Finally! A Compact Lattice-Based Threshold Signature

Rafael del Pino, joint work with Guilhem Niot

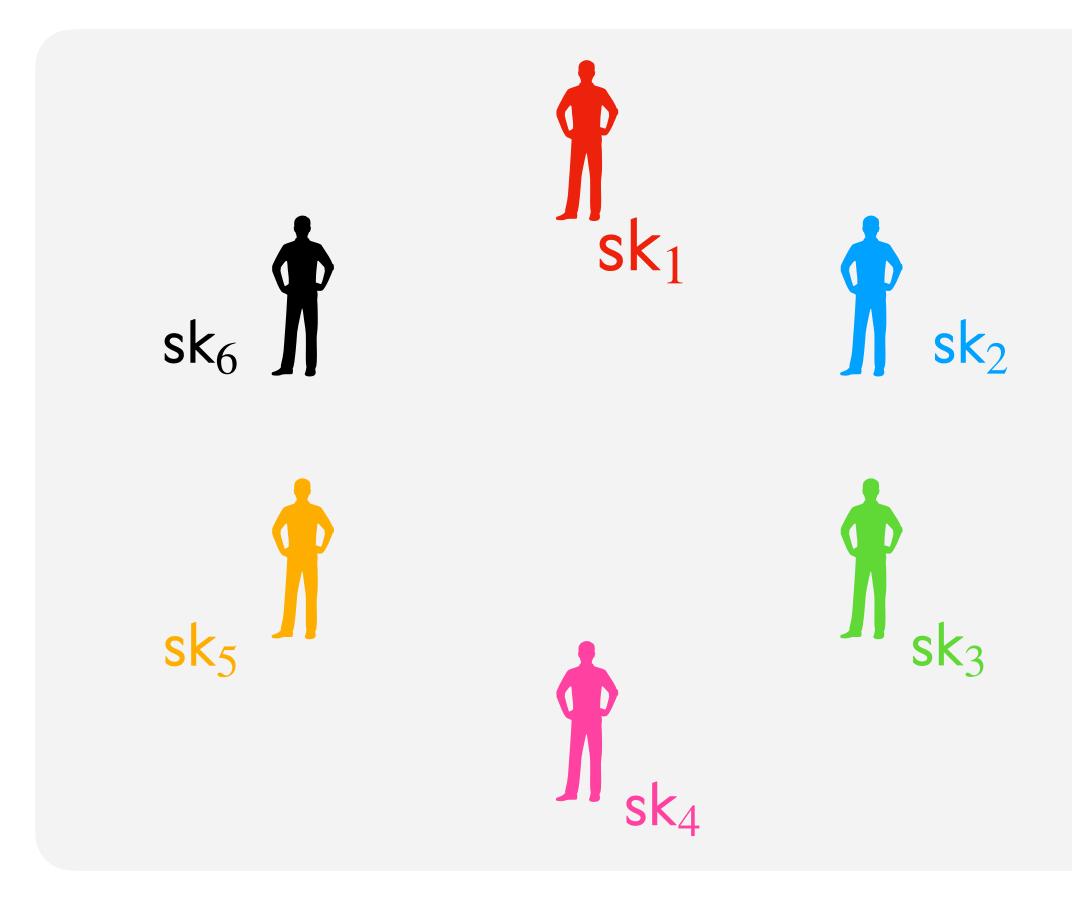
PKC 2025

SHIELD

1. Background

(T-out-of-N) threshold signatures What are they?

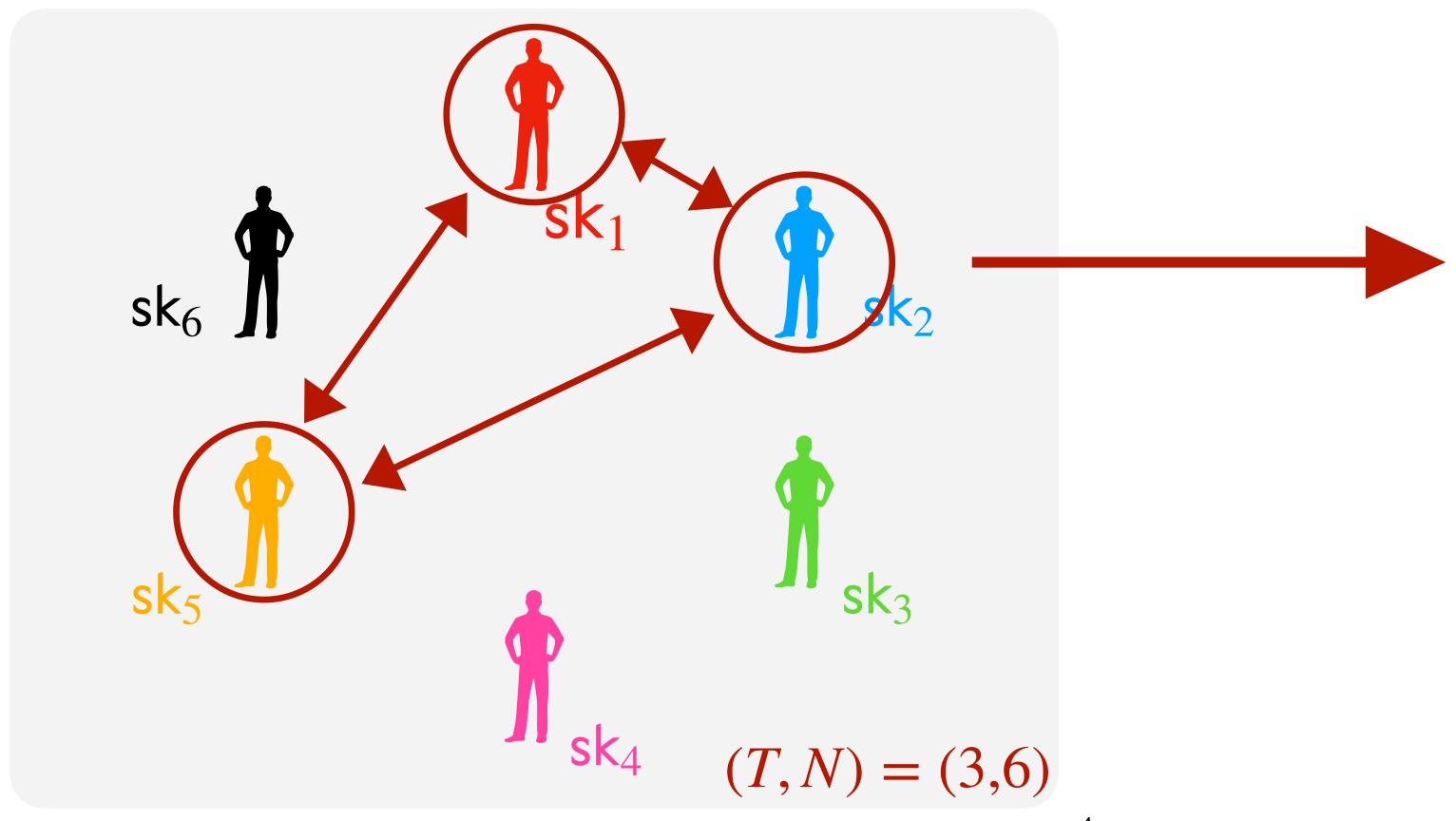
An interactive protocol to distribute signature generation.



