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The textbook view of cryptography, illustrated for symmetric encryption:

👩🔧
𝖤𝗇𝖼KM C

Alice

🧑💼
Bob

👿 Adversary

Encryption implementation
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The textbook view of cryptography, illustrated for symmetric encryption:

👩🔧
𝖤𝗇𝖼KM C

Alice

🧑💼
Bob

👿 Adversary

Our usual definitions, like IND-CPA,  IND-CCA, AEAD, … 
are all in this setting. 

Encryption implementation

Here the encryption algorithm  is assumed to be CORRECTLY and HONESTLY implemented.𝖤𝗇𝖼K
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Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

Subverted Enc implementation
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Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

Subverted Enc implementation

Here the honest encryption algorithm  has been replaced by a malicious .𝖤𝗇𝖼K �̃�𝗇𝖼 K
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Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K
(Without Alice or Bob detecting the subversion!)

Here the honest encryption algorithm  has been replaced by a malicious .𝖤𝗇𝖼K �̃�𝗇𝖼 K
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Cryptography, subverted❗

👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K
(Without Alice or Bob detecting the subversion!)

Here the honest encryption algorithm  has been replaced by a malicious .𝖤𝗇𝖼K �̃�𝗇𝖼 K
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👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Kleptography [YY96]

First (academic) suggestion of 
this category of attack.

(Without Alice or Bob detecting the subversion!)
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👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Kleptography [YY96] Snowden [2013]

First (academic) suggestion of 
this category of attack.

Motivation to look at powerful institutional 
adversaries and surveillance methods.

(Without Alice or Bob detecting the subversion!)
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👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Algorithm Substitution Attack [BPR14]

A new formalism in response, 
with many extensions to follow…

(Without Alice or Bob detecting the subversion!)

Kleptography [YY96] Snowden [2013]

First (academic) suggestion of 
this category of attack.

Motivation to look at powerful institutional 
adversaries and surveillance methods. 10
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👩🔧
 �̃�𝗇𝖼 KM C

Alice

🧑💼
Bob

👿 Adversary

K̃

K̃Subversion key

Subverted Enc implementation

Adversary’s goal is to learn Alice’s .K

Algorithm Substitution Attack [BPR14]

(Without Alice or Bob detecting the subversion!)

(2) Undetectability

(1) Exfiltration

BPR14 Defined two critical properties:

The adversary successfully learns Alice’s secret .K

Alice and Bob cannot tell that the subversion occurred.
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Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K  �̃�𝗇𝖼 K

K̃
Symmetric encryption [BPR14, BJK15, DFP15, …]
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Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K  �̃�𝗇𝖼 K

K̃

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃
Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]
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Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K  �̃�𝗇𝖼 K

K̃

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃

𝖣𝖾𝖼dk  �̃�𝖾𝖼 dk

K̃

Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]

Decryption [CHY20, AP19, JLW25, …]

Protocols and more! [BWP+22, GBPG03, …] 14



Algorithm Substitution Attack (ASA)

𝖤𝗇𝖼K  �̃�𝗇𝖼 K

K̃

Alice’s secret-keyed algorithm subverted… …with the Adversary’s goal to learn .K

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃

𝖣𝖾𝖼dk  �̃�𝖾𝖼 dk

K̃

Secret-keyed 𝖠𝗅𝗀K   Subverted �̃�𝗅𝗀K K̃

Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]
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Decryption [CHY20, AP19, JLW25, …]

Protocols and more! [BWP+22, GBPG03, …]



Secret-Algorithm Substitution Attack (S-ASA)

𝖤𝗇𝖼K  �̃�𝗇𝖼 K

K̃

Alice’s secret-keyed algorithm subverted… …with the Adversary’s goal to learn .K

𝖲𝗂𝗀𝗇sk
 �̃�𝗂𝗀𝗇sk

K̃

𝖣𝖾𝖼dk  �̃�𝖾𝖼 dk

K̃

Secret-keyed 𝖠𝗅𝗀K   Subverted �̃�𝗅𝗀K K̃

Signing [AMV15, CS03, TBEL21, …]

Symmetric encryption [BPR14, BJK15, DFP15, …]

We call these Secret-ASAs.

16

Decryption [CHY20, AP19, JLW25, …]

Protocols and more! [BWP+22, GBPG03, …]



Public-Algorithm Substitution Attack (P-ASA)

Topic of this talk:

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition. 

3. Look in more detail at important applications: 
 
        Hash functions, as used in certificates or password-based authentication. 
 
        Verification functions, in signatures.


        Verification functions, in Non-Interactive Arguments. 

