
Intermundium-DL:

Assessing the Resilience of Current Schemes
to Discrete-Log-Computation Attacks
on Public Parameters

Mihir Bellare (UCSD)
Doreen Riepel (CISPA)
Laura Shea (UCSD)

eprint 2025 / 663PKC 2025

https://eprint.iacr.org/2025/663

computing DLs in currently standardized groups is

but COSTLY
Possible

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

2

Why?

Early Quantum Computers

computing DLs in currently standardized groups is

but COSTLY
Possible

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

3

Why?

Early Quantum Computers

computing DLs in currently standardized groups is

but COSTLY
Possible

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

4

computing DLs in currently standardized groups is

but COSTLY
Possible

How might an adversary
best exploit this capability?

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

5

Our Answer: Attack schemes whose public parameters
 consist of a few group elements:

• Compute

• Hope thereby to easily compromise security of MANY

users

π = (h1, …, hw)
logg(h1), …, logg(hw)

computing DLs in currently standardized groups is

but COSTLY
Possible

How might an adversary
best exploit this capability?

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

6

Our Answer: Attack schemes whose public parameters
 consist of a few group elements:

• Compute

• Hope thereby to easily compromise security of MANY

users

π = (h1, …, hw)
logg(h1), …, logg(hw)

We accordingly investigate the security of current

schemes in the setting where

the adversary knows logg(h1), …, logg(hw)

The proofs typically assume that the adversary does
NOT know these discrete logarithms.

So we might expect there to be attacks violating
security in our setting.

computing DLs in currently standardized groups is

but COSTLY
Possible

How might an adversary
best exploit this capability?

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

7

Our Answer: Attack schemes whose public parameters
 consist of a few group elements:

• Compute

• Hope thereby to easily compromise security of MANY

users

π = (h1, …, hw)
logg(h1), …, logg(hw)

We accordingly investigate the security of current

schemes in the setting where

the adversary knows logg(h1), …, logg(hw)

However we find surprising variations
in security across schemes:

• Some fully retain security

• Some retain partial but meaningful security

• Some do break totally

The proofs typically assume that the adversary does
NOT know these discrete logarithms.

So we might expect there to be attacks violating
security in our setting.

computing DLs in currently standardized groups is

but COSTLY
Possible

How might an adversary
best exploit this capability?

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

8

THE DL (DISCRETE LOG) PROBLEM

Game DL𝔾,p,g Group , of order , with generator 𝔾 p g

X $ 𝔾
A

x′￼

Adversary A wins game DL if .gx′￼ = X

9

THE DL (DISCRETE LOG) PROBLEM

Game DL𝔾,p,g Group , of order , with generator 𝔾 p g

X $ 𝔾
A

x′￼

Adversary A wins game DL if .gx′￼ = X

What is ?𝔾
Often, an elliptic-curve group of order .p ≈ 2256

10

THE DL (DISCRETE LOG) PROBLEM

Game DL𝔾,p,g Group , of order , with generator 𝔾 p g

X $ 𝔾
A

x′￼

Adversary A wins game DL if .gx′￼ = X

What is ?𝔾
Often, an elliptic-curve group of order .p ≈ 2256

11

Q: How hard is it to win the DL game?

• For ANY group , there is a DL adversary of time [Pollard]

• With preprocessing, this can become [BL13, …]

• For SOME (non-EC) groups, there is a DL adversary of time about
 (NFS algorithm)

𝔾 2(log p)/2

2(log p)/3

2(log p)1/3

A: State-of-the-art cryptanalysis :

THE DL (DISCRETE LOG) PROBLEM

Game DL𝔾,p,g Group , of order , with generator 𝔾 p g

X $ 𝔾
A

x′￼

Adversary A wins game DL if .gx′￼ = X

What is ?𝔾
Often, an elliptic-curve group of order .p ≈ 2256

Q: How hard is it to win the DL game? There is a QUANTUM A that runs in time
 [Shor]poly(log p)

• For ANY group , there is a DL adversary of time [Pollard]

• With preprocessing, this can become [BL13, …]

• For SOME (non-EC) groups, there is a DL adversary of time about
 (NFS algorithm)

𝔾 2(log p)/2

2(log p)/3

2(log p)1/3

A: State-of-the-art cryptanalysis :

12

XXX-krone QUESTION: 
Will quantum computers run Shor’s algorithm on
256-bit elliptic curves, by year 20##?

(Choose your XXX, target year, and you can place a bet on PQC-forum.)

13

YES NO

14

XXX-krone QUESTION: 
Will quantum computers run Shor’s algorithm on
256-bit elliptic curves, by year 20##?

(Choose your XXX, target year, and you can place a bet on PQC-forum.)

YES NO

INTERMUNDIUM-DL
We’re interested in a less binary answer.

15

XXX-krone QUESTION: 
Will quantum computers run Shor’s algorithm on
256-bit elliptic curves, by year 20##?

(Choose your XXX, target year, and you can place a bet on PQC-forum.)

16

DL is hard

Optimistic view: 
 

QCs running Shor’s are never
built. 

Classical cryptanalysis never
improves. 

DL-based crypto is totally safe.
17

DL is hard DL is easy

Pessimistic view: 
 

Blindingly fast QCs are right
around the corner. 

256-bit DL is easy and all DL-
based crypto is forfeit.

Optimistic view: 
 

QCs running Shor’s are never
built. 

