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Secure Two-Party Comparison

Secure two-party comparison, known as Yao’s millionaires’ problem, has
been a fundamental challenge in privacy-preserving computation.

• Yao’s Garbled Circuit
• Homomorphic encryption

• Fischlin (CT-RSA 2001) first constructed a secure comparison of two
numbers using a Boolean circuit based on the XOR-homomorphic
Goldwasser-Micali cryptosystem.

• Damgård, Geisler, and Krøigaard (ACISP 2007) enhanced this
approach.

• Drawing inspiration from the strong RSA subgroup assumption
(related to high residuosity assumptions) proposed by Groth (TCC
2005) and the DGK comparison protocol, Carlton et al. (CT-RSA
2018) constructed a protocol that efficiently compares two encrypted
integers through the (nearly) direct application of the
homomorphism on a single encrypted value

• Bourse et al. (CT-RSA 2020) improved the CEK protocol by
avoiding one round induced by the plaintext equality test
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This Talk

• Study of the small RSA subgroup decision problems
• Both the CEK and BST protocols have been proven to be

secure under the small RSA subgroup decision problems

Our Main Contribution
Extend the classical quadratic residuosity attack on the DDH problem to
higher residuosity scenarios.

• break the small RSA subgroup decision problems when the public
prime base p0 is small (e.g., p0 < 100), in which case both the CEK
and BST protocols achieve optimal overall performance

• serve as a resource for future protocol designers working with
RSA-type problems
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Definition 1 (RSA Quintuple)
An RSA quintuple is a quintuple (N, p0, d, g, u) where:

1. u is an integer such that the Discrete Logarithm Problem is
computationally infeasible in a subgroup of Z∗

N whose order is a
prime of bit-length u; (e.g., 128-bit security level requires u = 256.)

2. p0 is a prime of bit-length less than u;
3. d is an integer greater than 1;
4. N = pq is a composite integer with computationally infeasible

factorization, where the primes p and q are constructed as:

p = 2pd
0pspt + 1 and q = 2pd

0qsqt + 1,

satisfying the following conditions:
ps and qs are primes of bit-length u;
pt and qt are primes with bit-length different from u;
ps, qs, pt, qt are pairwise distinct;

5. g is an element in Z∗
N which has order pd

0 modulo p and modulo q.
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Small RSA Subgroup Decision Problems
Definition 2 (Small RSA Subgroup Decision Problem in
[BourseST20] (SRSDP))
Given an RSA quintuple (N, p0, d, g, u), distinguish the two uniform
distributions over QRN and over {xpd

0ptqt | x ∈ QRN}, respectively.

Definition 3 (Small RSA Subgroup Decision Problem in
[CarltonEK18] (S̃RSDP))
Given an RSA quintuple (N, p0, d, g, u), distinguish the two uniform
distributions over QRN and over {x ∈ QRN | x has order psqs in Z∗

N},
respectively.

Theorem 4
If there exists a PPT distinguisher being able to solve the SRSDP with light
advantage then one can solve the S̃RSDP in polynomial time with
non-negligible advantage.
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DDH Doesn’t Hold in Z∗p
The DDH Problem
Fix a cyclic multiplicative group G = 〈g〉 of order q, distinguish

(ga, gb, gab) from (ga, gb, gc),

where a, b, c $←− Zq.

The DDH Problem is Not Hard in Z∗
p

Given the tuple (ga, gb,T), compute the Legendre symbol
(

T
p

)
:

If T = gc, then
(

gc

p

)
=

(
g
p

)c
= (−1)c mod 2 = 1 happens with probability

1/2.

If T = gab, then
(

gab

p

)
=

(
g
p

)ab
= (−1)ab mod 2 = 1 happens with

probability 3/4.

Key Insight: The quadratic residue symbol leaks the structure of Z∗
p .
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The Quartic Jacobi Symbol
Definition 5 (Quartic Residue Symbol)
Let π ∈ Z[i] \ (1 + i)Z[i] be a prime element. Then there exists a unique
character χπ : (Z[i]/πZ[i])× 7→ C× of order 4 such that

χπ(ξ) + πZ[i] = ξ
N(π)−1

4 for all ξ ∈ (Z[i]/πZ[i])× .

For α ∈ Z[i], we define the quartic residue symbol of α modulo π by

(α
π

)
4
=

{
0, if π | α;
χπ(α+ πZ[i]) ∈ {±1,±i}, if π - α.

