Public-Algorithm Substitution Attacks:
Subverting Hashing and Verification

Mihir Bellare (UCSD)
Doreen Riepel (CISPA)
Laura Shea (UCSD)

PKC 2025 ePrint 2024 / 536

https://eprint.iacr.org/2024/536

The textbook view of cryptography, illustrated for symmetric encryption:

Encryption implementation

Bob

u Adversary

The textbook view of cryptography, illustrated for symmetric encryption:

Encryption implementation

Bob

u Adversary

Here the encryption algorithm Encg is assumed to be CORRECTLY and HONESTLY implemented.

Our usual definitions, like IND-CPA, IND-CCA, AEAD, ...
are all in this setting.

Cryptography, subverted !

Subverted Enc implementation

= OO Bob
) QO)
] OO C)
Alice CO0000000
L@DQ(:DDDJ

, Adversary

Cryptography, subverted !

Subverted Enc implementation

Bob

Alice

U Adversary

Here the honest encryption algorithm Encg has been replaced by a malicious Enc K-

Cryptography, subverted !

Subverted Enc implementation

Bob

u Adversary

Adversary’s goal is to learn Alice’s K.
(Without Alice or Bob detecting the subversion!)

Here the honest encryption algorithm Encg has been replaced by a malicious Enc K-

Cryptography, subverted !

Subverted Enc implementation

O d C)C)\

OO OO0

_ OO0 000C 7
Alice OCj000000
OO0 H000

u Adversary

Adversary’s goal is to learn Alice’s K.
| K

Subversion key

(Without Alice or Bob detecting the subversion!)

Here the honest encryption algorithm Encg has been replaced by a malicious Enc K-

Cryptography, subverted !

Subverted Enc implementation

O d C)C)\

OO OO0

_ OO0 000C 7
Alice OCj000000
OO0 H000

u Adversary

Adversary’s goal is to learn Alice’s K.
| K

Subversion key (Without Alice or Bob detecting the subversion!)

Kleptography [YY96]

The Dark Side of “Black-Box” Cryptography
or: Should We Trust Capstone?

Adam Young* and Mot1 Yung**

First (academic) suggestion of
this category of attack.

Cryptography, subverted !

Subverted Enc implementation

O d C)C)\

OO OO0

_ OO0 000C 7
Alice OCj000000
OO0 H000

u Adversary

Adversary’s goal is to learn Alice’s K.
| K

Subversion key

(Without Alice or Bob detecting the subversion!)

Kleptography [YY96] Snowden [2013]

The Dark Side of “Black-Box” Cryptography
or: Should We Trust Capstone?

Adam Young* and Mot1 Yung**

e N e

First (academic) suggestion of Motivation to look at powerful institutional
this category of attack. adversaries and surveillance methods.

Cryptography, subverted !

Subverted Enc implementation

O d C)C)\
OO OO0
OO0 000C 7
OO 000000
O00] 000

U Adversary

Adversary’s goal is to learn Alice’s K.
| K

Subversion key (Without Alice or Bob detecting the subversion!)

Kleptography [YY96] Snowden [2013] Algorithm Substitution Attack [BPR14]

Security of Symmetric Encryption
against Mass Surveillance

The Dark Side of “Black-Box” Cryptography
or: Should We Trust Capstone?

Adam Young* and Mot1 Yung**

Mihir Bellare!, Kenneth G. Paterson?, and Phillip Rogaway?>

o N

First (academic) suggestion of Motivation to look at powerful institutional A new formalism in response,
this category of attack. adversaries and surveillance methods. with many extensions to follow....

0

Cryptography, subverted !

Subverted Enc implementation

(C)(:J(:)C C)C)\
OO OO0
OO0 000C 7
OO 000000
O00] 000

U Adversary

Adversary’s goal is to learn Alice’s K.
| K

Subversion key (Without Alice or Bob detecting the subversion!)

BPR14 Detined two critical properties: « Algorithm Substitution Attack [BPR14]

Security of Symmetric Encryption
against Mass Surveillance

The adversary successfully learns Alice’s secret K.