Classical cryptanalysis never
improves. 

DL-based crypto is totally safe.
18

DL is hard DL is feasible but expensive DL is easy

Intermundium-DL view: 
 

QCs could run Shor, but at great cost. 
A rich adversary could compute a few
DLs. But per-user DL computation is

out of reach.

Pessimistic view: 
 

Blindingly fast QCs are right
around the corner. 

256-bit DL is easy and all DL-
based crypto is forfeit.

Optimistic view: 
 

QCs running Shor’s are never
built. 

Classical cryptanalysis never
improves. 

DL-based crypto is totally safe.
19

Setting the scene

Definitions: How to formalize security in Intermundium-DL?

 
RESULTS

Signatures

Public-key encryption

Password-authenticated key exchange

20

Group-Element-Parameter (GEP) Schemes

 Let be a width-w GEP scheme, over a fixed group described by . 𝖲𝖼𝗁 (𝔾, p, g)

𝖲𝖼𝗁 . 𝖪𝗀

𝖲𝖼𝗁 . 𝖯𝗀

π = (h1, …, hw) ∈ 𝔾w

𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀

(pk1, sk1) (pk2, sk2) (pki, ski) (pkn, skn)

🕵 👨🔧🧑💼 🧑💻

Scheme parameter-generation algorithm

Scheme key-generation

21

Group-Element-Parameter (GEP) Schemes

𝖲𝖼𝗁 . 𝖪𝗀

𝖲𝖼𝗁 . 𝖯𝗀

π = (h1, …, hw) ∈ 𝔾w

𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀

(pk1, sk1) (pk2, sk2) (pki, ski) (pkn, skn)

🕵 👨🔧🧑💼 🧑💻

𝖲𝖼𝗁 . 𝖲𝗂𝗀𝗇𝖲𝖼𝗁 . 𝖵𝖿𝗒

Scheme parameter-generation algorithm

Scheme key-generation

Other Scheme algorithms 
(here, for a Signature Scheme)

 Let be a width-w GEP scheme, over a fixed group described by . 𝖲𝖼𝗁 (𝔾, p, g)

22

Group-Element-Parameter (GEP) Schemes

𝖲𝖼𝗁 . 𝖪𝗀

𝖲𝖼𝗁 . 𝖯𝗀

π = (h1, …, hw) ∈ 𝔾w

𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀

(pk1, sk1) (pk2, sk2) (pki, ski) (pkn, skn)

🕵 👨🔧🧑💼 🧑💻

𝖲𝖼𝗁 . 𝖲𝗂𝗀𝗇𝖲𝖼𝗁 . 𝖵𝖿𝗒

w=1 
Okamoto Signatures 
Katz-Wang Signatures 
Cramer-Shoup PKE 
Dual EC PRG

w=2 
SPAKE2

w=4 
KOY PAKE

w=? 
...

There are many such
schemes, including:

 Let be a width-w GEP scheme, over a fixed group described by . 𝖲𝖼𝗁 (𝔾, p, g)

23

Group-Element-Parameter (GEP) Schemes

𝖲𝖼𝗁 . 𝖪𝗀

𝖲𝖼𝗁 . 𝖯𝗀

π = (h1, …, hw) ∈ 𝔾w

𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀 𝖲𝖼𝗁 . 𝖪𝗀

(pk1, sk1) (pk2, sk2) (pki, ski) (pkn, skn)

🕵 👨🔧🧑💼 🧑💻

𝖲𝖼𝗁 . 𝖲𝗂𝗀𝗇𝖲𝖼𝗁 . 𝖵𝖿𝗒

• The adversary computes w discrete logs

• Hoping to compromise all n users!

logg(h1), …, logg(hw)

One natural Intermundium-DL concern is:
 Let be a width-w GEP scheme, over a fixed group described by . 𝖲𝖼𝗁 (𝔾, p, g)

(w ≪ n)

24

Security games: One formalism of security goals

A
Security game

for scheme 𝖲𝖼𝗁

Chooses public parameters π $ 𝖲𝖼𝗁 . 𝖯𝗀π

Decides if A won the game.

Responds to oracle queries

25

Security games: One formalism of security goals

A
Security game

for GEP scheme 𝖲𝖼𝗁

Chooses public parameters π = (h1, …, hw) $ 𝖲𝖼𝗁 . 𝖯𝗀π

Decides if A won the game.

Responds to oracle queries

26

27

Security games: One formalism of security goals

A
Security game

for GEP scheme 𝖲𝖼𝗁

Chooses public parameters π = (h1, …, hw) $ 𝖲𝖼𝗁 . 𝖯𝗀π

Decides if A won the game.

Responds to oracle queries

Security games, With Advice: Our approach to formalizing Intermundium-DL

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

28

Security games: One formalism of security goals

A
Security game

for GEP scheme 𝖲𝖼𝗁

Chooses public parameters π = (h1, …, hw) $ 𝖲𝖼𝗁 . 𝖯𝗀π

Decides if A won the game.

Responds to oracle queries

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

π, advice

Security games, With Advice: Our approach to formalizing Intermundium-DL

29

Security games: One formalism of security goals

A
Security game

for GEP scheme 𝖲𝖼𝗁

Chooses public parameters π = (h1, …, hw) $ 𝖲𝖼𝗁 . 𝖯𝗀π

Decides if A won the game.

Responds to oracle queries

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

π, advice

Decides if A won the game.

