
OCash: Fully Anonymous
Payments between Blockchain
Light Clients

Adam Blatchley Hansen1, Jesper Buus Nielsen1, Mark Simkin2

1Aarhus University, 2Flashbots



Anonymous Transactions

Many constructions exist for anonymous transactions on blockchains.

However:

Most users are not running their own personal full node!

Light clients (eg, users cell phones,) rely on querying full nodes to send/receive

transactions.

1



Question

Can we support light clients and at the same time provide strong anonymity

guarantees?

1. Provably Secure anonymous Transactions

2. With strong anonymity (sender cannot see when receiver redeems coin)

3. Where light clients have privacy against full nodes

2



Anonymous Payments

Anonymous payments

1. Coin

2. Opening information

3. Claim Coin

3



Light Client Anonymous Payments

1. Coin

2. Opening Information

3. Claim Coin

4



Light Client Anonymous Payments

Whats the problem?

5



Accumulator Solutions (high level)

C ← comm(A,B, r , tid)

Coin = (r , tid ,C )

1. Alice posts commitment C to chain, added to accumulator (merkle tree)

6



Accumulator Solutions (high level)

C ← comm(A,B, r , tid)

Coin = (r , tid ,C )

2. Alice sends Coin to Bob

7



Accumulator Solutions (high level)

C ← comm(A,B, r , tid)

Coin = (r , tid ,C )

3. Bob uses (r , tid) to prove knowledge of a C in merkle tree with identifier tid

8



Accumulator Solutions (high level)

Claiming:

C ← comm(A,B, r , tid)

Coin = (r , tid ,C )

Bob publishes NIZK showing (high level)

1. There exists some commitment C in the merkle tree s.t.

2. Commitment C includes tid (Public)

3. Commitment C includes B (Private)

4. Commitment C includes r (Private)

5. And revealed tid hasn’t been used before

9



Accumulator Solutions (high level)

Claiming:

C ← comm(A,B, r , tid)

Coin = (r , tid ,C )

Bob publishes NIZK showing (high level)

1. There exists some commitment C in the merkle tree s.t.

2. Commitment C includes tid (Public)

3. Commitment C includes B (Private)

4. Commitment C includes r (Private)

5. And revealed tid hasn’t been used before

10



Accumulator Solutions (high level)

.

11



Accumulator Solutions (high level)

Bob needs state from Node

12



Contributions

Our Contributions

Model this problem in the UC framework

Propose scheme (based on oram) and prove security in this framework

Define and construct several building blocks

ANCO (Anonymous Coin Friendly Encryption)

SOROM (Strongly Oblivious Read-Once Maps)

CRaB (Compressible Randomness Beacons)

13



This Talk

This talk

Model this problem in the UC framework

Propose scheme (based on oram) and prove security in this framework

Define and construct several building blocks

ANCO (Anonymous Coin Friendly Encryption)

SOROM (Strongly Oblivious Read-Once Maps)

CRaB (Compressible Randomness Beacons)

14



Ocash: Idea

Bob needs to download enough state to prove presence of commitment

Full node shouldn’t learn anything about which commitment

15



Ocash: Idea

We want to obliviously read:

sounds like ORam!

Path ORam: Allows clients to read/write arbitrary data obliviously, with only

poly-logarithmic overhead.

16



Ocash: Path Oram (high level)

Encrypted value inserted at root bucket (with random target leaf)

17



Ocash: Path Oram (high level)

Maintainence steps (obliviously) move value towards leaf

18



Ocash: Path Oram (high level)

Maintainence steps (obliviously) move value towards leaf

19



Ocash: Path Oram (high level)

To read, client reads entire path to leaf L. (log(n) overhead)

20



Ocash: Idea

Bob needs to download enough state to prove presence of commitment

Full node shouldn’t learn anything about which commitment

We have a trusted party (later committee) run a ”read only oram” of Commitments!

21



OCash: (high level)

C ← commitment

Coin = (La, tid ,C )

1. Alice posts commitment C to chain, encrypts La to committee

22



OCash: (high level)

Committee:

Get Lc from random beacon,

L = H(Lc , La)

Insert C into top bucket, with target leaf L

23



OCash: (high level)

Send opening information and La to Bob

24



OCash: (high level)

More coins inserted, Committee maintain data structure

25



OCash: (high level)

3.

Bob requests random beacon history (CRaB key)

Bob computes L = H(Lc , La)

Bob requests path to L, nizk OR proof over all buckets

26



ANCO

tid = g ξ
0 · gA

1 · gB
2 · g

nA
3 · ga

4

OCash ”Coins” Coins are encryptions of the tid pedersen commitment, using a

special PKE scheme

1. Re-randomisable public key encryption scheme (without knowing key)

2. Key-indistinguishability under re-randomisation

3. Strong message binding (can only decrypts to one message, regardless of key)

27



ANCO

KeyGen: pp = (g0, q)

x
$←− Zq

h = g x
0

(ek = (g0, h), dk = x)

Encryption: pp = (g0, q), ek = (g , h),m

ρ
$←− Z∗

q

ρ′
$←− Zq

CT = (gρ
0 , h

ρ, gρ′

0 , hρ
′
m)

28



ANCO

Decrypt: pp = (g0, q), dk = x ,CT = (A,B,C ,D)

If B = Ax let m = DC−x ,

otherwise let m = ⊥.

Rerandomise: pp = (g0, q), ct = (A,B,C ,D)

ρ
$←− Z∗

q

ρ′
$←− Zq

Output ct ′ = (Aρ,Bρ,Aρ′C ,Bρ′D)

29



ANCO

Coin = Enc(tid) = (gρ, hρ, gσ, hσ · g ξ
0 · g

A
1 · gB

2 · g
nA
3 · g

a
4︸ ︷︷ ︸

tid

)

Claiming Coin

1. Bob receives SOROM branch of log(N) ANCO Ciphertexts.

2. Bob received dk from Alice, so can recognise and decrypt tid .

3. Bob publishes tid , with a NIZK showing an OR proof of decryption to tid over all

commitments in the path

30



Note on proofs

DLOG relations + Sigma Protocols

By (A,B,C ,D ′ = D · tid−1), we reduce the OR proof to showing that there is one

tuple for which there exists a w such that Aw = B and Cw = D ′.

This can then be efficiently computed using the ”one-out-of-many” DLOG Sigma

Protocol (GK15, log(l) blowup for l elements.)

We also give Sigma Protocols for sending/collecting encrypted amounts.

31



Sorom

Path Oram Security model vs Sorom

32



CRaB

CRaB key

Compressed random beacon, allowing fast evaluation of any previous index

33



Strong Anonymity

Revealing tid breaks strong anonymity

ohid = PRF (K , hid) = g
1/(K+hid)
5

Output is run through a PRF before being revealed.

34



The Committee

Requires a trusted party or committee to maintain the ORAM CRaB

Make SOROM verifiable → can only break privacy

Even if deadlocks/dies, can still claim all coins.

35



The Committee

Requires a trusted party or committee to maintain the ORAM CRaB

For proof of stake committees, verifiable MPC

Is a heavy (neccesary?) assumption.

36



Future work

Other primitives? (PIR?)

Efficient SOROM/ORAM verifiable MPC

Recursive SNARK style constructions?

37



Thank You!

Thanks for listening!

Full construction, UC security modelling, proofs and more in the full paper.

https://eprint.iacr.org/2024/246

Any Questions?

38