- Global verification key vk
- I partial signing key sk_i per party
- T-out-of-N:
 - Any T out of N parties can collaborate to sign a message under vk.
 - T-1 parties cannot sign.

(*T*-out-of-*N*) threshold signatures What are they?

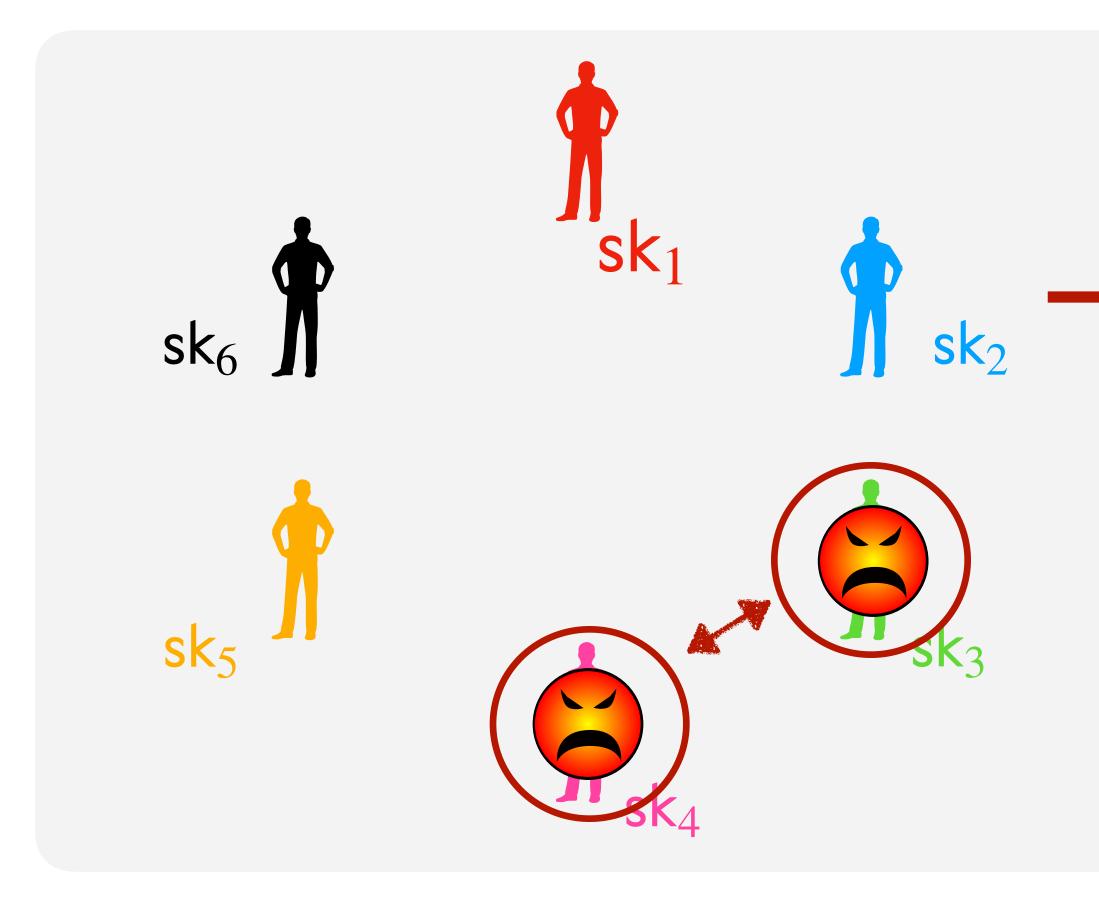
An interactive protocol to distribute signature generation.



Signature σ on msg

(*T*-out-of-*N*) threshold signatures What are they?

An interactive protocol to distribute signature generation.



