Universally Composable Interactive and Ordered Multisignatures

Bernardo David

IT UNIVERSITY OF CPH

Elena Pagnin

Akira Takahashi J.P.Morgan Al Research & Algocrypt COE

In a Nutshell

- Interactive Multi-Signature (IMS): Allows n parties to generated a compact signature on the same message given interaction, e.g., preprocessing
- Ordered Multi-Signature (OMS): Order of signing attempts matters
- Previous OMS: Based on bilinear pairings
- Our results
 - First Schnorr-like OMS with a single-round online phase
 - New UC definitions for IMS
 - New game-based and UC definitions for OMS with preprocessing
 - Equivalence between game-based and UC definitions for IMS/OMS
- Applications to Sequential Communication Delay [BDPT24] (used for VDFs and TLPs) and routing [BGOY07]

Motivating Application

Sequential Communication Delay Protocol [BDPT24]

- Each satellite has sk_i
- Due to the speed of light, communication delay between two satellites is precisely lower bounded by their relative distance
- OMS guarantees m has incurred a certain minimum delay due to being transmitted from satellite 1 to n
- Proof of SCD helps us construct VDF

Verifier

 $m, \sigma, L = (\mathsf{pk}_1, \dots, \mathsf{pk}_n)$

(Interactive) Multi-Signature

(Interactive) Multi-Signature

(Interactive) Multi-Signature

Security Notion of Multi-Signature

 $(\mathsf{pk}_1, \mathsf{sk}_1) \leftarrow \mathsf{KeyGen}(1^{\lambda})$

MS-UF-CMA game

• (σ^*, m^*, L^*) is valid

Attacker wins if: • $\mathsf{pk}_1 \in L^*$

• (m^*, L^*) hasn't been queried

- Attacker can **concurrently** launch multiple sessions
- Sufficient to consider "all-but-one" corruptions

 $Signer(sk_1, sid, m, L)$

Security Notion of Multi-Signature

 $(\mathsf{pk}_1, \mathsf{sk}_1) \leftarrow \mathsf{KeyGen}(1^{\lambda})$

MS-UF-CMA game

• (σ^*, m^*, L^*) is valid

Attacker wins if: $\bullet \ \mathsf{pk}_1 \in L^*$

• (m^*, L^*) hasn't been queried

- Attacker can **concurrently** launch multiple sessions
- Sufficient to consider "all-but-one" corruptions

Security Notion of Multi-Signature

 $(\mathsf{pk}_1, \mathsf{sk}_1) \leftarrow \mathsf{KeyGen}(1^{\lambda})$

m

L

MS-UF-CMA game

• (σ^*, m^*, L^*) is valid

Attacker wins if: $\bullet \ \mathsf{pk}_1 \in L^*$

- (m^*, L^*) hasn't been queried
- Attacker can **concurrently** launch multiple sessions
- Sufficient to consider "all-but-one" corruptions

Ordered Multi-Signature [BGOY07]

- MS with stronger guarantee, with an **ordered** set L
- Application to routing path verification, SCD, VDF, etc.
- Parties in $L = (\mathsf{pk}_1, \dots, \mathsf{pk}_n)$ must sign in the specified order
- Naive way: signer *i* signs $(m, \sigma_1, \ldots, \sigma_{i-1}) \rightsquigarrow$ not compact!
- The only known construction is from pairing [BGOY07]
- Can we instantiate efficient OMS from standard prime order groups?

Verifier

Security Goal of OMS

. . .