Responds to oracle queries

Security games, With Advice: Our approach to formalizing Intermundium-DL

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

30

Security games: One formalism of security goals

A
Security game

for GEP scheme 𝖲𝖼𝗁

Chooses public parameters π = (h1, …, hw) $ 𝖲𝖼𝗁 . 𝖯𝗀π

Decides if A won the game.

Responds to oracle queries

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

π, advice

UFCMA
A-UFCMA

CPA
A-CPA

PAKE
A-PAKE

…
…

Security games, With Advice: Our approach to formalizing Intermundium-DL

Decides if A won the game.

Responds to oracle queries

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

31

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

π, advice

Decides if A won the game.

Responds to oracle queries

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

32

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

π, advice

Decides if A won the game.

Responds to oracle queries

These Advice-Security games also capture a natural backdooring
strategy, as occurred with Dual EC.

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

33

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

π, advice

Decides if A won the game.

Responds to oracle queries

These Advice-Security games also capture a natural backdooring
strategy, as occurred with Dual EC.

NIST SP 800-90, ANSI X9.82β $ ℤ*p ; h ← gβ π = h

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

34

A

Advice
Security game

for GEP scheme 𝖲𝖼𝗁

π, advice

Decides if A won the game.

Responds to oracle queries

These Advice-Security games also capture a natural backdooring
strategy, as occurred with Dual EC.

Our results can also be seen as answering how resilient GEP schemes
are to this natural backdoor.

NIST SP 800-90, ANSI X9.82β $ ℤ*p ; h ← gβ π = h

Chooses public parameters AND advice 
s.t.  

π = (h1, …, hw)
advice = (β1, …, βw) = (logg(h1), …, logg(hw))

What happens to security of GEP schemes when an adversary has this advice?

1. Can we build schemes that are A-Secure (Advice-Secure)?

Possible Questions:

2. Are existing schemes A-Secure?

35

What happens to security of GEP schemes when an adversary has this advice?

1. Can we build schemes that are A-Secure (Advice-Secure)?

Yes, trivially. e.g. Don’t have public parameters.

Possible Questions:

2. Are existing schemes A-Secure?

[Not so interesting. 
And, may incur other costs.]

36

What happens to security of GEP schemes when an adversary has this advice?

1. Can we build schemes that are A-Secure (Advice-Secure)?

Yes, trivially. e.g. Don’t have public parameters.

Possible Questions:

2. Are existing schemes A-Secure?

[Not so interesting. 
And, may incur other costs.]

[Our question]
There are legacy systems, will they remain secure in Intermundium-DL?

37

What happens to security of existing GEP schemes when an adversary has this advice?

38

What happens to security of existing GEP schemes when an adversary has this advice?

‣ A-INSECURE: The scheme is broken!

‣ A-SECURE: The scheme is still completely secure! The public parameters didn’t actually need a
trusted setup.

‣ Something else? PARTIALLY A-SECURE.

We came across 3 categories:

39

w Known results Our results

What happens to security of existing GEP schemes when an adversary has this advice?

40

w Known results Our results

Okamoto 1 UF-CMA under DL A-UF-CMA under DL

Katz-Wang 1 UF-CMA under DDH A-UF-CMA under DL

What happens to security of existing GEP schemes when an adversary has this advice?

41

w Known results Our results

Okamoto 1 UF-CMA under DL A-UF-CMA under DL

Katz-Wang 1 UF-CMA under DDH A-UF-CMA under DL

Cramer-Shoup 1 CPA under DDH 
CCA-1, CCA-2 under DDH

A-CPA under DDH [Rosulek] 
A-CCA-1 under DT-DDH

What happens to security of existing GEP schemes when an adversary has this advice?

42

w Known results Our results

Okamoto 1 UF-CMA under DL A-UF-CMA under DL

Katz-Wang 1 UF-CMA under DDH A-UF-CMA under DL

Cramer-Shoup 1 CPA under DDH 
CCA-1, CCA-2 under DDH

A-CPA under DDH [Rosulek] 
A-CCA-1 under DT-DDH

KOY 4 PAKE-secure under DDH Broken!

What happens to security of existing GEP schemes when an adversary has this advice?

43

w Known results Our results

Okamoto 1 UF-CMA under DL A-UF-CMA under DL

Katz-Wang 1 UF-CMA under DDH A-UF-CMA under DL

Cramer-Shoup 1 CPA under DDH 
CCA-1, CCA-2 under DDH

A-CPA under DDH [Rosulek] 
A-CCA-1 under DT-DDH

KOY 4 PAKE-secure under DDH Broken!

SPAKE2 2 PAKE-secure under GapCDH A-PAKE-secure under StrongCDH, 
assuming good passwords

What happens to security of existing GEP schemes when an adversary has this advice?

44

45

Setting the scene

Definitions: How to formalize security in Intermundium-DL?