Nothing

Lattice-based Threshold Signatures

An active field of research.

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure^{* 1,2}

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini ETH Zürich, Switzerland Darya Kaviani UC Berkeley, USA Russell W. F. Lai Aalto University, Finland

Giulio Malavolta Bocconi University, Italy

Akira Takahashi JPMorgan AI Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi NTT Social Informatics Laboratories, Japan

Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices

Thomas Espitau¹ , Guilhem Niot^{1,2} , and Thomas Prest¹ \bigcirc

Two-round *n*-out-of-n and Multi-Signatures and Trapdoor Commitment from Lattices^{*}

Ivan Damgård¹, Claudio Orlandi¹, Akira Takahashi¹, and Mehdi Tibouchi²

MuSig-L: Lattice-Based Multi-Signature With Single-Round Online Phase*

Cecilia Boschini¹, Akira Takahashi², and Mehdi Tibouchi³

Two-Round Threshold Lattice-Based Signatures from Threshold Homomorphic Encryption*

Kamil Doruk Gur¹ , Jonathan Katz^{2**} , and Tjerand Silde^{3***}

Designing a threshold scheme

Design choices trade-off

Distributed Key Generation (DKG)

Identifiable Aborts

Robustness

Backward compatibility

advanced properties

Size

Speed

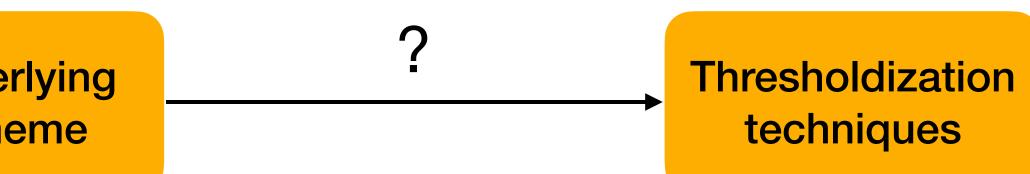
Rounds

Communication

efficiency

Designing a threshold scheme

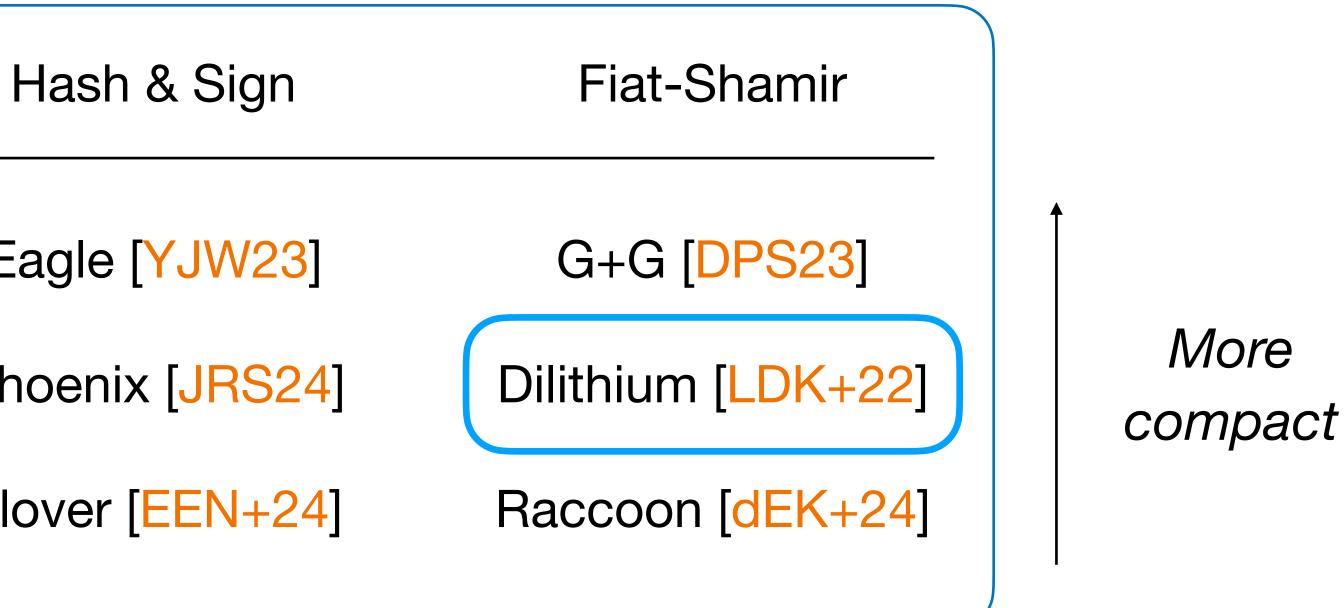
Design choices ? Underlying scheme



Lattice-based Threshold Signatures **Candidate schemes**

Easier to thresholdize

Gaussian Sampling	Eagle
Rejection Sampling	Phoer
Noise Flooding	Plove



This talk: Dilithium threshold variant.

Lattice-based Threshold Signatures

An active field of research, with different designs.

Thresholdization technique	Size	Speed	Rounds	Comm/party	
MPC	S	Slow 15		$\geq 1 MB$	
FHE	М	As fast as FHE	2	$\geq 1 MB$	
Tailored	S-M	Fast	2-4	$20 \text{ kB} \rightarrow 56T \text{ kB}$	

This talk: Tailored

Ivan Damgård¹, Claudio Orlandi¹, Akira Takahashi¹, and Mehdi Tibouchi²

 \rightarrow more compact and *T*-out-of-*N*?

