
Registration-Based Encryption in
the Plain Model

Jesko Dujmovic
CISPA and Saarland University

Giulio Malavolta
CIFRA and Bocconi University

Wei Qi
CIFRA and Bocconi University

Identity Based Encryption [Shamir86, BF01]

Identity Based Encryption [Shamir86, BF01]

Central Authority

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK)

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

m ← Dec(dkAlice, c)

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

m ← Dec(dkAlice, c)

Pro: maintain only
one public key!

Identity Based Encryption [Shamir86, BF01]

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)

m ← Dec(dkAlice, c)

Pro: maintain only
one public key!

Con: too much
trust on CA!

Key Escrow: What if the CA is bad?

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)
m ← Dec(dkAlice, c)

Key Escrow: What if the CA is bad?

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)
m ← Dec(dkAlice, c)

Can decrypt
anything!

Key Escrow: What if the CA is bad?

Central Authority

Master Secret Key
(MSK) Master Public Key

(MPK)

Alice Bob

c ← Enc(MPK, “Alice”, m)
m ← Dec(dkAlice, c)

What if Alice can generate
her own decryption key?

Can decrypt
anything!

Registration based Encryption [GHMR18]

Registration based Encryption [GHMR18]

Key Curator

Registration based Encryption [GHMR18]

Key Curator

No secret state!

Registration based Encryption [GHMR18]

id1
Key Curator

No secret state!

Registration based Encryption [GHMR18]

id1
Key Curator

(pk1, sk1) ← Gen(1λ)

No secret state!

Registration based Encryption [GHMR18]

id1
Key Curator

(pk1, sk1) ← Gen(1λ)

(id1, pk1)

No secret state!

Registration based Encryption [GHMR18]

id1
Key Curator

(pk1, sk1) ← Gen(1λ)

(id1, pk1)

Reg crs, ⊥, id1, pk1 → PP1

No secret state!

Registration based Encryption [GHMR18]

id1

id2

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

Reg crs, ⊥, id1, pk1 → PP1

No secret state!

Registration based Encryption [GHMR18]

id1

id2

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

Bob

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

Bob

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

Bob

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

m ← Dec(sk3, c)
Bob

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

“GetUpd” ← Dec(sk3, c)
Bob

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

“GetUpd” ← Dec(sk3, c)
Bob

u

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

“GetUpd” ← Dec(sk3, c)
Bob

u

m ← Dec(sk3, u, c)

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

“GetUpd” ← Dec(sk3, c)
Bob

u

m ← Dec(sk3, u, c)
#updates ≤ poly(log n)

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Registration based Encryption [GHMR18]

id1

id2

id3

Key Curator

(pk1, sk1) ← Gen(1λ)

(pk2, sk2) ← Gen(1λ)

(pk3, sk3) ← Gen(1λ)

(id1, pk1)

(id2, pk2)

(id3, pk3)

Reg crs, ⊥, id1, pk1 → PP1

Reg crs, PP1, id2, pk2 → PP2

Reg crs, PP2, id3, pk3 → PP3

c ← Enc(crs, PP3, id3, m)

“GetUpd” ← Dec(sk3, c)
Bob Known construction

require trusted setup!

u

m ← Dec(sk3, u, c)
#updates ≤ poly(log n)

| PP𝑛| ≤ poly(λ, log n)

No secret state!

Can trusted setup be removed?

Can trusted setup be removed?

Our Results:

• Impossibility of standard RBE in plain model.

Can trusted setup be removed?

Our Results:

• Impossibility of standard RBE in plain model.

• New definition.

Can trusted setup be removed?

Our Results:

• Impossibility of standard RBE in plain model.

• New definition.

• Plain model construction.

