Kleptographic Attacks against Implicit Rejection

Antoine Joux, Julian Loss, Benedikt Wagner

Proxy Speaker: Yanbo Chen

eprint 2024/260

CPA Secure PKE

CPA Secure PKE

Analysis in the QROM

- Analysis in the QROM
- Used in NIST PQC Submissions, e.g., Kyber

Explicit Rejection

Success	$K := f_{sk}(c)$
Failure	$K := \bot$

Explicit Rejection

Success	$K := f_{sk}(c)$
Failure	$K := \bot$

Implicit Rejection

Success $K := f_{sk}(c)$ FailureK := H(c, s)

Explicit Rejection

Implicit Rejection

 $K := f_{sk}(c)$ Success K := H(c, s)Failure

Explicit Rejection

Implicit Rejection

 $K := f_{sk}(c)$ Success K := H(c, s)Failure

• Implicit rejection: tighter bounds

Explicit Rejection

Implicit Rejection

 $K := f_{sk}(c)$ Success K := H(c, s)Failure

- Implicit rejection: tighter bounds
- Implicit rejection in Kyber

Explicit Rejection

Implicit Rejection

 $K := f_{sk}(c)$ Success K := H(c, s)Failure

- Implicit rejection: tighter bounds
- Implicit rejection in Kyber

Our Observation:

Implicit rejection can be less secure!

Implicit rejection in a kleptographic setting

Implicit rejection in a kleptographic setting

Kleptographic attacker can break it!

Implicit rejection in a kleptographic setting

	Subvert	Memory	Time Offline	Time Online	Advantage
Attack I	Decaps	2 ⁸	20	2^{2}	0.997
Attack 2	Key Gen	27	2^{0}	2^{130}	0.999
Attack 3	Key Gen	2^{111}	2^{154}	2^{106}	0.692

Kleptographic attacker can break it!

* applied to Kyber

Cryptographic Algorithm

• Kleptographic attacker subverts algorithm

Cryptographic Algorithm

• Kleptographic attacker subverts algorithm

Attacker's goals: Success and Undetectability

• Success: attacker breaks security for subverted user

Kleptographic Attacker's Goals Cryptographic Algorithm

• Undetectability: user cannot detect subversion

 $K := f_{sk}(c)$

Leaks nothing about sk

Leaks nothing about sk

• Make seed s depend on sk

s = H(ak, truncate(sk))

Leaks nothing about sk

• Make seed s depend on sk

s = H(ak, truncate(sk))

Leaks nothing about sk

• Make seed s depend on sk

Undetectable if ak is random

s = H(ak, truncate(sk))

- Make seed s depend on sk
- Undetectable if *ak* is random
- Rejection keys K leak bits of sk

Leaks nothing about sk

s = H(ak, truncate(sk))

- Make seed s depend on sk
- Undetectable if *ak* is random
- Rejection keys K leak bits of sk

Leaks nothing about *sk*

• Mitigations?

• Mitigations?

Conclusion for NIST PQC Standardization?

Mitigations?

Conclusion for NIST PQC Standardization?

Can we apply technique to other primitives, like PAKE?

Thank you!

eprint 2024/260