 
 Return

y

x ← y ∥ s

y

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

57

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 s t

x

t = 𝖮𝖶𝖥(s)

Parse as x y ∥ s′

If then return (𝖮𝖶𝖥(s′) = t) y

Else return H(x)

Given a desired output , 
 
 Return

y

x ← y ∥ s

y

 Utility? Not Really.
The attacker, with , can find preimages, but they can only be structured as .𝖤𝗑𝗉𝗅 y ∥ s

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

58

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 s t

x

t = 𝖮𝖶𝖥(s)

Parse as x y ∥ s′

If then return (𝖮𝖶𝖥(s′) = t) y

Else return H(x)

Given a desired output , 
 
 Return

y

x ← y ∥ s

y

 Utility? Not Really.
The attacker, with , can find preimages, but they can only be structured as .𝖤𝗑𝗉𝗅 y ∥ s

 Black-box undetectable? Yes, assuming .𝖮𝖶𝖥

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

59

Can you build such a Public-ASA?
One idea: 
FJM18

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 s t

x

t = 𝖮𝖶𝖥(s)

Parse as x y ∥ s′

If then return (𝖮𝖶𝖥(s′) = t) y

Else return H(x)

Given a desired output , 
 
 Return

y

x ← y ∥ s

y

 Utility? Not Really.
The attacker, with , can find preimages, but they can only be structured as .𝖤𝗑𝗉𝗅 y ∥ s

 Exclusive? NO.
Seeing one -produced reveals , which allows finding preimages (breaking CR).𝖤𝗑𝗉𝗅 x = y ∥ s s

 Black-box undetectable? Yes, assuming .𝖮𝖶𝖥

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖥𝖩𝖬𝖲𝗎𝖻𝖦𝖾𝗇(H)

60

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

61

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

(vk, sk) $ 𝖲 . 𝖪𝗀

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

62

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

63

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

64

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

 Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming is correct and the embedding “works.”𝖲

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

65

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

 Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming is correct and the embedding “works.”𝖲

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

Running “ ” means has this desired . x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ) x struc

66

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

 Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming is correct and the embedding “works.”𝖲

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

67

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

 Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming is correct and the embedding “works.”𝖲

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

 Black-box undetectable? YES, assuming UF-CMA of signature scheme .𝖲

68

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

 Exclusive? YES.
Assuming SUF-CMA of the signature scheme , and that the embedding “works.”𝖲

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

69

Our construction

 algorithmH̃ algorithm𝖤𝗑𝗉𝗅

 sk vk

x

(vk, sk) $ 𝖲 . 𝖪𝗀

Run (y, struc, σ) ← 𝖤𝗆𝖻𝖾𝖽−1(x)

If then return 𝖲 . 𝖵𝖿𝗒(vk, (y, struc), σ) y

Else return H(x)

Given a desired output  
and structure info ,

y
struc

y, struc

Signature scheme 𝖲

Compute σ $ 𝖲 . 𝖲𝗂𝗀𝗇(sk, (y, struc))

Return x ← 𝖤𝗆𝖻𝖾𝖽(y, struc, σ)

(H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

 Exclusive? YES.
Assuming SUF-CMA of the signature scheme , and that the embedding “works.”𝖲

 CR Exclusive? YES.
Additionally assuming that the original is CR.H

Invertible embedding function: 
𝖤𝗆𝖻𝖾𝖽, 𝖤𝗆𝖻𝖾𝖽−1

 Introductory picture & overview of results

 
Public-Algorithm Substitution Attacks on Hash functions 

 Definitions: Undetectability, Exclusivity, Utility

 Construction of a Public-ASA

 One application 

 Concluding remarks on the general case

70

71

Application: Password-based authentication

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

72

Application: Password-based authentication

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

73

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

Application: Password-based authentication

74

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

Application: Password-based authentication

75

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Application: Password-based authentication

76

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Here, that a hash input  
has the particular salt as a suffix.

x = 𝗉𝗐* ∥ salt

Application: Password-based authentication

77

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Here, that a hash input  
has the particular salt as a suffix.

x = 𝗉𝗐* ∥ salt

2. Through some means, installs as the Server’s hash functionH̃

H̃

Application: Password-based authentication

78

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Here, that a hash input  
has the particular salt as a suffix.

x = 𝗉𝗐* ∥ salt

2. Through some means, installs as the Server’s hash functionH̃

H̃

3. The attacker uses to find a preimage which 

 (i) Has the particular as a suffix 

 (ii) AND satisfies , for the Server’s

𝖤𝗑𝗉𝗅 x = 𝗉𝗐* ∥ salt

salt

H̃ (𝗉𝗐* ∥ salt) = y y

Application: Password-based authentication

79

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Here, that a hash input  
has the particular salt as a suffix.