 
RESULTS

Signatures

Public-key encryption

Password-authenticated key exchange

46

Signatures in Intermundium-DL: 
UF-CMA

A

UF-CMA game
for GEP scheme 𝖲

Simplification: The schemes in question all have width , so .w = 1 π = h

 h $ 𝖲 . 𝖯𝗀

For do: i = 1,…, n (vki, ski)
$ 𝖲 . 𝖪𝗀(h)

 h, vk1, …, vkn

Oracle :𝚂𝚒𝚐𝚗(i, m)

 Q ← Q ∪ {(i, m)}

Return σ $ 𝖲 . 𝖲𝗂𝗀𝗇(ski, m)

Forgery (i*, m*, σ*) and (i*, m*) ∉ Q 𝖲 . 𝖵𝖿𝗒(vki*, m*, σ*)

 A wins if:

Let be a GEP signature scheme. 
It has algorithms:

• which outputs

•

•

•

𝖲

𝖲 . 𝖯𝗀 π = h
𝖲 . 𝖪𝗀
𝖲 . 𝖲𝗂𝗀𝗇
𝖲 . 𝖵𝖿𝗒

47

Signatures in Intermundium-DL: 
Advice-UF-CMA (A-UF-CMA)

A

A-UF-CMA game
for GEP scheme 𝖲

Simplification: The schemes in question all have width , so .w = 1 π = h

 h $ 𝖲 . 𝖯𝗀

For do: i = 1,…, n (vki, ski)
$ 𝖲 . 𝖪𝗀(h)

 h, vk1, …, vkn,

Oracle :𝚂𝚒𝚐𝚗(i, m)

 Q ← Q ∪ {(i, m)}

Return σ $ 𝖲 . 𝖲𝗂𝗀𝗇(ski, m)

Forgery (i*, m*, σ*) and (i*, m*) ∉ Q 𝖲 . 𝖵𝖿𝗒(vki*, m*, σ*)

 A wins if:

Let be a GEP signature scheme. 
It has algorithms:

• which outputs

•

•

•

𝖲

𝖲 . 𝖯𝗀 π = h
𝖲 . 𝖪𝗀
𝖲 . 𝖲𝗂𝗀𝗇
𝖲 . 𝖵𝖿𝗒

 β ← logg(h)

 β

48

Signatures in Intermundium-DL: 
Old results

Prior UF-CMA results:

DL ⇒ Okamoto UF-CMA
π = h

This reduction [O92] says:  
Given a UF-CMA adversary breaking Okamoto, 
we can build a DL adversary which, given , finds .h logg(h)

49

Signatures in Intermundium-DL: 
Old results

Prior UF-CMA results:

DL ⇒ Okamoto UF-CMA

DDH ⇒ Katz-Wang UF-CMA

π = h

π = h

This reduction [O92] says:  
Given a UF-CMA adversary breaking Okamoto, 
we can build a DL adversary which, given , finds .h logg(h)

This reduction [KW03] says: 
Given a UF-CMA adversary breaking Katz-Wang, 
we can build a DDH adversary which, given , decides if . (g, h, B, C) C = Blogg(h)

50

Signatures in Intermundium-DL: 
Old results

Prior UF-CMA results:

DL ⇒ Okamoto UF-CMA

DDH ⇒ Katz-Wang UF-CMA

π = h

π = h

This reduction [O92] says:  
Given a UF-CMA adversary breaking Okamoto, 
we can build a DL adversary which, given , finds .h logg(h)

This reduction [KW03] says: 
Given a UF-CMA adversary breaking Katz-Wang, 
we can build a DDH adversary which, given , decides if . (g, h, B, C) C = Blogg(h)

Advice-UF-CMA results: ??

These reductions won’t work for A-UF-CMA,
since the advice must be revealed to the
adversary.

logg(h)

51

Signatures in Intermundium-DL: 
Old and new results

Prior UF-CMA results:

DL ⇒ Okamoto UF-CMA

DDH ⇒ Katz-Wang UF-CMA

π = h

π = h

Our Advice-UF-CMA results:

DL ⇒ Schnorr UF-CMA
No public parameters

52

Signatures in Intermundium-DL: 
Old and new results

Prior UF-CMA results:

DL ⇒ Okamoto UF-CMA

DDH ⇒ Katz-Wang UF-CMA

π = h

π = h

Our Advice-UF-CMA results:

DL ⇒ Schnorr UF-CMA
No public parameters

Schnorr UF-CMA ⇒ Okamoto A-UF-CMA

Schnorr UF-CMA ⇒ Katz-Wang A-UF-CMA

53

An illustration: Okamoto in Intermundium-DL
 Theorem: Given an adversary B against A-UF-CMA of Okamoto, we can construct adversary A against UF-CMA of Schnorr.

Fixed group described by: (𝔾, p, g) Fixed hash function: 𝖧

54

An illustration: Okamoto in Intermundium-DL
 Theorem: Given an adversary B against A-UF-CMA of Okamoto, we can construct adversary A against UF-CMA of Schnorr.

Okamoto :𝖪𝗀(h)

Fixed group described by: (𝔾, p, g) Fixed hash function: 𝖧

Okamoto :𝖯𝗀

Okamoto :𝖲𝗂𝗀𝗇(h, X, (s1, s2), m)

Schnorr :𝖪𝗀(ε)

Schnorr :𝖲𝗂𝗀𝗇(ε, X, s, m)

55

An illustration: Okamoto in Intermundium-DL
 Theorem: Given an adversary B against A-UF-CMA of Okamoto, we can construct adversary A against UF-CMA of Schnorr.

