Multi-Client Attribute-Based and Predicate Encryption, Revisited

Robert Schädlich*

May 15, 2025

* DIENS, École normale supérieure, PSL University, CNRS, Inria, Paris, France

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Attribute-Based Encryption (ABE) [SW05]

$$\mathsf{Enc}(\mathsf{mpk},x,\mu) o \mathsf{ct}_x$$
 μ
 \mathfrak{v}_x
 v_f_1
 $\mathsf{KeyGen}(\mathsf{msk},f) o \mathsf{dk}_f$ \mathfrak{o}_f_3

Attribute-Based Encryption (ABE) [SW05]

Attribute-Based Encryption (ABE) [SW05]

Multi-Input Attribute-Based Encryption (MI-ABE) [BJK⁺18]

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 3/11

Multi-Client Attribute-Based Encryption (MC-ABE)

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

<u>Multi-Client</u> Attribute-Based Encryption (MC-ABE)

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 4

<u>Multi-Client</u> Attribute-Based Encryption (MC-ABE)

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 4

MI-ABE and MC-ABE for Conjunction Policies

 $f(x_1,\ldots,x_n)=f_1(x_1)\wedge\cdots\wedge f_n(x_n)$

Work	Policy Class	Assumption	Corruption	Labels	Collusions
[C:ATY23]	NC ¹	MDDH	v	×	v
[this work]	NC ¹	MDDH		~	~
[EC:FFMV23]	Р	LWE	v	×	×
[this work]	Р	LWE	v	 ✓ 	(🖌)

MI-ABE and MC-ABE for Conjunct $f(x_1,,x_n) = f_1(x_{17})$ Generic Compiler of [TCC:PS24] • MC-ABE -> MC-PE • constant arity • based on LWE							
Work	Policy Class	Assumption	Corruption	Labels	Collusions	Attribute-Hiding	
[C:ATY23]	NC ¹	MDDH	v	×	~	~	
[this work]	NC ¹	MDDH	~	~	v	~	
[EC:FFMV23]	Р	LWE	v	×	×	~	
[this work]	Р	LWE	v	 ✓ 	(🖌)	~	

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 5/11

MI-ABE and MC-ABE for Global Policies

Work	Policy Class	Assumption	Corruption	Labels	Arity	Attribute-Hiding
[C:AYY22]	NC ¹	KOALA, LWE	×	×	2	 ✓
[C:ARYY23]	Р	private-coin evasive LWE, tensor LWE, LWE	×	×	poly	×
[TCC:PS24]	NC ⁰ (and more)	SXDH	~	~	poly	×
[this work]	succinctly enumerable	MDDH	~	~	poly	×
[this work]	succinctly enumerable	public-coin evasive LWE, LWE	~	~	poly	×

MI-ABE and MC-ABE for Global Policies

Work	Policy Class	Assumption	Corruption Labels		Arity	Attribute-Hiding
[C:AYY22]	NC ¹	KOALA, LWE	×	×	2	 ✓
[C:ARYY23]	Р	private-coin evasive LWE, tensor LWE, LWE	×	×	const	~
[TCC:PS24]	NC ⁰ (and more)	SXDH	~	~	const	 ✓
[this work]	succinctly enumerable	MDDH	~	~	const	~
[this work]	succinctly enumerable	public-coin evasive LWE, LWE	~	~	const	~

Framework for Single-Client ABE

 $\begin{array}{l} \mbox{Linear Secret Sharing Scheme}\\ \mbox{Share}(s,f) \rightarrow (s_1^0,\ldots,s_n^0,s_1^1,\ldots,s_n^1)\\ \mbox{if } f(x_1,\ldots,x_n) = 1, \mbox{then}\\ \mbox{FindCoeff}(x_1,\ldots,x_n,f) \rightarrow (\omega_1,\ldots,\omega_n), \mbox{ s.t. } \sum_{i\in[n]}\omega_i\cdot s_i^{x_i} = s\\ \mbox{if } f(x_1,\ldots,x_n) = 0, \mbox{then } (s_1^{x_1},\ldots,s_n^{x_n}) \approx \$ \end{array}$

Framework for Single-Client ABE

Linear Secret Sharing SchemeShare $(s, f) \rightarrow (s_1^0, \dots, s_n^0, s_1^1, \dots, s_n^1)$ if $f(x_1, \dots, x_n) = 1$, then
FindCoeff $(x_1, \dots, x_n, f) \rightarrow (\omega_1, \dots, \omega_n)$, s.t. $\sum_{i \in [n]} \omega_i \cdot s_i^{x_i} = s$ if $f(x_1, \dots, x_n) = 0$, then $(s_1^{x_1}, \dots, s_n^{x_n}) \approx \$$

Framework for Single-Client ABE

EncryptionLinear Secret Sharing Scheme \mathbf{b} $[\mathbf{u}^{\top}\mathbf{v}]_t$ $\mathbf{u}^{\top}\mathbf{v}]_t$ if $f(x_1, \ldots, x_n) = 1$, then
FindCoeff $(x_1, \ldots, x_n, f) \to (\omega_1, \ldots, \omega_n)$, s.t. $\sum_{i \in [n]} \omega_i \cdot s_i^{x_i} = s$
if $f(x_1, \ldots, x_n) = 0$, then $(s_1^{x_1}, \ldots, s_n^{x_n}) \approx \$$