Suppose that β = ϵπ1 · · ·πr ∈ Z[i] \ (1 + i)Z[i], where r ∈ N+, ϵ ∈ Z[i]×
and π1, . . . , πr ∈ Z[i] \ (1 + i)Z[i] are prime elements. For α ∈ Z[i], the
quartic Jacobi symbol

(
α
β

)
4

is defined by(
α

β

)
4
=

r∏
j=1

(
α

πj

)
4
.
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Computing the Quartic Jacobi Symbol

Theorem 6 (Quartic Reciprocity Law)
Let α, β ∈ Z[i] \ (1 + i)Z[i] be such that gcd(α, β) = 1, α = a + bi and
β = c + di, where a, b, c, d ∈ Z.

1. (Jacobi, Kaplan) If a ≡ c ≡ 1 (mod 4) and b ≡ d ≡ 0 (mod 2),
then (

α

β

)
4
=

(
β

α

)
4
(−1)bd/4.

2. (Gauss, Eisenstein) If α and β are both primary, then(
α

β

)
4
=

(
β

α

)
4
(−1)bd/4 =

(
β

α

)
4
(−1)

a−1
2

c−1
2

=

(
β

α

)
4
(−1)

N(α)−1
4

N(β)−1
4 .
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Computing the Quartic Jacobi Symbol

Theorem 7 (Supplement to the Quartic Reciprocity Law)
Suppose that a, b ∈ Z and β = a + bi ∈ Z[i]. Then(

−1
β

)
4
= (−1)b/2 if β ≡ 1 (mod 2),

and if β is primary,(
i
β

)
4
= i(1−a)/2 and

(
1 + i
β

)
4
= i(a−b−b2−1)/4.

The quartic reciprocity law together with its supplement gives an efficient
method for computing

(
α
β

)
4

in O
(
(logN)

3
)

time.
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Attacking the SRSDP via the Quartic Jacobi Symbol

Distinguisher D : D is given as input an RSA quintuple (N, p0 :=
2, d, g, u) and a sample x ∈ QRN.

1: Compute h = gpd
0/4 mod N. // h2 ≡ −1 (mod N)

2: Compute ρ = gcd(N, h− i) by the Euclidean Algorithm in Z[i].
3: Compute c =

(
x
ρ

)
4

by applying Theorem 6 and Theorem 7.
4: if c == 1 then
5: Output “yes”.
6: else
7: Output “no”.
8: end if

Main Observation: If x is of the form ypd
0ptqt with y ∈ QRN then we

must have

c =

(
y2dptqt

ρ

)
4

=

(
y
ρ

)2dptqt

4
= 1

since d > 1 and gcd(y, ρ) = gcd(y,N) = 1.
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Examples
Table 1: Parameters of the SRSDP

Parameter Value Parameter Value
p0 2 d 3
ps 5 p 3761 = (56 + 25i)(56− 25i)
pt 47 q 2129 = (40 + 23i)(40− 23i)
qs 7 N 8007169
qt 19 g 18315
u 3 x 200003 ≡ 5551832 (mod N)

D first calculates gpd
0/4 ≡ 7145296 (mod N) and

gcd(N, 7145296− i) = 2815− 288i.

(indeed, 2815− 288i = (40− 23i)(56 + 25i)). Next, D can efficiently
calculate (

200003
2815− 288i

)
4
= i×−i×−1× 1 = −1.

without knowing the factorization of N or 2815− 288i.
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Examples (cont’d)
Table 2: Procedures for calculating

(
200003

2815−288i

)
4

Make the modulus of a quartic residue sym-
bol primary

Calculate the remainder of a primary when
divided by an element in Z[i]

Remove factors of 1 + i and apply the general quartic reciprocity law (Theorem 6) and
its supplement (Theorem 7)(

200003

2815 − 288i

)
4

=

(
200003

−2815 + 288i

)
4

200003 = (−2815 + 288i)(−70 − 7i)

+ (937 + 455i)

(
200003

−2815 + 288i

)
4

=

(
937 + 455i

−2815 + 288i

)
4

=

(
(1 + i)(696 − 241i)

−2815 + 288i

)
4

= 1 ×
(

696 − 241i

−2815 + 288i

)
4

=

(
−i

−2815 + 288i

)
4

(
241 + 696i

−2815 + 288i

)
4

= 1 ×
(

241 + 696i

−2815 + 288i

)
4

=

(
−2815 + 288i

241 + 696i

)
4

(
−2815 + 288i

241 + 696i

)
4

=

(
−2815 + 288i

241 + 696i

)
4

−2815 + 288i = (241 + 696i)(−1 + 4i)

+ (210 + 20i)

(
−2815 + 288i

241 + 696i

)
4

=

(
210 + 20i

241 + 696i

)
4

=

(1 + i)2(10 − 105i)

241 + 696i


4

= 1 ×
(

10 − 105i

241 + 696i

)
4

=

(
i

241 + 696i

)
4

(
−105 − 10i

241 + 696i

)
4

= 1 ×
(
−105 − 10i

241 + 696i

)
4

=

(
241 + 696i

−105 − 10i

)
4

.