Okamoto :𝖪𝗀(h)

Fixed group described by: (𝔾, p, g) Fixed hash function: 𝖧

Okamoto :𝖯𝗀

Okamoto :𝖲𝗂𝗀𝗇(h, X, (s1, s2), m)

Schnorr :𝖪𝗀(ε)

Schnorr :𝖲𝗂𝗀𝗇(ε, X, s, m)

 Adversary A :

Inputs: Schnorr and parameter vk = X π = ε

1. Select β $ ℤ*p ; h ← g β

2. Run B with Okamoto , 
 parameter and advice .

vk = X
h β

3. When B outputs a forgery , 
 A outputs Schnorr forgery .

(m, (e, y1, y2))
(m, (e, y1 + β y2))

When B makes an Okamoto query:𝖲𝗂𝗀𝗇(m)
A will… 
(i) Make a Schnorr query  

(ii) Select  

(iii) Set  
(iv) Return to B the signature .

(e, y) ← 𝖲𝗂𝗀𝗇(m)
y2

$ ℤp

y1 ← (y − β y2)
(e, y1, y2)

56

Setting the scene

Definitions: How to formalize security in Intermundium-DL?

 
RESULTS

Signatures

Public-key encryption

Password-authenticated key exchange

57

Encryption in Intermundium-DL: 
CPA, CCA1, CCA2

A

CPA, CCA1, CCA2 games
for GEP scheme 𝖯𝖪𝖤

Simplification: The schemes in question all have width , so .w = 1 π = h

 h $ 𝖯𝖪𝖤 . 𝖯𝗀

For do: i = 1,…, n (eki, dki)
$ 𝖯𝖪𝖤 . 𝖪𝗀(h)

 h, ek1, …, ekn

Oracle :𝙴𝚗𝚌(i, m0, m1)

 C* $ 𝖯𝖪𝖤 . 𝖤𝗇𝖼(h, eki, md)

Guess d′￼ d′￼ = d

 A wins if:

Let be a GEP scheme. 
It has algorithms:

• which outputs

•

•

•

𝖯𝖪𝖤

𝖯𝖪𝖤 . 𝖯𝗀 π = h
𝖯𝖪𝖤 . 𝖪𝗀
𝖯𝖪𝖤 . 𝖤𝗇𝖼
𝖯𝖪𝖤 . 𝖣𝖾𝖼

 d $ {0,1}

Return C*

Oracle :𝙳𝚎𝚌(i, C)

 M ← 𝖯𝖪𝖤 . 𝖣𝖾𝖼(h, dki, C)
If allowed, Return M

Dec queries: 
CPA: Never allowed 
CCA1: Allowed before Enc queries 
CCA2: Allowed at any time*

58

Encryption in Intermundium-DL: 
Advice-{CPA, CCA1, CCA2}

A

A-{CPA, CCA1, CCA2}
for GEP scheme 𝖯𝖪𝖤

Simplification: The schemes in question all have width , so .w = 1 π = h

 h $ 𝖯𝖪𝖤 . 𝖯𝗀

For do: i = 1,…, n (eki, dki)
$ 𝖯𝖪𝖤 . 𝖪𝗀(h)

 h, ek1, …, ekn,

Oracle :𝙴𝚗𝚌(i, m0, m1)

 C* $ 𝖯𝖪𝖤 . 𝖤𝗇𝖼(h, eki, md)

Guess d′￼ d′￼ = d

 A wins if:

Let be a GEP scheme. 
It has algorithms:

• which outputs

•

•

•

𝖯𝖪𝖤

𝖯𝖪𝖤 . 𝖯𝗀 π = h
𝖯𝖪𝖤 . 𝖪𝗀
𝖯𝖪𝖤 . 𝖤𝗇𝖼
𝖯𝖪𝖤 . 𝖣𝖾𝖼

 d $ {0,1}

Return C*

Oracle :𝙳𝚎𝚌(i, C)

 M ← 𝖯𝖪𝖤 . 𝖣𝖾𝖼(h, dki, C)
If allowed, Return M

Dec queries: 
CPA: Never allowed 
CCA1: Allowed before Enc queries 
CCA2: Allowed at any time*

 β

 β ← logg(h)

59

Encryption in Intermundium-DL: 
Old results

Prior results:

DDH ⇒ Cramer-Shoup CPA

DDH ⇒ Cramer-Shoup CCA1

DDH ⇒ Cramer-Shoup CCA2

[CS03 and others] CS: π = h

60

Encryption in Intermundium-DL: 
Old and new results

Prior results:

DDH ⇒ Cramer-Shoup CPA

DDH ⇒ Cramer-Shoup CCA1

DDH ⇒ Cramer-Shoup CCA2

[CS03 and others] CS: π = h

Our Advice results:

DDH ⇒ Cramer-Shoup A-CPA

DT-DDH ⇒ Cramer-Shoup A-CCA1

??

61

The “Delayed-Target DDH” (DT-DDH) problem

Game DDH𝔾,p,g Group , of order , with generator 𝔾 p g

d′￼

Adversary A wins game DDH if .d′￼ = d

If then return d = 1 (ga, gb, gab)

 a, b, r $ ℤ3
p

 d $ {0,1}

If then return d = 0 (ga, gb, gr)
A

62

The “Delayed-Target DDH” (DT-DDH) problem

Game DDH𝔾,p,g Group , of order , with generator 𝔾 p g

d′￼

Adversary A wins game DDH if .d′￼ = d

If then return d = 1 (ga, gb, gab)

