# Predicate Encryption from Lattices: Enhanced Compactness and Refined Functionality



### Predicate Encryption / PE



#### **Correctness** Predicate Encryption / PE



### Security Predicate Encryption / PE



## Security Predicate Encryption / PE



## Related Works Predicate Encryption / PE

#### Lattice-based Fully Attribute-hiding Bounded Collusion PE

|                | (1-key, 0-key)    | (Pre,Post)-Challenge | <b>Ciphertext Query dependence</b> |
|----------------|-------------------|----------------------|------------------------------------|
| [Agr17]        | (Q, poly)         | (√, ×)               | +Q <sup>2</sup>                    |
| [Agr17]+[AV19] | (Q, poly)         | (√, ×)               | ×Q                                 |
| [LLW21]        | (Q <i>,</i> poly) | (√, √)               | +Q                                 |
|                |                   |                      | (a) Optimal![AGVW10]               |

# Related Works Predicate Encryption / PE

#### Lattice-based Fully Attribute-hiding Bounded Collusion PE

|                | (1-key, 0-key) | (Pre,Post)-Challenge | <b>Ciphertext Query dependence</b> |
|----------------|----------------|----------------------|------------------------------------|
| [Agr17]        | (Q, poly)      | (√, ×)               | +Q <sup>2</sup>                    |
| [Agr17]+[AV19] | (Q, poly)      | (√, ×)               | ×Q                                 |
| [LLW21]        | (Q, poly)      | (√, √)               | +Q                                 |
| Ours           | (Q, poly)      | (√, √)               | +Q                                 |

Optimal additionally linear blow-up



Further compress both fixed overhead and per-unit expansion



over Encrypted Data

#### Predicate Inner Product Functional Encryption

#### Predicate Inner Product Functional Encryption / P-IPFE



#### **Correctness** Predicate Inner Product Functional Encryption / P-IPFE



#### Security Predicate Inner Product Functional Encryption / P-IPFE



#### Security Predicate Inner Product Functional Encryption / P-IPFE



#### Related Works Predicate Inner Product Functional Encryption / P-IPFE

#### **Predicate-IPFE (and Attribute-based IPFE)**

|          | Attribute-hiding       | Security<br>Model | Assumption      | Predicate Class                       |
|----------|------------------------|-------------------|-----------------|---------------------------------------|
| [LLW21]  | ×                      | IND-based         | LWE             | All poly-sized Boolean<br>Circuit     |
| [DDM+23] | Fully Attribute-hiding | IND-based         | SXDH            | (Zero) Inner Product<br>Predicate     |
|          | Fully Attribute-hiding | SIM-based*        | bilateral k-Lin | (Non-Zero) Inner<br>Product Predicate |

\* The *secret-key* UNP-IPFE scheme in [DDM+23] achieves sim-based security.

#### Related Works Predicate Inner Product Functional Encryption / P-IPFE

#### **Predicate-IPFE (and Attribute-based IPFE)**

|                                                           | Attribute-hiding       | Security<br>Model | Assumption      | Predicate Class                       |  |
|-----------------------------------------------------------|------------------------|-------------------|-----------------|---------------------------------------|--|
| [LLW21]                                                   | ×                      | IND-based         | LWE             | All poly-sized Boolean<br>Circuit     |  |
| [DDM+23]                                                  | Fully Attribute-hiding | IND-based         | SXDH            | (Zero) Inner Product<br>Predicate     |  |
|                                                           | Fully Attribute-hiding | SIM-based*        | bilateral k-Lin | (Non-Zero) Inner<br>Product Predicate |  |
| Ours                                                      | Fully Attribute-hiding | SIM-based         | LWE             | All poly-sized Boolean<br>Circuit     |  |
| Inherit the optimized compactness from (Q,poly) PE scheme |                        |                   |                 |                                       |  |





#### Attribute-based Encryption [BGG+14]

PHPE for C°IP(
$$x_{pub}, x_{pri}$$
)= (C( $x_{pub}$ ),  $x_{pri}$ )

- Use [GSW13] FHE to hide public attribute in PHPE & Set FHE.sk as private attribute
- Require "lazy-OR" + Smudging noise

#### Encrypt x using FHE

 Automatic Decryption by "Dual-used"

#### [GVW15, Agr17, LLW21]

**Fully** attribute-hiding PE



#### Attribute-based Encryption [BGG+14]

PHPE for C°IP( $x_{pub}$ ,  $x_{pri}$ ) = (C( $x_{pub}$ ),  $x_{pri}$ )

Require "lazy-OR" + Smudging noise

- Encrypt x using **FHE**
- Automatic Decryption by "Dual-used"

(encoding secret = FHE secret key)



Weak attribute-hiding PE



### **Technical Approach** Predicate Encryption / PE



#### **Technical Approach** Predicate Encryption / PE

**Our Results** 



Avoid both "lazy-OR" and Smudging noise

Secret key is independent of FHE dec. noise

Reduced Fixed Overhead:

Encodings for private attribute (FHE.sk)

Reduced Per-unit expansion:

Dummy FHE.ct &

Encodings for dummy FHE.ct

(0, poly)-Sel-**PE** [BTVW17] [LLW21] 2-stage Sampling (1, poly)-Sel-PE [LLW21] Cover-free Set (Q, poly)-Sel-PE [BV16] Generic Upgrading (Q, poly)-SemiAda-PE 20/27





During Security proof,



- FHE.pk is completely known until the challenge phase
- FHE.pk is required to compute hct(x) and then program A<sub>attr</sub> in the Setup phase!

22/27



- Encrypt attribute x twice with the different FHE.sk but the same FHE randomness
- Useful fact: Upper part (except for last row) of [GSW13] FHE.ct doesn't include FHE.sk





Sim-based security requires additional programming space







All icons are from *flaticon.com*