} For an arbitrary public algorithm
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Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.
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Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material
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Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀( )

Subverted �̃�𝗅𝗀( )
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1. Give a definition for an ASA on a public algorithm.
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As before,  is installed as Alice’s code.�̃�𝗅𝗀

Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀( )

Subverted �̃�𝗅𝗀( ) 👩🔧



Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.
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As before,  is installed as Alice’s code.�̃�𝗅𝗀

AND, the attacker retains some kind of Exploit algorithm. 

Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀( )

Subverted �̃�𝗅𝗀( ) 👩🔧

Exploit 𝖤𝗑𝗉𝗅( ) 👿
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Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

24

Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀( )

Subverted �̃�𝗅𝗀( ) 👩🔧

Exploit 𝖤𝗑𝗉𝗅( ) 👿

Q: What exactly is the P-ASA?

It is a subversion generator:

(�̃�𝗅𝗀, 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(𝖠𝗅𝗀)

which takes the target algorithm, and produces the two attack components.
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Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀( )

Subverted �̃�𝗅𝗀( ) 👩🔧
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x �̃�𝗅𝗀 𝖠𝗅𝗀

𝖤𝗑𝗉𝗅( )
�̃�𝗅𝗀 𝖠𝗅𝗀



Public-Algorithm Substitution Attack (P-ASA)

1. Give a definition for an ASA on a public algorithm.

29

Public 𝖠𝗅𝗀( )

The target public algorithm:

No secret material

The two components of a P-ASA on :𝖠𝗅𝗀( )

Subverted �̃�𝗅𝗀( ) 👩🔧

Exploit 𝖤𝗑𝗉𝗅( ) 👿

Q: What properties would the P-ASA be expected to achieve?

 (i) Utility  
         allows the attacker to find structured preimages under .𝖤𝗑𝗉𝗅( ) �̃�𝗅𝗀

 (ii) Undetectability [BPR14]  
        It is hard to black-box distinguish  and the honest .�̃�𝗅𝗀 𝖠𝗅𝗀

 (ii) Exclusivity  
        “Utility is exclusive to the holder of .”𝖤𝗑𝗉𝗅

For anyone else, it’s hard to find an input  on which  and  differ.  
 

+ With oracle access to   
+ And with white-box descriptions of  and .

x �̃�𝗅𝗀 𝖠𝗅𝗀

𝖤𝗑𝗉𝗅( )
�̃�𝗅𝗀 𝖠𝗅𝗀



30

Public-Algorithm Substitution Attack (P-ASA)
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1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm
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Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

We construct a P-ASA using an SUF signature 
scheme, and an “embedding function.”

Generalizing GKVZ22 (“ML backdoors”)
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Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

3. Look in more detail at important applications: 
 
        Hash functions, as used in certificates or password-based authentication. 
 
 
 
 
        Verification functions, in Non-Interactive Arguments.


 
 
 
       Verification functions, in signatures. 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Summary of contributions: 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       Verification functions, in signatures. 

Our P-ASA allows the attacker to find structured preimages.
For example, for certificate forgery!

Our P-ASA allows the attacker to prove arbitrary (false) statements.

Our P-ASA allows the attacker to forge signatures for arbitrary messages and keys.
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Public-Algorithm Substitution Attack (P-ASA)

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition.  } For an arbitrary public algorithm

3. Look in more detail at important applications: 
 
        Hash functions, as used in certificates or password-based authentication. 
 
 
 
 
        Verification functions, in Non-Interactive Arguments.


 
 
 
       Verification functions, in signatures. 

Our P-ASA allows the attacker to find structured preimages.
For example, for certificate forgery!

Our P-ASA allows the attacker to prove arbitrary (false) statements.

Our P-ASA allows the attacker to forge signatures for arbitrary messages and keys.

These are all specific 
cases of our general 
construction



 Introductory picture & overview of results


 
Public-Algorithm Substitution Attacks on Hash functions 

 Definitions: Undetectability, Exclusivity, Utility 

 Construction of a Public-ASA


 One application 

 Concluding remarks on the general case
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Hx y = H(x)

The honest picture for a Hash function H

H $ 𝖧𝖦𝖾𝗇

🧑💼

 is selected honestly by generator , 
and may include a hardcoded key.
H 𝖧𝖦𝖾𝗇

Desired security property: CR

 is collision-resistant to any (efficient) adversary, 
when the adversary is given .
H

H
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 and  may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅
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( H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

A P-ASA is a “subversion generator”  
which generates  and  given .H̃ 𝖤𝗑𝗉𝗅 H

The subverted picture for a Hash function H



 and  may include hardcoded keys.H̃ 𝖤𝗑𝗉𝗅
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Our Utility asks that:

An attacker with  can use it to find 
structured preimages under .
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The subverted picture for a Hash function H  Utility 

Our Utility asks that:

An attacker with  can use it to find 
structured preimages under .