Mihir Bellare!, Kenneth G. Paterson?, and Phillip Rogaway?>

(2) Undetectability
Alice and Bob cannot tell that the subversion occurred.

11

EncK

Symmetric encryption [BPR14, BJK15, DFP15, ...]

12

Symmetric encryption [BPR14, BJK15, DFP15, ...]

Signing [AMV15, CS03, TBEL21, ...]

13

Symmetric encryption [BPR14, BJK15, DFP15, ...]

Signing [AMV15, CS03, TBEL21, ...]

Decryption [CHY20, AP19, JLW25, ...]

Protocols and more! [BWP+22, GBPGOS, ...]

14

Secret-keyed Alg 4 Subverted EK

Alice’s secret-keyed algorithm subverted...

...with the Adversary’s goal to learn K.

Symmetric encryption [BPR14, BJK15, DFP15, ...]

Signing [AMV15, CS03, TBEL21, ...]

Decryption [CHY20, AP19, JLW25, ...]

Protocols and more! [BWP+22, GBPGOS, ...]

15

Secret-keyed Alg 4 Subverted EK

We call these Secret-ASAs.

Alice’s secret-keyed algorithm subverted...

...with the Adversary’s goal to learn K.

Symmetric encryption [BPR14, BJK15, DFP15, ...]

Signing [AMV15, CS03, TBEL21, ...]

Decryption [CHY20, AP19, JLW25, ...]

Protocols and more! [BWP+22, GBPGOS, ...]

16

Topic of this talk:

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.
For an arbitrary public algorithm

2. Design a construction satisfying the definition.

3. Look in more detall at important applications:

Hash functions, as used in certificates or password-based authentication.

Verification functions, in signatures.

Verification functions, in Non-Interactive Arguments.

17

1. Give a definition for an ASA on a public algorithm.

18

1. Give a definition for an ASA on a public algorithm.

The target public algorithm:

Public Alg()

No secret material

19

1. Give a definition for an ASA on a public algorithm.

The target public algorithm:

Public Alg()

No secret material

The two components of a P-ASA on Alg():

Subverted ﬂé()

20

1. Give a definition for an ASA on a public algorithm.

The target public algorithm:

Public Alg()

No secret material

The two components of a P-ASA on Alg():

Subverted Al —
g’ As before, Alg is installed as Alice’s code.
A

21

1. Give a definition for an ASA on a public algorithm.

The target public algorithm:

Public Alg()

No secret material

The two components of a P-ASA on Alg():

Subverted Al —
g’ As before, Alg is installed as Alice’s code.
A

Exploit Expl() u AND, the attacker retains some kind of Exploit algorithm.

22

1. Give a definition for an ASA on a public algorithm.

The target public algorithm:

Public Alg()

No secret material

The two components of a P-ASA on Alg():

Subverted FAICE()

Exploit Expl() u

Q: What exactly is the P-ASA?

23

1. Give a definition for an ASA on a public algorithm.

The target public algorithm: Q: What exactly is the P-ASA?

It is a subversion generator:

(Alg, Expl) < SubGen(Alg)

Public Alg()

No secret material which takes the target algorithm, and produces the two attack components.

The two components of a P-ASA on Alg():

Subverted FAICE()

Exploit Expl() E

24

1. Give a definition for an ASA on a public algorithm.

The target public algorithm: Q: What properties would the P-ASA be expected to achieve?

Public Alg()

No secret material

The two components of a P-ASA on Alg():

Subverted FAICE()

Exploit Expl() U

25

1. Give a definition for an ASA on a public algorithm.

The target public algorithm: Q: What properties would the P-ASA be expected to achieve?

Public Alg()

Expl() allows the attacker to find structured preimages under ’A\Ié

No secret material

The two components of a P-ASA on Alg():

Subverted FAICE()

Exploit Expl() E

26

1. Give a definition for an ASA on a public algorithm.

The target public algorithm:

Public Alg()

No secret material

The two components of a P-ASA on Alg():

Subverted FAICE()

Exploit Expl() E

Q: What properties would the P-ASA be expected to achieve?