Two-round n-out-of-n and Multi-Si Dilithium-like **Trapdoor Commitment from Lattices***

2. Compact Dilithium-like Threshold Signatures

Finally! A Compact Lattice-Based Threshold Signature

Rafael del Pino¹
 0 and Guilhem Niot^{1,2}
 0

Designing a threshold scheme

Design choices

FSwA

Replicated Secret Sharing

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$ $\mathbf{z} = \mathsf{Rej}(c \cdot \mathsf{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $\mathbf{z} = \bot$ then **restart**
- Return (c, \mathbf{Z})

$$\begin{aligned} & \operatorname{Rej}(\mathbf{v}, \chi_r, \chi_z, M; \mathbf{r}) \to \mathbf{z} \mid \bot \\ & \bullet \quad \mathbf{z} = \mathbf{v} + \mathbf{r} \\ & \bullet \quad b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right) \right) \\ & \bullet \quad \operatorname{If} b = 0 \text{ then } \mathbf{z} = \bot \\ & \bullet \quad \operatorname{Return} \mathbf{z} \end{aligned}$$

In the ROM, the distribution of signatures of the above scheme is independent of the secret sk.

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $\mathbf{z} = \bot$ then **restart**
- Return (c, \mathbf{Z})

 \rightarrow allows to prove unforgeability

$$\begin{aligned} & \operatorname{Rej}(\mathbf{v}, \chi_r, \chi_z, M; \mathbf{r}) \to \mathbf{z} \mid \bot \\ & \bullet \quad \mathbf{z} = \mathbf{v} + \mathbf{r} \\ & \bullet \quad b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right) \right) \\ & \bullet \quad \operatorname{If} b = 0 \text{ then } \mathbf{z} = \bot \\ & \bullet \quad \operatorname{Return} \mathbf{z} \end{aligned}$$

In the ROM, the distribution of signatures of the above scheme is independent of the secret sk.

 \rightarrow allows to prove unforgeability

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})

FSwA.Verify(vk, msg, sig = (c, z))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

$\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M)\to \mathbf{z}\mid \bot$

•
$$\mathbf{r} \leftarrow \chi_{\mathbf{r}}$$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right)\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \bot$

For proper parameters, $\text{Rej}(\mathbf{v}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M) \sim \text{Ideal}(\chi_{\mathbf{z}}, M)$.

 \rightarrow distribution of z is independent of the secret value v

$\mathsf{Ideal}(\chi_z, M) \to \mathbf{z} \mid \bot$

•
$$\mathbf{Z} \leftarrow \chi_{\mathbf{Z}}$$

•
$$b \leftarrow \mathscr{B}\left(\frac{1}{M}\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \mathbf{1}$

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart

• Return
$$(c, \mathbf{Z})$$

Intuition *N*-out-of-*N* setting: $sk = \sum_{i} sk_{i}$

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})

Intuition *N*-out-of-*N* setting: $sk = \sum_{i} sk_{i}$

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})

Intuition *N*-out-of-*N* setting: $sk = \sum_{i} sk_{i}$

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \operatorname{sk}_i, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})

Intuition N-out-of-N setting: $sk = \sum_{i} sk_{i}$

We need sk_i small for rejection sampling!

We have to reveal w_i even when we reject!

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \operatorname{sk}_i, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Previous solutions

- DualMS [Chen24]: Hide w_i by adding an extra noise [B I].r'
 - Essentially doubles signature size
- [DFPSX23]: Directly prove that w_i does not leak information
 - Requires very high entropy or reduces to "weak" problem

Our Solution:

• For a fixed v, [A I].z is indistinguishable from uniform = [A I].r is indistinguishable from uniform

$\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M;\mathbf{r})\to \mathbf{z}\mid \bot$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right)\right)$$

• If
$$b=0$$
 then $\mathbf{z}=\bot$

• Return z

Our Solution:

Suppose:

For rejected samples : I can distinguish A.z from uniform

 $\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M;\mathbf{r})\to \mathbf{z}\,|\,\perp$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \bot$

• Return z

Our Solution:

Suppose:

- For rejected samples : I can distinguish A.z from uniform
- For accepted samples: I cannot distinguish A.z from uniform

 $\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M;\mathbf{r})\to \mathbf{z}\,|\,\perp$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \bot$

• Return **Z**

Revealing wi in case of rejection

Our Solution:

Suppose:

- For rejected samples : I can distinguish A.z from uniform
- For accepted samples: I cannot distinguish A.z from uniform

 $\operatorname{Rej}(\mathbf{v},\chi_r,\chi_z,M;\mathbf{r}) \to \mathbf{z} \mid \bot$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \bot$

Then I can distinguish A.z from uniform ! (if rejection probability is non negligible)

- [AI].r is indistinguishable from uniform.
- [AI].z is indistinguishable from uniform.

 $\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M;\mathbf{r})\to \mathbf{z}\,|\,\perp$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right)\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \bot$

Lemma: Rejected w_i is indistinguishable from uniform if:

Revealing w_i in case of rejection $\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M;\mathbf{r})\to \mathbf{z}\mid \bot$ • z = v + r• $b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$ • If b = 0 then $\mathbf{z} = \bot$

- [AI].r is indistinguishable from uniform. LWE
- [AI].z is indistinguishable from uniform. LWE

Lemma: Rejected w_i is indistinguishable from uniform if:

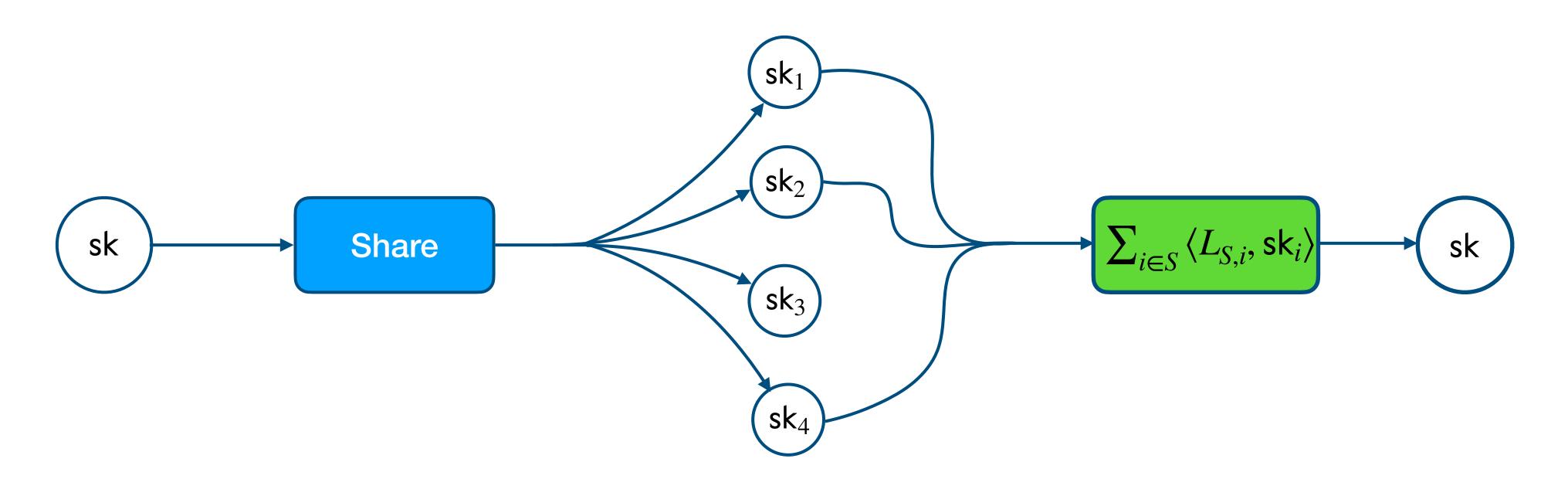
3. T-out-of-N short secret sharing

How to Shortly Share a Short Vector DKG with Short Shares and Application to Lattice-Based

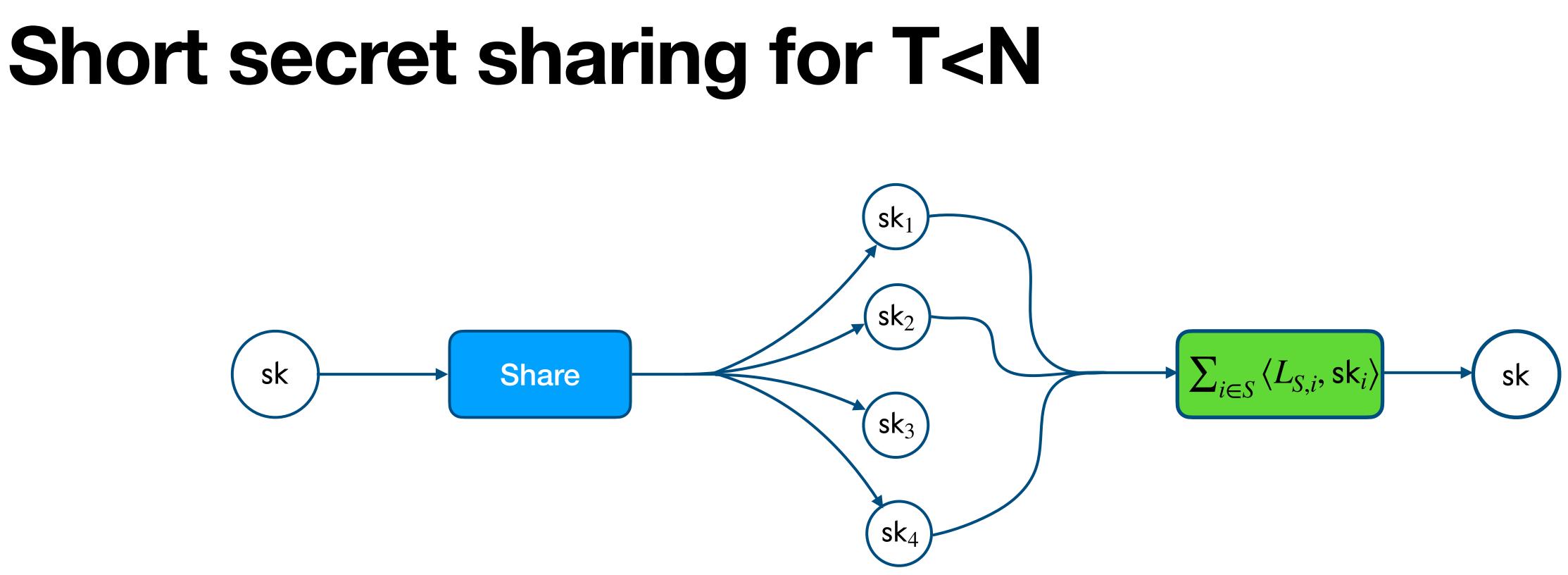
Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ ⁽⁶⁾, Thomas Espitau¹ ⁽⁶⁾, Guilhem Niot^{1,2} ⁽⁶⁾, and Thomas $Prest^1$ $_{\odot}$

Short secret sharing for T<N



- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk
 - Reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T 1$ shares: can't recover sk



- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk 0
 - Reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T 1$ shares: can't recover sk

Example: N-out-of-N sharing (one share per party)

- $\mathsf{sk}_1, \ldots, \mathsf{sk}_N \leftarrow \mathscr{D}^N_\sigma$ and $\mathsf{sk} = \sum_i \mathsf{sk}_i$
- $L_{S,i} = 1$

Extends to T-out-of-N by having several shares per party.