Standard Security Definition

Standard Security Definition

1. Adv registers users:

Standard Security Definition

1. Adv registers users:
 a. Corrupted user. (id and key chosen by adv)

Standard Security Definition

1. Adv registers users:
 a. Corrupted user. (id and key chosen by adv)
 b. (Optional) Honest user. (id chosen by adv)

Standard Security Definition

1. Adv registers users:
 a. Corrupted user. (id and key chosen by adv)
 b. (Optional) Honest user. (id chosen by adv)

2. Adv asks Chal for encryption of a random bit to the
honest user or an unregistered user.

Standard Security Definition

1. Adv registers users:
 a. Corrupted user. (id and key chosen by adv)
 b. (Optional) Honest user. (id chosen by adv)

2. Adv asks Chal for encryption of a random bit to the
honest user or an unregistered user.

3. Adv wins if it outputs the correct bit.

Standard Security Definition

1. Adv registers users:
 a. Corrupted user. (id and key chosen by adv)
 b. (Optional) Honest user. (id chosen by adv)

2. Adv asks Chal for encryption of a random bit to the
honest user or an unregistered user.

3. Adv wins if it outputs the correct bit.

Security must hold even when every registered user is corrupted!

Impossibility of Standard RBE

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

 b. registering (id1, pk1) , …, (idn, pkn) and
 (id1′, pk1) , …, (idn′, pkn) yields the same PPn

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

 b. registering (id1, pk1) , …, (idn, pkn) and
 (id1′, pk1) , …, (idn′, pkn) yields the same PPn

Attack:

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

 b. registering (id1, pk1) , …, (idn, pkn) and
 (id1′, pk1) , …, (idn′, pkn) yields the same PPn

Attack:
1. Register (id1, pk1) , …, (idn, pkn).

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

 b. registering (id1, pk1) , …, (idn, pkn) and
 (id1′, pk1) , …, (idn′, pkn) yields the same PPn

Attack:
1. Register (id1, pk1) , …, (idn, pkn).

2. Ask for encryption to idj
′.

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

 b. registering (id1, pk1) , …, (idn, pkn) and
 (id1′, pk1) , …, (idn′, pkn) yields the same PPn

Attack:
1. Register (id1, pk1) , …, (idn, pkn).

2. Ask for encryption to idj
′.

3. Use skj to decrypt.

Impossibility of Standard RBE

Observation: PPn is length-shrinking hash of n (id, pk) pairs, with CRS as the key.

Idea: Adapt non-uniform attack for keyless CRHF.

Advice:
1. (pk1, sk1) , …, (pkn, skn).

2. (id1, . . , idn) and (id1′, . . , idn′) satisfying:

 a. idj’ ∉ (id1, . . , idn)

 b. registering (id1, pk1) , …, (idn, pkn) and
 (id1′, pk1) , …, (idn′, pkn) yields the same PPn

Attack:
1. Register (id1, pk1) , …, (idn, pkn).

2. Ask for encryption to idj
′.

3. Use skj to decrypt.

Valid since attacking unregistered user
without honest user is legitimate!

New Security Definition

New Security Definition

1. Adv registers users:

 a. Corrupted user.

 b. Honest user.

New Security Definition

1. Adv registers users:

 a. Corrupted user.

 b. Honest user.

2. Adv asks Chal for encryption to honest user or unregistered user.

New Security Definition

1. Adv registers users:

 a. Corrupted user.

 b. Honest user.

2. Adv asks Chal for encryption to honest user or unregistered user.

3. Adv wins if outputs the correct bit and there is an honest user.

Construction

Construction

Idea:

Construction

Idea:
1. KC starts with a fixed dummy CRS.

Construction

Idea:
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.

Construction

Idea:
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.

3. KC re-randomizes the CRS and re-registers against
the refreshed CRS.

Construction

Idea:
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.

3. KC re-randomizes the CRS and re-registers against
the refreshed CRS.

4. Security holds thanks to the honest user.

Construction

Idea:
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.

3. KC re-randomizes the CRS and re-registers against
the refreshed CRS.

4. Security holds thanks to the honest user.

Simplified description:
leaking randomness hurts
security.