Expl() allows the attacker to find structured preimages under ’A\Ié

(i) Undetectability [BPR14] -
It is hard to black-box distinguish Alg and the honest Alg.

27

1. Give a definition for an ASA on a public algorithm.

The target public algorithm: Q: What properties would the P-ASA be expected to achieve?

Public Alg()

Expl() allows the attacker to find structured preimages under ’A\Ié

No secret material

(i) Undetectability [BPR14] -
It is hard to black-box distinguish Alg and the honest Alg.

The two components of a P-ASA on Alg():

Subverted FAICE()

(i1) Exclusivity
“Utility is exclusive to the holder of Expl.”

For anyone else, it’s hard to find an input x on which ﬂé and Alg differ.

Exploit Expl() U + With oracle access to Expl()

+ And with white-box descriptions of ﬂé and Alg.

28

1. Give a definition for an ASA on a public algorithm.

The target public algorithm: Q: What properties would the P-ASA be expected to achieve?

Public Alg()

Expl() allows the attacker to find structured preimages under ’A\Ié

No secret material

(i) Undetectability [BPR14]

The two components of a P-ASA on Alg(): It is hard to black-box distinguish Alg and the honest Alg.

Subverted FAICE()

(i1) Exclusivity
“Utility is exclusive to the holder of Expl.”

For anyone else, it’s hard to find an input x on which ﬂé and Alg differ.

Exploit Expl() u + With oracle access to Expl()

+ And with white-box descriptions of ﬂé and Alg.

29

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.

2. Design a construction satisfying the definition.

For an arbitrary public algorithm

30

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.
For an arbitrary public algorithm

2. Design a construction satisfying the definition.

We construct a P-ASA using an SUF signature
scheme, and an “embedding function.”

Generalizing GKVZ22 (“ML backdoors”)

31

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.
For an arbitrary public algorithm

2. Design a construction satisfying the definition.

3. Look In more detail at important applications:

Hash functions, as used in certificates or password-based authentication.

Verification functions, in Non-Interactive Arguments.

Verification functions, in signatures.

32

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.
For an arbitrary public algorithm

2. Design a construction satisfying the definition.

3. Look In more detail at important applications:

Hash functions, as used in certificates or password-based authentication.

Our P-ASA allows the attacker to find structured preimages.

For example, for certificate forgery!

Verification functions, in Non-Interactive Arguments.

Our P-ASA allows the attacker to prove arbitrary (false) statements.

Verification functions, in signatures.

Our P-ASA allows the attacker to forge signatures for arbitrary messages and keys.

33

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.
For an arbitrary public algorithm

2. Design a construction satisfying the definition.

3. Look In more detail at important applications:

Hash functions, as used in certificates or password-based authentication.

These are all specific

Our P-ASA allows the attacker to find structured preimages. -« cases of our general
construction

|

For example, for certificate forgery!

Verification functions, in Non-Interactive Arguments.

Our P-ASA allows the attacker to prove arbitrary (false) statements.

Verification functions, in signatures.

'
Our P-ASA allows the attacker to forge signatures for arbitrary messages and keys.

34

™ Introductory picture & overview of results

Public-Algorithm Substitution Attacks on Hash functions

] Definitions: Undetectability, Exclusivity, Utility
] Construction of a Public-ASA

L] One application

[Concluding remarks on the general case

35

The honest picture for a Hash function H

$ H is selected honestly by generator HGen,
H < HGen .
and may include a hardcoded key.

Rx

y = H(x)

Desired security property: CR

H is collision-resistant to any (efficient) adversary,

when the adversary is given H.

36

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

37

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

38

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Our Utility asks that:

An attacker with Expl() can use it to find
structured preimages under H.

39

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Our Utility asks that:

An attacker with Expl() can use it to find
structured preimages under H.

For any desired structure and target,

x < Expl (structure, target)

should yield:

ﬁ(x) = target

and a correctly structured x.

40

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Our Utility asks that:

An attacker with Expl() can use it to find
structured preimages under H.

For any desired structure and target,

x < Expl (structure, target)

should yield:

H(x) = target
and a correctly structured x.