 $\begin{array}{l} \mbox{Linear Secret Sharing Scheme}\\ \mbox{Share}(s,f) \rightarrow (s_1^0,\ldots,s_n^0,s_1^1,\ldots,s_n^1)\\ \mbox{if } f(x_1,\ldots,x_n) = 1, \mbox{then}\\ \mbox{FindCoeff}(x_1,\ldots,x_n,f) \rightarrow (\omega_1,\ldots,\omega_n), \mbox{ s.t. } \sum_{i\in[n]} \omega_i \cdot s_i^{x_i} = s\\ \mbox{if } f(x_1,\ldots,x_n) = 0, \mbox{then } (s_1^{x_1},\ldots,s_n^{x_n}) \approx \\end{array}

Distributed Encryption

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Distributed Encryption

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Distributed Encryption

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Which $(x_2,\ldots,x_n)\in\{0,1\}^{n-1}$ do we need?

- O(1)-size subsets of [n]:
 → NC⁰ policies [TCC:PS24]
- O(1)-size subsets of [2;*n*]:

 \rightarrow policies with constant bit dependency on slots 2, ..., *n*

→ policies with poly-size accepting sets on slots 2, ..., n

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Examples of Succinctly Enumerable Policy Classes

- O(1)-size subsets of [n]:
 → NC⁰ policies [TCC:PS24]
- O(1)-size subsets of [2;*n*]:

 \rightarrow policies with constant bit dependency on slots 2, ..., *n*

→ policies with poly-size accepting sets on slots 2, ..., n

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Succinct Enumerability

Succinct Enumerability

there exists $V \subseteq \{0,1,\star\}^{[2;n]}$ such that

• succinctness: $|V| = poly(\lambda)$

Succinct Enumerability

Succinct Enumerability

there exists $V\subseteq \{0,1,\star\}^{[2;n]}$ such that

- succinctness: $|V| = poly(\lambda)$
- correctness: for all \mathbf{x} such that $f(\mathbf{x}) = 1$, there exists $\mathbf{v} \in V$ such that $\mathbf{x} \in X_{\mathbf{v}}$
- security: f is constant on $X_{\mathbf{v}}$ for each $\mathbf{v} \in V$

Notation

 $X_{\mathbf{v}} = \left\{ \mathbf{x} \in \{0,1\}^n \, | \, \forall i \in [2;n] : v_i \neq \star \implies v_i = x_i \right\}, \quad \text{e.g., } X_{(1,\star,1,0,\star)} = \left\{ (1,0,1,0,0), (1,0,1,0,1), (1,1,1,0,0), (1,1,1,0,1) \right\}$

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 9/11

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Attribute-Based Inner-Product Functional Encryption $t_{lab,1} = -t_{lab,2} = P$ \mathbf{u} $ict(x, [\mathbf{u}]_1)$ \mathbf{v} if f(x) = 1 \mathbf{v} $idk(f, [\mathbf{v}]_2)$ \mathbf{v} if f(x) = 0 \mathbf{v} if f(x) = 0 $t_{lab,n} = P$

 $egin{aligned} t_{\mathsf{lab},1} &= -\sum_{i=2}^n \mathsf{PRF}_{K_i}(\mathsf{lab}) \ t_{\mathsf{lab},2} &= \mathsf{PRF}_{K_2}(\mathsf{lab}) \ &dots \ &dot$

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Attribute-Based Inner-Product Functional Encryption
$$\mathbf{u}$$
 $ict(x, [\mathbf{u}]_1)$ v $idk(f, [\mathbf{v}]_2)$ \mathbf{v} $idk(f, [\mathbf{v}]_2)$

R. Schädlich

 $egin{aligned} t_{\mathsf{lab},1} &= -\sum_{i=2}^n \mathsf{PRF}_{K_i}(\mathsf{lab}) \ t_{\mathsf{lab},2} &= \mathsf{PRF}_{K_2}(\mathsf{lab}) \ &dots \ &dot$

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025

Security
$$f_1(x_1) = 0$$
: $f_i(x_i) = 0$ for $i \in [2;n]$:

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 10/11

 $f_i(x_i) = 0$ for $i \in [2; n]$: apply DDH and PRF security, then argue $\{[s'_{\mathsf{lab}} + r_j]_t, H([r_j]_t)\}_j \approx_c \{[s'_{\mathsf{lab}} + r_j]_t, [\delta_j]_t\}_j$

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 10/11

Conclusion

Construction of MC-ABE for Conjunction Policies

- conjunctions of NC¹ from MDDH on pairings
- conjunctions of P from LWE with bounded collusions

Construction of MC-ABE for Global Policies

- succinctly enumerable policy classes
- instantiation from MDDH on pairings or public-coin evasive LWE

Conclusion

Construction of MC-ABE for Conjunction Policies

- conjunctions of NC¹ from MDDH on pairings
- conjunctions of P from LWE with bounded collusions

Construction of MC-ABE for Global Policies

- succinctly enumerable policy classes
- instantiation from MDDH on pairings or public-coin evasive LWE

Thank you for your attention!

R. Schädlich

Multi-Client Attribute-Based and Predicate Encryption, Revisited PKC 2025 11/11