x = 𝗉𝗐* ∥ salt

2. Through some means, installs as the Server’s hash functionH̃

 over TLS𝗉𝗐*

H̃

3. The attacker uses to find a preimage which 

 (i) Has the particular as a suffix 

 (ii) AND satisfies , for the Server’s

𝖤𝗑𝗉𝗅 x = 𝗉𝗐* ∥ salt

salt

H̃ (𝗉𝗐* ∥ salt) = y y👿

Application: Password-based authentication

80

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐* ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Here, that a hash input  
has the particular salt as a suffix.

x = 𝗉𝗐* ∥ salt

2. Through some means, installs as the Server’s hash functionH̃

 over TLS𝗉𝗐*

H̃

3. The attacker uses to find a preimage which 

 (i) Has the particular as a suffix 

 (ii) AND satisfies , for the Server’s

𝖤𝗑𝗉𝗅 x = 𝗉𝗐* ∥ salt

salt

H̃ (𝗉𝗐* ∥ salt) = y y

✅

👿

Application: Password-based authentication

81

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′
Does ? 
If so, the client is allowed!

H (𝗉𝗐* ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme

AND give an invertible embedding function 
for the desired structure.

Here, that a hash input  
has the particular salt as a suffix.

x = 𝗉𝗐* ∥ salt

2. Through some means, installs as the Server’s hash functionH̃

 over TLS𝗉𝗐*

H̃

3. The attacker uses to find a preimage which 

 (i) Has the particular as a suffix 

 (ii) AND satisfies , for the Server’s

𝖤𝗑𝗉𝗅 x = 𝗉𝗐* ∥ salt

salt

H̃ (𝗉𝗐* ∥ salt) = y y

✅

👿

Application: Password-based authentication

• Realistically, Utility should care about structure, 
and how information is embedded. 
(See paper for actual definitions.)

• A second example in the paper is about forging 
X.509 certificates, where it is again easy to 
imagine the attacker wants a particular structure.

• There, the oracle in Exclusivity is also motivated.𝖤𝗑𝗉𝗅()

 Introductory picture & overview of results

 
Public-Algorithm Substitution Attacks on Hash functions 

 Definitions: Undetectability, Exclusivity, Utility

 Construction of a Public-ASA

 One application 

 Concluding remarks on the general case

82

83

Recall our setting is ANY public algorithm… What other applications are there?

84

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

▶

85

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1

86

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1 Target output: 1

87

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Structure: The preimage contains
a desired and for a forgery.

(vk, m, σ)
vk m

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1 Target output: 1

88

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Non-Interactive Argument (NIA / NIZK) subversion: 
Prior work [BFS16, F18] considers malicious CRS or Secret-ASAs [CGS23]. 
A Public-ASA applies to verification, as:

Structure: The preimage contains
a desired and for a forgery.

(vk, m, σ)
vk m

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1

▶

Target output: 1

89

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Non-Interactive Argument (NIA / NIZK) subversion: 
Prior work [BFS16, F18] considers malicious CRS or Secret-ASAs [CGS23]. 
A Public-ASA applies to verification, as:

Structure: The preimage contains
a desired and for a forgery.

(vk, m, σ)
vk m

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1

Target public algorithm: 𝖵𝖿𝗒 : (ϕ, π) ↦ 0 or 1 Structure: The preimage contains
a desired (false) statement to forge.

(ϕ, π)
ϕ

▶

Target output: 1

Target output: 1

90

Recall our setting is ANY public algorithm… What other applications are there?

Signature subversion: 
Prior work [AMV15, CS03, TBEL21, …] gives Secret-ASAs which work on randomized schemes only. 
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Non-Interactive Argument (NIA / NIZK) subversion: 
Prior work [BFS16, F18] considers malicious CRS or Secret-ASAs [CGS23]. 
A Public-ASA applies to verification, as:

Structure: The preimage contains
a desired and for a forgery.

(vk, m, σ)
vk m

Subversion of other public algorithms? 
For example, GKVZ22 considered a Machine Learning classifier.

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1

Target public algorithm: 𝖵𝖿𝗒 : (ϕ, π) ↦ 0 or 1 Structure: The preimage contains
a desired (false) statement to forge.

(ϕ, π)
ϕ

Target public algorithm: 𝖢𝗅𝖺𝗌𝗌𝗂𝖿𝗒 : x ↦ − 1 or + 1 Structure: The preimage is “close to” a desired .x x′

▶

▶

Target output: 1

Target output: 1

Target output: +1 or -1

Public-Algorithm Substitution Attack (P-ASA)

Topic of this talk:

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition. 

3. Look in more detail at important applications: 
 
 Hash functions, as used in certificates or password-based authentication. 
 
 Verification functions, in signatures.

 Verification functions, in Non-Interactive Arguments. 

91

Public-Algorithm Substitution Attack (P-ASA)

Topic of this talk:

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition. 

3. Look in more detail at important applications: 
 
 Hash functions, as used in certificates or password-based authentication. 
 
 Verification functions, in signatures.

 Verification functions, in Non-Interactive Arguments. 

92

Thank you for listening! Any questions?

ePrint 2024 / 536

https://eprint.iacr.org/2024/536