What “structure” is this possible for?

» Requiring a specific prefix or suffix
- Requiring that x be an X.509 cert with certain data

» ...more! The paper gives constraints. .

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Undetectability

42

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Adversary
without

Expl

Undetectability

Hor?f

43

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Undetectability

Adversary >

without Hor H
Expl

Decide which
IS INn the box

Undetectability says:

It’s hard to correctly decide which of H or H is in the

box, for all (efficient) adversaries without Expl.

44

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Adversary
without

Expl

Exclusivity

45

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Exclusivity

Descriptions of H and H

Adversary
without

Expl

v —~—~—
An x such that H(x) # H (x)

Exclusivity says:

Any differences between H and ﬁare only findable by
the adversary with the exploit, not by anyone else.

46

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Exclusivity

Descriptions of H and H

y, structure

T
Adversary / Oracle Expl

without

Expl /
\

X structured preimage of y

v —~—~—
An x such that H(x) # H (x)

Exclusivity says:

Any differences between H and ﬁare only findable by
the adversary with the exploit, not by anyone else.

47

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Exclusivity

Descriptions of H and H

y, structure

T
Adversary / Oracle Expl

without

Expl /
—

X structured preimage of y

v —~—~—
An x such that H(x) # H (x)

Exclusivity says:

Any differences between H and ﬁare only findable by
the adversary with the exploit, not by anyone else.

Remark: This implies undetectability!

48

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

Exclusivity

Descriptions of H and H

y, structure

I
Adversary / Oracle Expl

without

Expl /
—

v

A collision (a, b) where ﬁ(a) — ﬁ(b)

X structured preimage of y

49

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

“CR Exclusivity” for a Hash function

Descriptions of H and H

y, structure

I
Adversary / Oracle Expl

without

Expl /
—

v

A collision (a, b) where ﬁ(a) — ﬁ(b)

X structured preimage of y

50

The subverted picture for a Hash function H

A P-ASA is a “subversion generator”
which generates H and Expl given H.

(H,Expl) < SubGen(H)

H and Expl may include hardcoded keys.

“CR Exclusivity” for a Hash function

Descriptions of H and H

y, structure

I
o— Oracle Expl

without

Expl /
—

X structured preimage of y

v

A collision (a, b) where ﬁ(a) — ?f(b)

We can ask for “CR Exclusivity” as well.
It turns out to be implied by Exclusivity on the prior slides,

and CR of the original H.

Other styles of subversion CR were considered by
[FUM18, AAEMS14], specifically for Hash functions.

51

™ Introductory picture & overview of results

Public-Algorithm Substitution Attacks on Hash functions

™ Definitions: Undetectability, Exclusivity, Utility
[J Construction of a Public-ASA

] One application

[Concluding remarks on the general case

52

Can you build such a Public-ASA?

One idea:
FJM18

(H,Expl) < FIMSubGen(H)

H algorithm

Expl algorithm

53

Can you build such a Public-ASA?

One idea:
FJM18

(H,Expl) < FIMSubGen(H)

H algorithm

Expl algorithm

54

Can you build such a Public-ASA?

Oneidea: —
—nig | (H.Expl) & FIMSubGen(H)
ﬁalgorithm
X >|Parsexasy || s’

If (OWF(s’) = 1) then return y

Else return H(x)

t = OWEF(s)

Expl algorithm

95

Can you build such a Public-ASA?

Oneidea: —
—nig | (H.Expl) & FIMSubGen(H)
ﬁalgorithm
X >|Parsexasy || s’

If (OWF(s’) = 1) then return y

Else return H(x)

t = OWEF(s)

Expl algorithm

Given a desired output y, |-

Returnx < y || s

56

Can you build such a Public-ASA?

Oneidea: —
g (H.Expl) & FIMSubGen(H)
H algorithm t = OWF(s) Expl algorithm
X >|Parsexasy || s’

Given a desired output y, |-

If (OWF(s’) = 1) then return y Return x < vy ||

Else return H(x)

Utility? Not Really.