 a, b, r $ ℤ3
p

 d $ {0,1}

If then return d = 0 (ga, gb, gr)
A

Game DT-DDH𝔾,p,g

 a, b, r $ ℤ3
p

 d $ {0,1}

Return ga A

63

The “Delayed-Target DDH” (DT-DDH) problem

Game DDH𝔾,p,g Group , of order , with generator 𝔾 p g

d′￼

Adversary A wins game DDH if .d′￼ = d

If then return d = 1 (ga, gb, gab)

 a, b, r $ ℤ3
p

 d $ {0,1}

If then return d = 0 (ga, gb, gr)
A

 a, b, r $ ℤ3
p

 d $ {0,1}

Return ga A

Oracle Return CDH(Y) : Ya

Game DT-DDH𝔾,p,g

64

Oracle Return CDH(Y) : Ya

The “Delayed-Target DDH” (DT-DDH) problem

Game DDH𝔾,p,g Group , of order , with generator 𝔾 p g

d′￼

Adversary A wins game DDH if .d′￼ = d

If then return d = 1 (ga, gb, gab)

 a, b, r $ ℤ3
p

 d $ {0,1}

If then return d = 0 (ga, gb, gr)
A

 a, b, r $ ℤ3
p

 d $ {0,1}

Return ga A

❌
Oracle “Request Target”:

Game DT-DDH𝔾,p,g

65

Oracle Return CDH(Y) : Ya

The “Delayed-Target DDH” (DT-DDH) problem

Game DDH𝔾,p,g Group , of order , with generator 𝔾 p g

d′￼

Adversary A wins game DDH if .d′￼ = d

If then return d = 1 (ga, gb, gab)

 a, b, r $ ℤ3
p

 d $ {0,1}

If then return d = 0 (ga, gb, gr)
A

 a, b, r $ ℤ3
p

 d $ {0,1}

Return ga A

❌

If then return d = 1 (gb, gab)

If then return d = 0 (gb, gr)

Oracle “Request Target”:

Game DT-DDH𝔾,p,g

66

Oracle Return CDH(Y) : Ya

The “Delayed-Target DDH” (DT-DDH) problem

Game DDH𝔾,p,g Group , of order , with generator 𝔾 p g

d′￼

Adversary A wins game DDH if .d′￼ = d

If then return d = 1 (ga, gb, gab)

 a, b, r $ ℤ3
p

 d $ {0,1}

If then return d = 0 (ga, gb, gr)
A

 a, b, r $ ℤ3
p

 d $ {0,1}

Return ga A

❌

If then return d = 1 (gb, gab)

If then return d = 0 (gb, gr)

Oracle “Request Target”:

d′￼

Adversary A wins game DT-DDH if .d′￼ = d

Game DT-DDH𝔾,p,g

67

Oracle Return CDH(Y) : Ya

The “Delayed-Target DDH” (DT-DDH) problem

 a, b, r $ ℤ3
p

 d $ {0,1}

Return ga A

❌

If then return d = 1 (gb, gab)

If then return d = 0 (gb, gr)

Oracle “Request Target”:

d′￼

Adversary A wins game DT-DDH if .d′￼ = d

Comments on DT-DDH:

•DT-DDH is from [L11] and CDH versions have
been given as well [F05, KM08]

•Attacks (that are subexponential-time) exist for
finite-field groups [JLNT09]

Game DT-DDH𝔾,p,g

68

Encryption in Intermundium-DL: 
Old and new results

Prior results:

DDH ⇒ Cramer-Shoup CPA

DDH ⇒ Cramer-Shoup CCA1

DDH ⇒ Cramer-Shoup CCA2

Our Advice results:

DDH ⇒ Cramer-Shoup A-CPA

DT-DDH ⇒ Cramer-Shoup A-CCA1

69

Encryption in Intermundium-DL: 
Old and new results

Prior results:

DDH ⇒ Cramer-Shoup CPA

DDH ⇒ Cramer-Shoup CCA1

DDH ⇒ Cramer-Shoup CCA2

Our Advice results:

DDH ⇒ Cramer-Shoup A-CPA

DT-DDH ⇒ Cramer-Shoup A-CCA1

 A sketch of the proof difference: Given (DT-)DDH challenge …(g, ga, gb, C)

70

Encryption in Intermundium-DL: 
Old and new results

Prior results:

DDH ⇒ Cramer-Shoup CPA

DDH ⇒ Cramer-Shoup CCA1

DDH ⇒ Cramer-Shoup CCA2

Our Advice results:

DDH ⇒ Cramer-Shoup A-CPA

DT-DDH ⇒ Cramer-Shoup A-CCA1

 A sketch of the proof difference: Given (DT-)DDH challenge …(g, ga, gb, C)

In prior proofs, 
 is embedded as C u2

71

Encryption in Intermundium-DL: 
Old and new results

Prior results:

DDH ⇒ Cramer-Shoup CPA

DDH ⇒ Cramer-Shoup CCA1

DDH ⇒ Cramer-Shoup CCA2

Our Advice results:

DDH ⇒ Cramer-Shoup A-CPA

DT-DDH ⇒ Cramer-Shoup A-CCA1

 A sketch of the proof difference: Given (DT-)DDH challenge …(g, ga, gb, C)

In prior proofs, 
 is embedded as C u2

In ours, 
 is embedded as C fk

And Dec queries are answered with the
CDH oracle in DT-DDH

 β

72

Setting the scene

Definitions: How to formalize security in Intermundium-DL?

