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Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

m ← Dec(dkAlice, c)

Pro: maintain only 
one public key!

Con: too much 
trust on CA!
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Key Escrow: What if the CA is bad?

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)
m ← Dec(dkAlice, c)

What if Alice can generate 
her own decryption key?

Can decrypt 
anything!
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id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ) 

(pk2, sk2) ← Gen(1λ) 

(pk3, sk3) ← Gen(1λ) 

(id1, pk1) 

(id2, pk2) 

(id3, pk3) 

Reg crs, ⊥, id1, pk1  → PP1 

Reg crs, PP1, id2, pk2 → PP2 

Reg crs, PP2, id3, pk3 → PP3 

c ← Enc(crs, PP3, id3, m)

“GetUpd” ← Dec(sk3, c)
Bob Known construction 

require trusted setup!

u

m ← Dec(sk3, u, c)
#updates ≤ poly(log n) 

| PP𝑛| ≤ poly(λ, log n)

No secret state!
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Can trusted setup be removed?

Our Results:

• Impossibility of standard RBE in plain model.

• New definition.

• Plain model construction. 
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Standard Security Definition

1. Adv registers users:
    a. Corrupted user. (id and key chosen by adv)
    b. (Optional) Honest user. (id chosen by adv)

2. Adv asks Chal for encryption of a random bit to the 
honest user or an unregistered user.

3. Adv wins if it outputs the correct bit. 

Security must hold even when every registered user is corrupted!
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Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

           a. idj’ ∉ (id1, . . , idn)

           b. registering (id1, pk1) , …,  (idn, pkn) and 
               (id1′, pk1) ,  …, (idn′, pkn) yields the same PPn 

       

Attack:
1. Register (id1, pk1) , …,  (idn, pkn).

2. Ask for encryption to idj
′.

3. Use skj to decrypt.

Valid since attacking unregistered user 
without honest user is legitimate! 
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New Security Definition

1. Adv registers users: 

    a. Corrupted user. 

    b. Honest user. 

2. Adv asks Chal for encryption to honest user or unregistered user. 

3. Adv wins if outputs the correct bit and there is an honest user. 
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Idea: 
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.
 
3. KC re-randomizes the CRS and re-registers against 
the refreshed CRS.

4. Security holds thanks to the honest user. 

Simplified description: 
leaking randomness hurts 
security. 

Need more ideas for real 
construction!
(Details in the paper.)
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Construction

id pk

rt

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Enc(crs, pp, id, m):
   Return Obf(Ck,rt,id,m)

Ck,rt,id, m(pk’):
1. Compute rt’ = hash(k, id||pk’)
2. If rt == rt’, output Enc(pk’, m)

Observation: if crs contains only the hash key, 
then all we need is re-randomizable key!Like previous works on RBE, follow 

general Merkle-tree based paradigm.
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Construction

Follow framework in [GHMRS19]:
PKE + Hash Encryption + Garbled Circuit → RBE

CRS only contains the key for the hash encryption scheme.

Suffice to build hash encryption with re-randomizable key!

The CDH chameleon encryption in [DG17], when interpreted as a hash 
encryption, has re-randomizable key.
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By hardness of DL, 
Hash(k’, ⋅) is collision 
resistant for honestly 
sampled k.
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Open Problems

• Require Ω(n) number of decryption updates.

Necessary under assumptions satisfied by known constructions.

• Require strong cryptographic tools while standard RBE can be 
constructed from CDH.

• Schemes with better concrete efficiency? 



Thanks for listening!
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