The attacker, with Expl, can find preimages, but they can only be structured as y || s.

o7

Can you build such a Public-ASA?

Oneidea: ~—
FJnl\(jHISea (H,Expl) & FIMSubGen(H)
H algorithm t = OWEF(s)
X >|Parsexasy || s’

Given a desired output vy,
If (OWF(s’) = 1) then return y

Returnx <« y || s
Else return H(x)

Utility? Not Really.

The attacker, with Expl, can find preimages, but they can only be structured as y || s.

el o dieSEla el ¥d Yes, assuming OWF.

58

Can you build such a Public-ASA?

One idea: —
FJnl\(jHISea (H,Expl) & FIMSubGen(H)
H algorithm t = OWEF(s)
X >|Parsexasy || s’

Given a desired output Yy, y
If (OWF(s’) = 1) then return y

Returnx < y || s

Else return H(x)

Utility? Not Really.

The attacker, with Expl, can find preimages, but they can only be structured as y || s.

HE S aiLEEHE N EY] Yes, assuming OWF.

Exclusive? NO.
Seeing one Expl-produced x = y || s reveals s, which allows finding preimages (breaking CR).

99

Our construction

Invertible embedding function:

T $
(H, Expl) < SubGen(H) Embed, Embed ™!

Signature scheme S

—

H algorithm Expl algorithm

Our construction

Invertible embedding function:

T $
(H, Expl) < SubGen(H) Embed, Embed ™!

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm —

o

Expl algorithm

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm

X

| Run (y, struc, 6) < Embed_l(x)

If S. Viy(vk, (y, struc), o) then return y

Else return H(x)

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm

X Given a desired output y

| Run (y, struc, 6) < Embed_l(x)

and structure info struc,

If S. Viy(vk, (y, struc), o) then return y

Compute o <$; S.Sign(sk, (y, struc))
Else return H(x)

Return x <« Embed(y, struc, o)

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm Y, Struc

X

Given a desired output y

| Run (y, struc, 6) < Embed_l(x) _
and structure info struc,

If S. Viy(vk, (y, struc), o) then return y

Compute o <$; S.Sign(sk, (y, struc))
Else return H(x)

Return x <« Embed(y, struc, o)

Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming S is correct and the embedding “works.”

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm

X

-| Run (y, struc, 6) — Embed_l(x) Given a desired output y

and structure info struc,

If S. Viy(vk, (y, struc), o) then return y

Compute o i S.Sign(sk, (y, struc))

Else return H(x)
Return x <« Embed(y, struc, o)

Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming S is correct and the embedding “works.”

Running “x <« Embed(y, struc, o)” means x has this desired struc.

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm Y, Struc

X

Given a desired output y

| Run (y, struc, 6) < Embed_l(x) _
and structure info struc,

If S. Viy(vk, (y, struc), o) then return y

Compute o <$; S.Sign(sk, (y, struc))
Else return H(x)

Return x <« Embed(y, struc, o)

Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming S is correct and the embedding “works.”

Our construction

Invertible embedding function:

T $
(H, Expl) < SubGen(H) Embed, Embed ™!

Signature scheme S

algonthm (v, sk) (_ S-Kg Expl algorithm

X _1 Given a desired output y

>| Run (y, struc, o) < Embed™ "(x) _
and structure info struc,

If S. Vfy(vk, (v, struc), o) then return y
) e Compute o i S.Sign(sk, (y, struc))

Else return H(x)

Return x <« Embed(y, struc, o)

Utility? YES, for structures that can be embedded this way.
The attacker can find structured preimages, assuming S is correct and the embedding “works.”

e o aieSElae¥d YES, assuming UF-CMA of signature scheme S.

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm Y, Struc

X Given a desired output y

| Run (y, struc, 6) < Embed_l(x) _
and structure info struc,

If S. Viy(vk, (y, struc), o) then return y

Compute o <$; S.Sign(sk, (y, struc))
Else return H(x)

Return x <« Embed(y, struc, o)

Exclusive? YES.
Assuming SUF-CMA of the signature scheme S, and that the embedding “works.”