 
RESULTS

Signatures

Public-key encryption

Password-authenticated key exchange

73

PAKEs (Password-Authenticated Key Exchange) in Intermundium-DL

 Client Server

What is a PAKE?  
Short answer: A protocol through which, a client and server sharing a short password, compute a shared key.

Public parameters π

password 𝗉𝗐 password 𝗉𝗐

ephemeral values ephemeral valuesprotocol message m1

protocol message m2

protocol message m3

Compute SK. Compute SK.

Note: There are many clients, servers and sessions!

74

PAKEs (Password-Authenticated Key Exchange) in Intermundium-DL

 Client Server

What is a PAKE?  
Short answer: A protocol through which, a client and server sharing a short password, compute a shared key.

Public parameters π

password 𝗉𝗐 password 𝗉𝗐

ephemeral values ephemeral values

Compute SK. Compute SK.

Usual PAKE security game*

* For game-based definitions. We use that of [AB19]: 
 “Key indistinguishability with weak forward secrecy.”

An adversary A tries to distinguish between
SK and a random key, given oracles to:

• Passively observe protocol messages

• Learn a or SK

• Send protocol messages

• Query a hash function (if relevant)

𝗉𝗐

Note: There are many clients, servers and sessions!

And is given .π = (h1, …, hw)
protocol message m1

protocol message m2

protocol message m3

75

PAKEs (Password-Authenticated Key Exchange) in Intermundium-DL

 Client Server

What is a PAKE?  
Short answer: A protocol through which, a client and server sharing a short password, compute a shared key.

Public parameters π

password 𝗉𝗐 password 𝗉𝗐

ephemeral values ephemeral values

Compute SK. Compute SK.

Usual PAKE security game*

* For game-based definitions. We use that of [AB19]: 
 “Key indistinguishability with weak forward secrecy.”

An adversary A tries to distinguish between
SK and a random key, given oracles to:

• Passively observe protocol messages

• Learn a or SK

• Send protocol messages

• Query a hash function (if relevant)

𝗉𝗐

Note: There are many clients, servers and sessions!

And is given .π = (h1, …, hw)

Advice A-PAKE security game

The same, but the adversary A is given both
 and advice .π logg(h1), …, logg(hw)

protocol message m1

protocol message m2

protocol message m3

76

The KOY protocol [Katz, Ostrovsky, Yung 09]

77

A ← gr

C ← hr ⋅ g𝗉𝗐

I′￼← I / g𝗉𝗐

 Notice: To break PAKE security, it suffices to learn . g𝗉𝗐

 Where is the password actually used?

The KOY protocol [Katz, Ostrovsky, Yung 09]

78

A ← gr

C ← hr ⋅ g𝗉𝗐

I′￼← I / g𝗉𝗐

 Notice: To break PAKE security, it suffices to learn . g𝗉𝗐

 Where is the password actually used?

Claim: There is an adversary in the A-PAKE
game with advantage close to 1.

Given input: 
 … 
  
 ….

β = logg(h)

Passively observe a protocol execution. 
Compute .C ⋅ A−β

Use to start a new session, and learn
the session key! (Without .)

g𝗉𝗐

𝗉𝗐

This is:  

hr ⋅ g𝗉𝗐 ⋅ g−rβ

= g𝗉𝗐

The KOY protocol [Katz, Ostrovsky, Yung 09]

79

A ← gr

C ← hr ⋅ g𝗉𝗐

I′￼← I / g𝗉𝗐

 Notice: To break PAKE security, it suffices to learn . g𝗉𝗐

 Where is the password actually used?

Claim: There is an adversary in the A-PAKE
game with advantage close to 1.

Given input: 
 … 
  
 ….

β = logg(h)

Passively observe a protocol execution. 
Compute .C ⋅ A−β

Use to start a new session, and learn
the session key! (Without .)

g𝗉𝗐

𝗉𝗐

This is:  

hr ⋅ g𝗉𝗐 ⋅ g−rβ

= g𝗉𝗐

The KOY protocol [Katz, Ostrovsky, Yung 09]
Conclusion: KOY is A-INSECURE in Intermundium-DL.

80

The SPAKE2 protocol

81

The SPAKE2 protocol

•SPAKE2 was proposed in 2005 [AP05]

•Has a 2023 RFC: Given existing use of variants in Kerberos and
other applications, it was felt that publication was beneficial.

•Achieves PAKE security under GapCDH in game-based [AB19]
and UC models [AB+20]

SPAKE2 in Intermundium-DL

Our result: SPAKE2 achieves A-PAKE security under StrongCDH, assuming HIGH quality passwords.

Prior result [AB19]: SPAKE2 achieves PAKE security under GapCDH, assuming MEDIUM quality passwords.

82

SPAKE2 in Intermundium-DL

Password strength

LOW:
Attackable with online queries

MEDIUM:
Attackable with offline queries;

prohibitive online

HIGH:
Prohibitive offline and online

Our result: SPAKE2 achieves A-PAKE security under StrongCDH, assuming HIGH quality passwords.

Prior result [AB19]: SPAKE2 achieves PAKE security under GapCDH, assuming MEDIUM quality passwords.

83

SPAKE2 in Intermundium-DL

Password strength Does SPAKE2 offer PAKE security? Does SPAKE2 offer Advice-PAKE security?

LOW:
Attackable with online queries

MEDIUM:
Attackable with offline queries;

prohibitive online

HIGH:
Prohibitive offline and online

Our result: SPAKE2 achieves A-PAKE security under StrongCDH, assuming HIGH quality passwords.