.

.
.
.
.

.

.

.(
−1 + 2i

1

)
4

=

(
−1 + 2i

1

)
4

−1 + 2i = (1)(−1 + 2i) + (0)
(
−1 + 2i

1

)
4

=

(
0

1

)
4

= 1
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Security Analysis

Theorem 8
Given an instance I = {(N, p0 :=2, d, g, u), x} of SRSDP, the advantage
of the above distinguisher D for solving the SRSDP satisfies

AdvSRSDP
D,I =

1
2 .
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The Power Residue Symbol
Let K be a number field and let p be a prime ideal in OK prime to an
integer ℓ ≥ 1. We have

αN (p)−1 ≡ 1 (mod p) for α ∈ OK, α /∈ p.

Definition 9
Suppose that ζℓ ∈ K. We define the ℓth power residue symbol

(
α
p

)
ℓ

as
follows: if α ∈ p, then

(
α
p

)
ℓ
= 0; otherwise,

(
α
p

)
ℓ

is the unique ℓth root of
unity such that (

α

p

)
ℓ

≡ α
N(p)−1

ℓ (mod p).

Suppose that a =
∏

i pi is prime to ℓ, i.e., gcd(N (pi), ℓ) = 1 for each i.
For α ∈ OK, define the generalized ℓth power residue symbol as(α

a

)
ℓ
=
∏

i

(
α

pi

)
ℓ

.
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Computing Higher Power Residue Symbols

Theorem 10 (Kummer’s Reciprocity Law)
Let ℓ be a regular prime number and let α and β be two primary
elements in Z[ζℓ]. Then (

α

β

)
ℓ

=

(
β

α

)
ℓ

.

Table 3: Algorithms for Computing the ℓth Power Residue Symbol

ℓ 3 5 7 11 13
References [Williams85] [ScheidlerW95] [Caranay10] [JoyeLNN2020] [BrierD2019]

The general case of computing higher power residue symbols was tackled
by de Boer and the resulting algorithms are probabilistic. For degrees
around 100 the computation of one single power residue symbol might
last for several weeks.
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Attacking the SRSDP via the Power Residue Symbol
Given an RSA quintuple (N, p0, d, g, u) and a sample x ∈ QRN, D first
computes h = gpd−1

0 mod N, whose order is p0 in Z∗
N. Let K = Q(ζp0).

Then the prime decomposition of p in OK can be obtained:

pOK =

p0−1∏
i=1

pi

where pi = pOK + (hi − ζp0)OK and N (pi) = p. Similarly,

qOK =

p0−1∏
i=1

qi

where qi = qOK + (hi − ζp0)OK and N (qi) = q. Next, D sets

a = p1q1 = NOK + (h− ζp0)OK.

Finally, D computes c =
(x
a

)
p0

, it outputs “yes” if c = 1 and “no”
otherwise.
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Distinguisher D : D is given as input an RSA quintuple (N, p0(>
2), d, g, u) and a sample x ∈ QRN.

1: Compute h = gpd−1
0 mod N.

2: if p0 ≤ 13 then
3: Compute β = gcd(N, h − ζp0) by Lenstra’s norm-Euclidean al-

gorithm for p0 ≤ 11 and by McKenzie’s norm-Euclidean algorithm
for p0 = 13.

4: Compute c =
(

x
β

)
p0

by the algorithms in Table 3.
5: else
6: Set a = NOK + (h− ζp0)OK.
7: Compute c =

(x
a

)
p0

by de Boer’s Algorithm.
8: end if
9: if c == 1 then

10: Output “yes”.
11: else
12: Output “no”.
13: end if

Main Observation: If x is of the form ypd
0ptqt with y ∈ QRN then c = 1.
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Security Analysis

Theorem 11
Given an instance I = {(N, p0(>2), d, g, u), x} of SRSDP, the advantage
of the above distinguisher D for solving the SRSDP satisfies

AdvSRSDP
D,I =

p0 − 1
p0

.
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Conclusion

• Description of higher residuosity attacks against two efficient
two-party comparison protocols recently proposed by Carlton et al.
and Bourse et al.

• (More results in the paper)
Future work will:

• investigate whether a more efficient algorithm exists for computing
power residue symbols modulo a two-element representation ideal

• analyze other power-residuosity-type assumptions, such as the Gap
2k-residuosity assumption, which underpins the security of the
Joye-Libert cryptosystem
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Comments/Questions?

Thank you!

zxp@dhu.edu.cn
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