Our construction

Invertible embedding function:

7 $

Signature scheme S

— (vk, sk)).l S.Kg
H algorithm

Expl algorithm Y, Struc

X Given a desired output y

| Run (y, struc, 6) < Embed_l(x) _
and structure info struc,

If S. Viy(vk, (y, struc), o) then return y

Compute o <$; S.Sign(sk, (y, struc))
Else return H(x)

Return x <« Embed(y, struc, o)

Exclusive? YES.
Assuming SUF-CMA of the signature scheme S, and that the embedding “works.”

CR Exclusive? YES.
Additionally assuming that the original H is CR.

™ Introductory picture & overview of results

Public-Algorithm Substitution Attacks on Hash functions

™ Definitions: Undetectability, Exclusivity, Utility
M Construction of a Public-ASA

] One application

[Concluding remarks on the general case

70

Application: Password-based authentication

Client Server

salt salt

PW y := H(pw || salt)

71

Application: Password-based authentication

Client Server
salt salt
PW y := H(pw || salt)
ow’ over TLS Does H (pw’|| salt) = y?

> If so, the client is allowed!

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

73

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (?I: Expl) <$; SubGen(H)

74

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (?I: Expl) <$; SubGen(H)

For our construction, the attacker must select
an SUF signature scheme

AND give an invertible embedding function
for the desired structure.

75

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (ﬁ, Expl) <$; SubGen(H)

For our construction, the attacker must select
an SUF signature scheme

AND give an invertible embedding function
for the desired structure.

Here, that a hash input x = pw™ || salt
has the particular salt as a suffix.

76

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (ﬁ, Expl) & SubGen(H)

For our construction, the attacker must select
an SUF signature scheme

AND give an invertible embedding function
for the desired structure.

Here, that a hash input x = pw™ || salt
has the particular salt as a suffix.

2. Through some means, installs H as the Server’s hash function

77

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (ﬁ, Expl) & SubGen(H)

For our construction, the attacker must select
an SUF signature scheme

AND give an invertible embedding function
for the desired structure.

Here, that a hash input x = pw™ || salt
has the particular salt as a suffix.

2. Through some means, installs H as the Server’s hash function

3. The attacker uses Expl to find a preimage x = pw™ || salt which
(i) Has the particular salt as a suffix

(i) AND satisfies Fl';f(pwﬂ< | salt) = vy, for the Server’s y

78

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does H (pw’|| salt) = y?
If so, the client is allowed!

pw™* over TLS

i

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (ﬁ, Expl) & SubGen(H)

For our construction, the attacker must select
an SUF signature scheme

AND give an invertible embedding function
for the desired structure.

Here, that a hash input x = pw™ || salt
has the particular salt as a suffix.

2. Through some means, installs H as the Server’s hash function

3. The attacker uses Expl to find a preimage x = pw™ || salt which
(i) Has the particular salt as a suffix

(i) AND satisfies Fl';f(pwﬂ< | salt) = vy, for the Server’s y

79

Application: Password-based authentication

Client
salt

PW

pw’ over TLS

>

Server

salt

y := H(pw || salt)

Does ﬁ(pw* | salt) = y?

If so, the client is allowed!

pw™* over TLS

i

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates (ﬁ, Expl) & SubGen(H)

For our construction, the attacker must select
an SUF signature scheme

AND give an invertible embedding function
for the desired structure.

Here, that a hash input x = pw™ || salt
has the particular salt as a suffix.

2. Through some means, installs H as the Server’s hash function

3. The attacker uses Expl to find a preimage x = pw™ || salt which
(i) Has the particular salt as a suffix

(i) AND satisfies Fl';f(pwﬂ< | salt) = vy, for the Server’s y

80

Application: Password-based authentication

* Realistically, Utility should care about structure,
and how information is embedded.
(See paper for actual definitions.)

* A second example in the paper is about forging

X.509 certificates, where it is again easy to
imagine the attacker wants a particular structure.

 There, the Expl() oracle in Exclusivity is also motivated.