- Let $H = (\mathsf{pk}_{i_1}, \dots, \mathsf{pk}_{i_h}) \subseteq L$ be a sequence of honest keys
- Adversary cannot shuffle the order of signing attempts made by parties in H
- For all $j,k \in [1,h]$ such that j < k, the owner of pk_{i_j} must have signed **before** pk_{*i*_{*k*}}
- "All-but-one" corruption model is not enough!
- We only consider static corruption

Verifier

$$m, \sigma, L = (\mathsf{pk}_1, \dots, \mathsf{pk}_n)$$

$$m, \sigma_{i_j}$$

$$\mathsf{Sign}_{\mathsf{sk}_{i_j}}(\sigma_{i_j-1},m,L)$$

 $\mathsf{Sign}_{\mathsf{sk}_n}(\sigma_{n-1},m,L)$

Next Step: Adapting MuSig2

Offline Phase

Online Phase

1: Parse
$$(\mathsf{pk}_1, \dots, \mathsf{pk}_n) := I$$

2: $\mathsf{pk} = \prod_{j=1}^n \mathsf{pk}_j$
3: $c = H(R, m, L)$
4: Check $R = g^z \mathsf{pk}^c$

Verifier(σ, m, L)

 $\begin{array}{c|c} & m,\sigma \\ \hline & m,\sigma \\ \hline & & \end{array} \end{array} \begin{array}{c} & m,\sigma \\ \hline & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$

 $\mathsf{Signer}_{\mathsf{sk}_i}$

Next Step: Adapting MuSig2

Offline Phase

 $Signer_{sk_i}$

Online Phase

1: $r_{i,1}, r_{i,2} \leftarrow \mathbb{S}\mathbb{Z}_q$ 2: $R_{i,1} = g^{r_{i,1}}; R_{i,2} = g^{r_{i,2}}$ 3: Broadcast $R_{i,1}, R_{i,2}$ 4: Receive $R_{j,1}, R_{j,2}$ for $j \neq i$ 5: $R_1 = \prod_{j=1}^n R_{j,1}$ 6: $R_2 = \prod_{j=1}^n R_{j,2}$ 1: Receive $(R', \tilde{z} = g^{r_{i,2}})$ 1: Receive $(R', \tilde{z} = g^{r_{i,2}})$ 2: v = H(m, L, q)3: $R = R_1 \cdot R_2^v$ 5: c = H(R, m, q)6: $z_i = c \cdot \operatorname{sk}_i + q$ 7: $z := \tilde{z} + z_i$

1: Receive
$$(R', \tilde{z})$$
 and m from party $i - 2$: $v = H(m, L, (R_{j,1}, R_{j,2})_{j=1}^n)$
3: $R = R_1 \cdot R_2^v$
4: Check $R = R'$
5: $c = H(R, m, L)$
6: $z_i = c \cdot \operatorname{sk}_i + r_{i,1} + v \cdot r_{i,2}$
7: $z := \tilde{z} + z_i$
8: Send $\sigma = (R, z)$ and m to party $i + 1$

Attack!

- Party i may agree to sign before party j < i contributes
- Need to validate **so-far** aggregation

1: Parse
$$(\mathsf{pk}_1, \dots, \mathsf{pk}_n) := L$$

2: $\mathsf{pk} = \prod_{j=1}^n \mathsf{pk}_j$
3: $c = H(R, m, L)$
4: Check $R = g^z \mathsf{pk}^c$

Verifier(σ, m, L)

15

Secure Construction: Ordered MuSig2

Offline Phase

 $Signer_{sk_i}$

Online Phase

1: Receive (R', \tilde{z}) and m from party i - 12: $v = H(m, L, (R_{j,1}, R_{j,2})_{j=1}^{n})$ 3: $R = R_1 \cdot R_2^v$ 4: Check R = R'5: $\tilde{R} = \tilde{R}_1 \cdot \tilde{R}_2^v$ 6: c = H(R, m, L)7: Check $g^{\tilde{z}} = \tilde{R} \cdot \tilde{pk}^c$ 8: $z_i = c \cdot \mathsf{sk}_i + r_{i,1} + v \cdot r_{i,2}$ 9: $z := \tilde{z} + z_i$ 10: Send $\sigma = (R, z)$ and m to party i + 1