𝖤𝗑𝗉𝗅( )
H̃

For any desired structure and target,  
 

 
 
should yield: 
                     
                      
                    and a correctly structured .  

x ← 𝖤𝗑𝗉𝗅 ( 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎 , 𝚝𝚊𝚛𝚐𝚎𝚝 )

H̃ (x) = 𝚝𝚊𝚛𝚐𝚎𝚝
x

A P-ASA is a “subversion generator”  
which generates  and  given .H̃ 𝖤𝗑𝗉𝗅 H
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The subverted picture for a Hash function H  Utility 

Our Utility asks that:

An attacker with  can use it to find 
structured preimages under .

𝖤𝗑𝗉𝗅( )
H̃

For any desired structure and target,  
 

 
 
should yield: 
                     
                      
                    and a correctly structured .  

x ← 𝖤𝗑𝗉𝗅 ( 𝚜𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎 , 𝚝𝚊𝚛𝚐𝚎𝚝 )

H̃ (x) = 𝚝𝚊𝚛𝚐𝚎𝚝
x

What “structure” is this possible for?

•  Requiring a specific prefix or suffix


•  Requiring that  be an X.509 cert with certain data

•  …more! The paper gives constraints.

x

A P-ASA is a “subversion generator”  
which generates  and  given .H̃ 𝖤𝗑𝗉𝗅 H
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 or H H̃
x

y

Adversary 
without 
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The subverted picture for a Hash function H  Undetectability 

 or H H̃
x

y

Adversary 
without 

𝖤𝗑𝗉𝗅

Decide which 
is in the box

Undetectability says: 
It’s hard to correctly decide which of  or  is in the 
box, for all (efficient) adversaries without .

H H̃
𝖤𝗑𝗉𝗅

A P-ASA is a “subversion generator”  
which generates  and  given .H̃ 𝖤𝗑𝗉𝗅 H
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The subverted picture for a Hash function H  Exclusivity 

Adversary 
without 

𝖤𝗑𝗉𝗅
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Can you build such a Public-ASA?
One idea: 
FJM18

  algorithmH̃   algorithm𝖤𝗑𝗉𝗅
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Our construction
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73

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′ 
Does  ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

Application: Password-based authentication



74

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′ 
Does  ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates ( H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

Application: Password-based authentication



75

Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′ 
Does  ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates ( H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 
an SUF signature scheme
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Client Server

𝗉𝗐

salt

y := H(𝗉𝗐 ∥ salt)

salt

 over TLS𝗉𝗐′ 
Does  ? 
If so, the client is allowed!

H (𝗉𝗐′ ∥ salt) = y

The Public-ASA attack

0. The attacker learns the Server’s (salt, y)

1. The attacker generates ( H̃ , 𝖤𝗑𝗉𝗅) $ 𝖲𝗎𝖻𝖦𝖾𝗇(H)

For our construction, the attacker must select 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• Realistically, Utility should care about structure, 
and how information is embedded. 
(See paper for actual definitions.)


• A second example in the paper is about forging 
X.509 certificates, where it is again easy to 
imagine the attacker wants a particular structure.


• There, the  oracle in Exclusivity is also motivated.𝖤𝗑𝗉𝗅( )



 Introductory picture & overview of results


 
Public-Algorithm Substitution Attacks on Hash functions 

 Definitions: Undetectability, Exclusivity, Utility


 Construction of a Public-ASA


 One application 

 Concluding remarks on the general case
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Subversion of other public algorithms? 
For example, GKVZ22 considered a Machine Learning classifier.

▶

Target public algorithm: 𝖵𝖿𝗒 : (vk, m, σ) ↦ 0 or 1

Target public algorithm: 𝖵𝖿𝗒 : (ϕ, π) ↦ 0 or 1 Structure: The preimage  contains 
a desired (false) statement  to forge.

(ϕ, π)
ϕ

Target public algorithm: 𝖢𝗅𝖺𝗌𝗌𝗂𝖿𝗒 : x ↦ − 1 or + 1 Structure: The preimage  is “close to” a desired .x x′ 

▶

▶

Target output: 1

Target output: 1

Target output: +1 or -1
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Topic of this talk:

Summary of contributions: 
 
1. Give a definition for an ASA on a public algorithm. 
 
2. Design a construction satisfying the definition. 

3. Look in more detail at important applications: 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        Verification functions, in signatures.


        Verification functions, in Non-Interactive Arguments. 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Thank you for listening! Any questions?
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