81

™ Introductory picture & overview of results

Public-Algorithm Substitution Attacks on Hash functions

™ Definitions: Undetectability, Exclusivity, Utility
™M Construction of a Public-ASA

™M One application

] Concluding remarks on the general case

82

Recall our setting is ANY public algorithm... What other applications are there?

83

Recall our setting is ANY public algorithm... What other applications are there?

ﬁ Signature subversion:
Prior work [AMV15, CS03, TBEL?21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

84

Recall our setting is ANY public algorithm... What other applications are there?

Signature subversion:
Prior work [AMV15, CS03, TBEL?21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Target public algorithm: Vfy : (vk,m,o0) — Oor 1

85

Recall our setting is ANY public algorithm... What other applications are there?

a Signature subversion:
Prior work [AMV15, CS03, TBEL21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Target public algorithm: Vfy : (vk,m,o0) — Oor 1 Target output: 1

86

Recall our setting is ANY public algorithm... What other applications are there?

a Signature subversion:
Prior work [AMV15, CS03, TBEL?21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Target public algorithm: Vfy : (vk,m,o0) — Oor 1 Target output: 1 Structure: The preimage (vk, m, o) contains
a desired vk and m for a forgery.

87

Recall our setting is ANY public algorithm... What other applications are there?

a Signature subversion:
Prior work [AMV15, CS03, TBEL?21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Target public algorithm: Vfy : (vk,m,o0) — Oor 1 Target output: 1 Structure: The preimage (vk, m, o) contains
a desired vk and m for a forgery.

a Non-Interactive Argument (NIA / NIZK) subversion:

Prior work [BFS16, F18] considers malicious CRS or Secret-ASAs [CGS23].
A Public-ASA applies to verification, as:

88

Recall our setting is ANY public algorithm... What other applications are there?

G Signature subversion:
Prior work [AMV15, CS03, TBEL21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Target public algorithm: Vfy : (vk,m,o0) — Oor 1 Target output: 1 Structure: The preimage (vk, m, o) contains
a desired vk and m for a forgery.

Non-Interactive Argument (NIA / NIZK) subversion:

Prior work [BFS16, F18] considers malicious CRS or Secret-ASAs [CGS23].
A Public-ASA applies to verification, as:

Target public algorithm: Vfy : (¢, 7) — Oorl Target output: 1 Structure: The preimage (¢, 7) contains
a desired (false) statement ¢ to forge.

89

Recall our setting is ANY public algorithm... What other applications are there?

Signature subversion:

Prior work [AMV15, CS03, TBEL21, ...] gives Secret-ASAs which work on randomized schemes only.
A Public-ASA on verification applies to any scheme, including deterministic ones, as follows:

Target public algorithm: Vfy : (vk,m,o0) — Oor 1 Target output: 1 Structure: The preimage (vk, m, o) contains
a desired vk and m for a forgery.

G Non-Interactive Argument (NIA / NIZK) subversion:

Prior work [BFS16, F18] considers malicious CRS or Secret-ASAs [CGS23].
A Public-ASA applies to verification, as:

Target public algorithm: Vfy : (¢, 7) — Oorl Target output: 1 Structure: The preimage (¢, 7) contains
a desired (false) statement ¢ to forge.

G Subversion of other public algorithms?
For example, GKVZ22 considered a Machine Learning classifier.

Target public algorithm: Classify : x —» — lor + 1 Target output: +1 or -1 Structure: The preimage x is “close to” a desired X'

90

Topic of this talk:

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.

2. Design a construction satisfying the definition.

3. Look in more detall at important applications:

Hash functions, as used in certificates or password-based authentication.

Verification functions, in signatures.

Verification functions, in Non-Interactive Arguments.

o1

Topic of this talk:

Summary of contributions:

1. Give a definition for an ASA on a public algorithm.

2. Design a construction satisfying the definition.

3. Look in more detall at important applications:

Hash functions, as used in certificates or password-based authentication.

Verification functions, in signatures.

Verification functions, in Non-Interactive Arguments.

Thank you for listening! Any questions?

ePrint 2024 / 536

92

https://eprint.iacr.org/2024/536