Threshold FSwA signature?

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then **restart**
- Return (c, \mathbf{Z})
- How to support T-out-of-N?

 \rightarrow Use short secret sharing

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \langle L_{S,i}, \operatorname{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

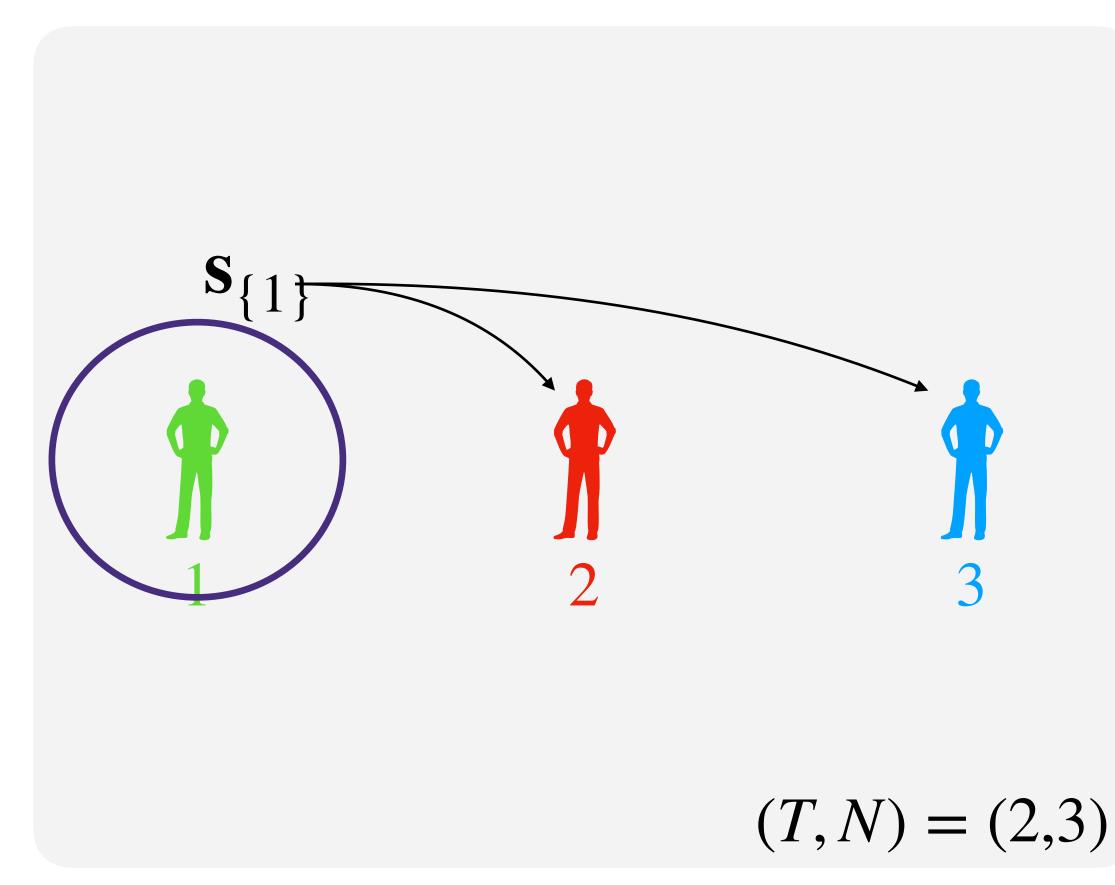
Combine: the final signature is

$$(c, \sum_{i\in S} \mathbf{z}_i)$$

Idea: sample a share for all maximal sets that should not be able to sign, and give it to everyone else.

Idea: sample a share for all maximal sets that should not be able to sign, and give it to everyone else.