Prior result [AB19]: SPAKE2 achieves PAKE security under GapCDH, assuming MEDIUM quality passwords.

84

SPAKE2 in Intermundium-DL

Password strength Does SPAKE2 offer PAKE security? Does SPAKE2 offer Advice-PAKE security?

LOW:
Attackable with online queries ❌

MEDIUM:
Attackable with offline queries;

prohibitive online
✅

HIGH:
Prohibitive offline and online ✅

Our result: SPAKE2 achieves A-PAKE security under StrongCDH, assuming HIGH quality passwords.

Prior result [AB19]: SPAKE2 achieves PAKE security under GapCDH, assuming MEDIUM quality passwords.

85

SPAKE2 in Intermundium-DL

Password strength Does SPAKE2 offer PAKE security? Does SPAKE2 offer Advice-PAKE security?

LOW:
Attackable with online queries ❌ ❌

MEDIUM:
Attackable with offline queries;

prohibitive online
✅ ❌

HIGH:
Prohibitive offline and online ✅ ✅

Our result: SPAKE2 achieves A-PAKE security under StrongCDH, assuming HIGH quality passwords.

Prior result [AB19]: SPAKE2 achieves PAKE security under GapCDH, assuming MEDIUM quality passwords.

86

SPAKE2 in Intermundium-DL

Password strength Does SPAKE2 offer PAKE security? Does SPAKE2 offer Advice-PAKE security?

LOW:
Attackable with online queries ❌ ❌

MEDIUM:
Attackable with offline queries;

prohibitive online
✅ ❌

HIGH:
Prohibitive offline and online ✅ ✅

Our result: SPAKE2 achieves A-PAKE security under StrongCDH, assuming HIGH quality passwords.

Prior result [AB19]: SPAKE2 achieves PAKE security under GapCDH, assuming MEDIUM quality passwords.

Many people do use HIGH quality
passwords, and they retain security
in Intermundium-DL.

87

Open questions

‣ Some immediate questions: 
 
 Are there other positive results about Advice-Security? 
  
 What about A-CCA2 of Cramer-Shoup? What about Okamoto-inspired recent signature schemes? 
  
 Delayed-Target DDH: An interesting target for cryptanalysis.

‣ If you are designing a new GEP scheme with trusted setup, perhaps check: Is it necessary?

‣ Some questions about our model: 
 
 Our Advice-Security notion is pragmatic. 
 
 But, it doesn’t capture all the ways an attacker could utilize an expensive DL solver, nor all DL backdoors. 
 
 So, is there a better way to model this?

88

Open questions

‣ Some immediate questions: 
 
 Are there other positive results about Advice-Security? 
  
 What about A-CCA2 of Cramer-Shoup? What about Okamoto-inspired recent signature schemes? 
  
 Delayed-Target DDH: An interesting target for cryptanalysis.

‣ If you are designing a new GEP scheme with trusted setup, perhaps check: Is it necessary?

‣ Some questions about our model: 
 
 Our Advice-Security notion is pragmatic. 
 
 But, it doesn’t capture all the ways an attacker could utilize an expensive DL solver, nor all DL backdoors. 
 
 So, is there a better way to model this?

89

Open questions

‣ Some immediate questions: 
 
 Are there other positive results about Advice-Security? 
  
 What about A-CCA2 of Cramer-Shoup? What about Okamoto-inspired recent signature schemes? 
  
 Delayed-Target DDH: An interesting target for cryptanalysis.

‣ If you are designing a new GEP scheme with trusted setup, perhaps check: Is it necessary?

‣ Some questions about our model: 
 
 Our Advice-Security notion is pragmatic. 
 
 But, it doesn’t capture all the ways an attacker could utilize an expensive DL solver, nor all DL backdoors. 
 
 So, is there a different way to model this?

90

Our Answer: Attack schemes whose public parameters
 consist of a few group elements:

• Compute

• Hope thereby to easily compromise security of MANY

users

π = (h1, …, hw)
logg(h1), …, logg(hw)

We accordingly investigate the security of current

schemes in the setting where

the adversary knows logg(h1), …, logg(hw)

However we find surprising variations
in security across schemes:

• Some fully retain security

• Some retain partial but meaningful security

• Some do break totally

The proofs typically assume that the adversary does
NOT know these discrete logarithms.

So we might expect there to be attacks violating
security in our setting.

computing DLs in currently standardized groups is

but COSTLY
Possible

How might an adversary
best exploit this capability?

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

91

Our Answer: Attack schemes whose public parameters
 consist of a few group elements:

• Compute

• Hope thereby to easily compromise security of MANY

users

π = (h1, …, hw)
logg(h1), …, logg(hw)

We accordingly investigate the security of current

schemes in the setting where

the adversary knows logg(h1), …, logg(hw)

However we find surprising variations
in security across schemes:

• Some fully retain security

• Some retain partial but meaningful security

• Some do break totally

The proofs typically assume that the adversary does
NOT know these discrete logarithms.

So we might expect there to be attacks violating
security in our setting.

computing DLs in currently standardized groups is

but COSTLY
Possible

How might an adversary
best exploit this capability?

The adversary can compute a few discrete
logarithms , but not many.logg(⋅)

A world in which
INTERMUNDIUM-DL

Thanks for listening! 
Questions?

92

eprint 2025 / 663

https://eprint.iacr.org/2025/663