1: Parse $(pk_1, ..., pk_n) := L$ 2: $\mathsf{pk} = \prod_{i=1}^{n} \mathsf{pk}_i$ 3: c = H(R, m, L)4: Check $R = g^z \mathsf{pk}^c$

Verifier(σ, m, L)

Secure Construction: Ordered MuSig2

Offline Phase

Online Phase

1: $r_{i,1}, r_{i,2} \leftarrow \mathbb{S} \mathbb{Z}_q$ 2: $R_{i,1} = g^{r_{i,1}}; R_{i,2} = g^{r_{i,2}}$ 3: Broadcast $R_{i,1}, R_{i,2}$ 4: Receive $R_{j,1}, R_{j,2}$ for $j \neq i$ 5: $R_1 = \prod_{j=1}^n R_{j,1}$ 6: $R_2 = \prod_{j=1}^n R_{j,2}$ 7: $\tilde{R}_1 = \prod_{j=1}^{i-1} R_{j,1}$ 8: $\tilde{R}_2 = \prod_{j=1}^{i-1} R_{j,2}$ 9: $\tilde{\mathsf{pk}} = \prod_{j=1}^{i-1} \mathsf{pk}_j$ 1: Receive (R', \tilde{z}) 2: v = H(m, L, (M, L, M))3: $R = R_1 \cdot R_2^v$ 4: Check R = R'5: $\tilde{R} = \tilde{R}_1 \cdot \tilde{R}_2^v$ 6: c = H(R, m, L, R)7: Check $g^{\tilde{z}} = \tilde{R}$ 8: $z_i = c \cdot \mathsf{sk}_i + r$ 9: $z := \tilde{z} + z_i$ 10: Send $\sigma = (R, z)$

1: Receive (R', \tilde{z}) and m from party i - 12: $v = H(m, L, (R_{j,1}, R_{j,2})_{j=1}^{n})$ 3: $R = R_1 \cdot R_2^v$ 4: Check R = R'5: $\tilde{R} = \tilde{R}_1 \cdot \tilde{R}_2^v$ 6: c = H(R, m, L)7: Check $g^{\tilde{z}} = \tilde{R} \cdot \tilde{pk}^c$ 8: $z_i = c \cdot \operatorname{sk}_i + r_{i,1} + v \cdot r_{i,2}$ 9: $z := \tilde{z} + z_i$ 10: Send $\sigma = (R, z)$ and m to party i + 1

Security

- Party i makes sure j < i contributed
- Since \tilde{R} is not hashed, the proof gets quite involved
- Still secure under the AOMDL assumption

1: Parse
$$(\mathsf{pk}_1, \dots, \mathsf{pk}_n) := L$$

2: $\mathsf{pk} = \prod_{j=1}^n \mathsf{pk}_j$
3: $c = H(R, m, L)$
4: Check $R = g^z \mathsf{pk}^c$

Verifier (σ, m, L)

 $Signer_{sk_i}$

UC security notions for IMS and OMS

- We define **ideal functionalities for IMS and OMS** adapting the standard digital signature ideal functionality of [Canetti04]
- As in [Canetti04] we show equivalence to game-based security definitions
- Special care must be taken in modelling the interaction/preprocessing (and signing order) in the ideal functionality and correctness in the game [CDLLR24]

• A known caveat:

- As in [Canetti04], our functionalities allow a Signer to request signatures, which are provided by the ideal adversary and returned to the Signer
- A concurrent work [CDLLR24] observes that the adversary can refuse to provide signatures and essentially halt the ideal functionality of [CanettiO4]
- This issue is also present in our ideal functionalities but has no impact in our applications, as the adversary could simply crash one of the signers

Wrapping up

- We constructed an efficient and compact Schnorr-based OMS
- Defined UC security notion for IMS
- Defined both game-based and UC security notions for preprocessing OMS
- Proved equivalence between game-based and UC definitions for IMS and OMS
- Open questions:
 - Security under adaptive corruptions?
 - Post-quantum instantiation e.g. lattices