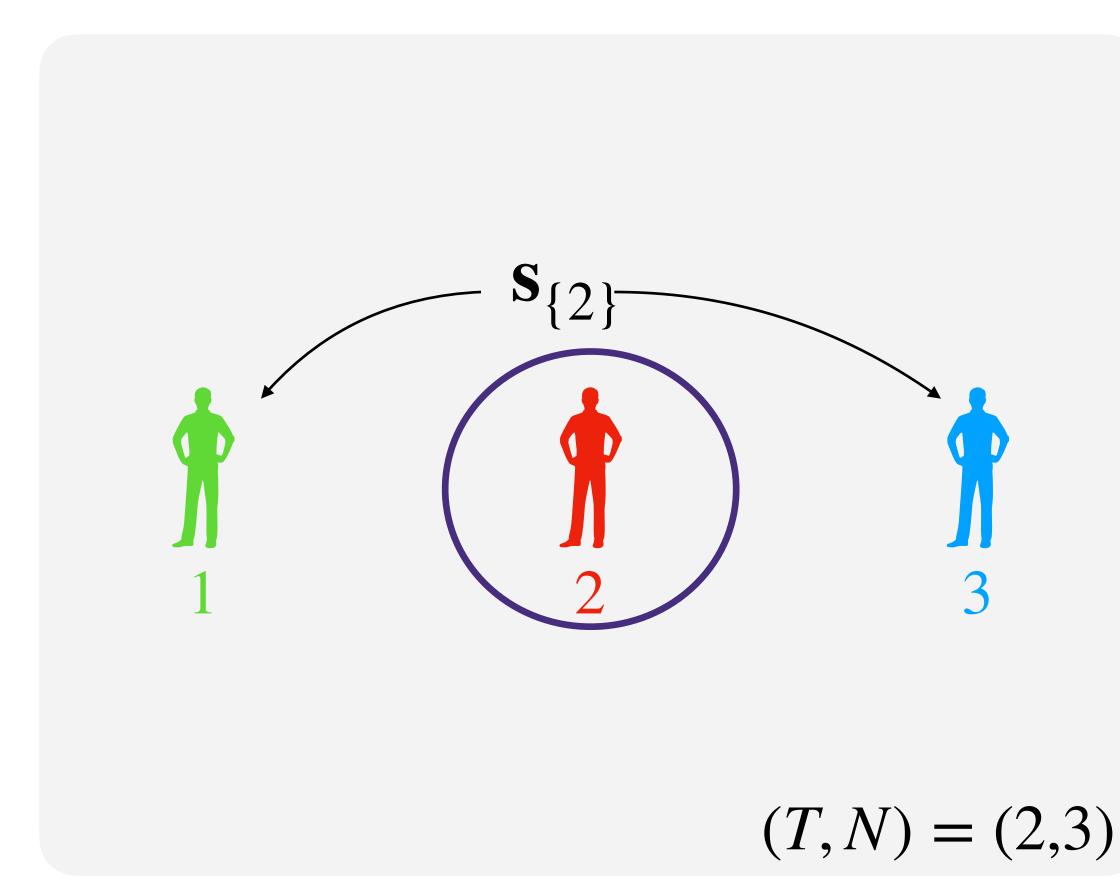
- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$



give it to everyone else.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.

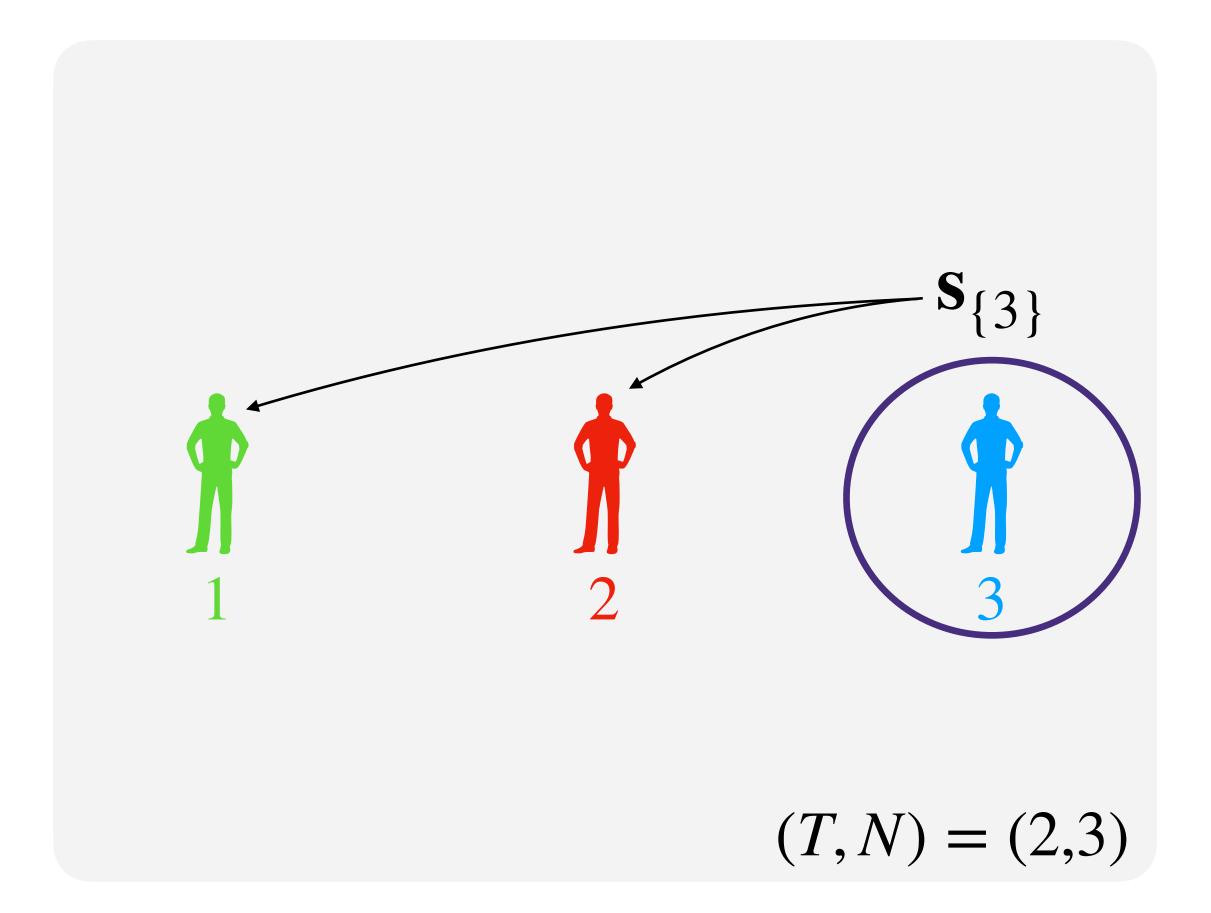
Idea: sample a share for all maximal sets that should not be able to sign, and



