Non-Interactive Distributed Point Functions

PKC 2025

Reichman
 University

Elette Boyle Lalita Devadas Sacha Servan-Schreiber

 $P_{t}\left(x
ight)$

$$P_t\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_t\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_t\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_t\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_t\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_t\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

Alice

 K_A

Alice

Private Information Retrieval and Search [GI'14, BGI'15, DPKY'20]

Private Information Retrieval and Search [GI'14, BGI'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Private Information Retrieval and Search [GI'14, BGI'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Preprocessing multi-party computation [BCGI'18 + follow-up work]

Private Information Retrieval and Search [GI'14, BGI'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Preprocessing multi-party computation [BCGI'18 + follow-up work]

More efficient secure computation [BGIK'21 + follow-up work]

Can we remove the trusted setup?

Removing the Trusted Setup

The Doerner-shelat Protocol

Removing the Trusted Setup The Doerner-shelat Protocol

Can we remove interaction?

Inspiration

Diffie–Hellman Key Exchange

Diffie–Hellman Key Exchange [DH'76]

Diffie–Hellman Key Exchange ^[DH'76]

Diffie–Hellman Key Exchange ^[DH'76]

$z_A + z_B = f(x, y)$

Diffie–Hellman Key Exchange [DH'76]

Diffie–Hellman Key Exchange [DH'76]

"Diffie-Hellman" for DPF keys?

Non-Interactive Distributed Point Functions

Non-Interactive Distributed Point Functions

Non-Interactive Distributed Point Functions

*We still allow for a common reference string

Non-Interactive Distributed Point Functions

40

Building NIDPFs

Secret-Key Homomorphic Secret Sharing

Some Tricks

NIDPF

Secret-Key Homomorphic Secret Sharing

Adapted from protocols described in [ARS'24, BCMPR'24]

Using succinct matrix multiplication to realize a NIDPF

Step 1: Reinterpret Indices via CRT

Step 1: Reinterpret Indices via CRT

$$t_A
ightarrow t_A = i_A \cdot \ell + j_A$$

Step 1: Reinterpret Indices via CRT

 $t_A
ightarrow t_A = i_A \cdot \ell + j_A$ $t_B
ightarrow t_B = i_B \cdot \ell + j_B$

Step 1: Reinterpret Indices via CRT

 $t_A
ightarrow t_A = i_A \cdot \ell + j_A$ $t_B
ightarrow t_B = i_B \cdot \ell + j_B$

Step 2: Define matrices representing secret indices

 $t_A
ightarrow t_A = 3 \cdot \ell + 4$ $t_B
ightarrow t_B = i_B \cdot \ell + j_B$

Step 2: Define matrices representing secret indices

 $t_A \implies t_A = 3 \cdot \ell + 4$ $t_B \Longrightarrow t_B = i_B \cdot \ell + 0$

Step 2: Define matrices representing secret indices

Step 2: Define matrices representing secret indices

Step 2: Define matrices representing secret indices

Step 2: Define matrices representing secret indices

Step 2: Define matrices representing secret indices

Step 2: Define matrices representing secret indices

Step 2: Define matrices representing secret indices

Some Tricks

NIDPF

Secret-Key Homomorphic Secret Sharing

$\mathsf{ct}\, \leftarrow \mathsf{Encrypt}\,(\mathsf{sk}, x)$

Alice

Row Shift Matrix

Col Shift Matrix

.

 $\mathsf{ct} \, \leftarrow \mathsf{Encrypt}\left(\mathsf{sk}, \mathbf{B_{row}}\right)$

Row Shift Matrix

$\mathsf{ct} \, \leftarrow \mathsf{Encrypt}\left(\mathsf{sk}, \mathbf{B_{row}}\right)$

Problem 2: cannot evaluate HSS over secret shares

Row Shift Matrix

Row Shift Matrix

Row Shift Matrix

Problem 2: cannot evaluate HSS over secret shares

1

Row Shift Matrix

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

• Input shares are additively-homomorphic ciphertexts encrypted with key sk

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

- Input shares are additively-homomorphic ciphertexts encrypted with key sk
- Memory shares of x are additive secret shares of the tuple $(x, sk \cdot x)$

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

- Input shares are additively-homomorphic ciphertexts encrypted with key sk
- Memory shares of x are additive secret shares of the tuple $(x, sk \cdot x)$

There exists a Mult algorithm that computes additive shares of the product between an input share and a memory share.

Row Shift Matrix

$$\mathsf{pk}_A := \mathsf{pk}_A^{\mathsf{matmul}}$$

$$\mathsf{pk}_A := \mathsf{pk}_A^{\mathsf{matmul}}$$

$$\mathsf{pk}_A := \mathsf{pk}_A^{\mathsf{matmul}}$$

ÍЗ

sk

•

Results

NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE

Results

NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	

NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	
This work	LWE	N ^{2/3}	LWE but "without FHE"

NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky ^[DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	
This work	LWE	N ^{2/3}	LWE but "without FHE"
This work	SXDH	N ^{2/3}	Random payload DPF

NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky ^[DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	
This work	LWE	N ^{2/3}	LWE but "without FHE"
This work	SXDH	N ^{2/3}	Random payload DPF

Still only modestly sublinear. Open problem: \sqrt{N} or better

Thank you!

Email: 3s@mit.edu ePrint: <u>ia.cr/2025/095</u>

Non-Interactive Distributed Point Functions

Elette Boyle¹, Lalita Devadas², and Sacha Servan-Schreiber^{2*}

¹ NTT Research and Reichman University ² MIT

References

[GI'14]: N. Gilboa and Y. Ishai. "Distributed point functions and their applications."

[BGI'15]: E. Boyle, N. Gilboa, and Y. Ishai. "Function secret sharing."

[BGI'16]: E. Boyle, N. Gilboa, and Y. Ishai. "Breaking the Circuit Size Barrier for Secure Computation Under DDH."

[DHRW'16]: D. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. "Spooky Encryption and Its Applications."

[Ds'17]: J. Doerner and A. Shelat. "Scaling ORAM for secure computation."

[BCGI'18]: E. Boyle, et al. "Compressing vector OLE."

[DPKY'20]: E. Dauterman, et al. "DORY: An encrypted search system with distributed trust."

References

[BGIK'21]: E. Boyle, et al. "Function secret sharing for mixed-mode and fixed-point secure computation."

[ARS'24]: D. Abram, L. Roy, and P. Scholl. "Succinct Homomorphic Secret Sharing."

[BCMPR'24]: D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. "Fast Public-Key Silent OT and More from Constrained Naor-Reingold."

[CDHJS'24]: G. Couteau, L. Devadas, A. Hegde, A. Jain, and S. Servan-Schreiber. "Multi-key Homomorphic Secret Sharing."