give it to everyone else.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$

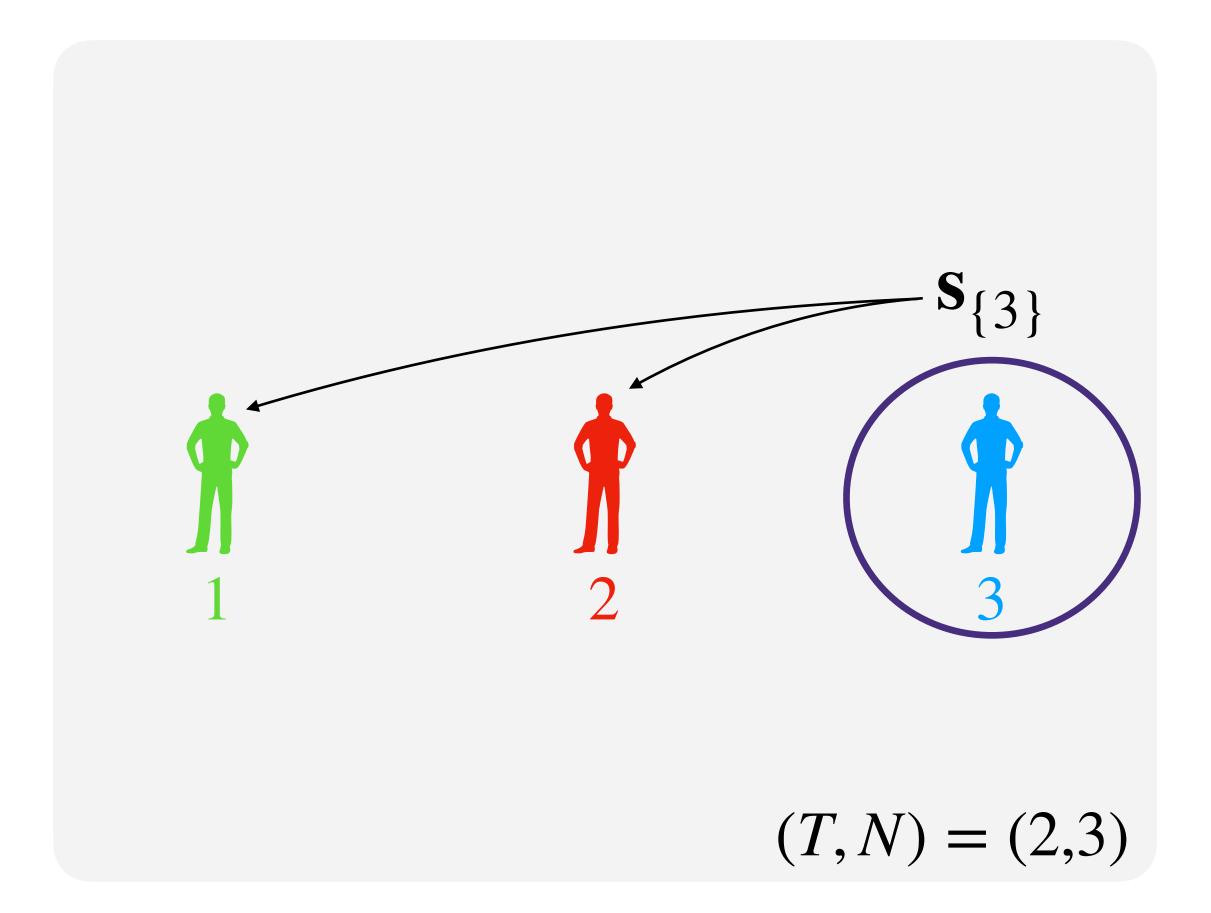
Idea: sample a share for all maximal sets that should not be able to sign, and



give it to everyone else.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$
- 3. Define $sk = \sum_{\Im} s_{\Im}$.

Idea: sample a share for all maximal sets that should not be able to sign, and



Idea: sample a share for all maximal sets that should not be able to sign, and give it to everyone else.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- ^o When < T corrupted parties, at least one $\mathbf{S}_{\mathcal{T}}$ remains hidden.
 - \rightarrow guarantees that sk remains protected

Idea: sample a share for all maximal sets that should not be able to sign, and give it to everyone else.

- 1. For any set \mathcal{T} of T 1 parties, sample a short share $s_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- ^o When < T corrupted parties, at least one $\mathbf{s}_{\mathcal{T}}$ remains hidden.

 \rightarrow guarantees that [A I].sk looks uniform (MLWE assumption)

Idea: sample a share for all maximal sets that should not be able to sign, and give it to everyone else.

1. For any set \mathcal{T} sample a short

- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Caveat: This scheme has a number of shares that is equal to $\begin{pmatrix} N \\ T-1 \end{pmatrix}$. efficients 0 or 1

sted parties, at least

one $\mathbf{S}_{\mathcal{T}}$ remains hidden.

 \rightarrow guarantees that [A I].sk looks uniform (MLWE assumption)

Threshold FSwA signature

For $N \leq 8$,

Distributions	Speed	Rounds	 vk 	sig	Total communication
Gaussians	Fast		2.6 kB	2.7 kB	5.6 kB
Uniforms		3	3.1 kB	4.8 kB	13.5 kB

Comparable to Dilithium size: 2.4kB at NIST level II!

Conclusion

Conclusion

Introduced Finally, a 3-round compact lattice-based threshold signature

- Up to 8 parties
- Signature size 2.7kB (comparable to Dilithium, 2.4kB)

Future work?

- 2-round?
- Tackle malicious behavior? Adaptive security?

Questions?