Construction

Idea:
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.

3. KC re-randomizes the CRS and re-registers against
the refreshed CRS.

4. Security holds thanks to the honest user.

Simplified description:
leaking randomness hurts
security.

Need more ideas for real
construction!

Construction

Idea:
1. KC starts with a fixed dummy CRS.

2. User generates keys and randomness to refresh CRS.

3. KC re-randomizes the CRS and re-registers against
the refreshed CRS.

4. Security holds thanks to the honest user.

Simplified description:
leaking randomness hurts
security.

Need more ideas for real
construction!
(Details in the paper.)

Construction

Construction

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

Reg(crs, id, pk):

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

Reg(crs, id, pk):
1. Read k from crs

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

rt

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

rt

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Enc(crs, pp, id, m):

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

rt

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Enc(crs, pp, id, m):
 Return Obf(Ck,rt,id,m)

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

rt

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Enc(crs, pp, id, m):
 Return Obf(Ck,rt,id,m)

Ck,rt,id, m(pk’):
1. Compute rt’ = hash(k, id||pk’)
2. If rt == rt’, output Enc(pk’, m)

Like previous works on RBE, follow
general Merkle-tree based paradigm.

Construction

id pk

rt

Reg(crs, id, pk):
1. Read k from crs
2. Compute pp := rt = hash(k, id||pk)

Enc(crs, pp, id, m):
 Return Obf(Ck,rt,id,m)

Ck,rt,id, m(pk’):
1. Compute rt’ = hash(k, id||pk’)
2. If rt == rt’, output Enc(pk’, m)

Observation: if crs contains only the hash key,
then all we need is re-randomizable key!Like previous works on RBE, follow

general Merkle-tree based paradigm.

Construction

Construction

Follow framework in [GHMRS19]:
PKE + Hash Encryption + Garbled Circuit → RBE

Construction

Follow framework in [GHMRS19]:
PKE + Hash Encryption + Garbled Circuit → RBE

CRS only contains the key for the hash encryption scheme.

Construction

Follow framework in [GHMRS19]:
PKE + Hash Encryption + Garbled Circuit → RBE

CRS only contains the key for the hash encryption scheme.

Suffice to build hash encryption with re-randomizable key!

Construction

Follow framework in [GHMRS19]:
PKE + Hash Encryption + Garbled Circuit → RBE

CRS only contains the key for the hash encryption scheme.

Suffice to build hash encryption with re-randomizable key!

The CDH chameleon encryption in [DG17], when interpreted as a hash
encryption, has re-randomizable key.

Construction

Construction

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Key generation: uniformly sample α𝑖,𝑗 ← 𝑍𝑝
∗ and set 𝑔𝑖,𝑗 = 𝑔α𝑖,𝑗.

Construction

Key re-randomization: uniformly sample 𝛽𝑖,𝑗 ← 𝑍𝑝
∗ .

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Key generation: uniformly sample α𝑖,𝑗 ← 𝑍𝑝
∗ and set 𝑔𝑖,𝑗 = 𝑔α𝑖,𝑗.

Construction

Key re-randomization: uniformly sample 𝛽𝑖,𝑗 ← 𝑍𝑝
∗ .

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

𝑘′ ≔ 𝑔,
𝑔1,0

𝛽1,0 𝑔2,0

𝛽2,0 ⋯ 𝑔𝑛,0

𝛽𝑛,0

𝑔1,1

𝛽1,1 𝑔2,1

𝛽2,1 ⋯ 𝑔𝑛,1

𝛽𝑛,1

Key generation: uniformly sample α𝑖,𝑗 ← 𝑍𝑝
∗ and set 𝑔𝑖,𝑗 = 𝑔α𝑖,𝑗.

Construction

Key re-randomization: uniformly sample 𝛽𝑖,𝑗 ← 𝑍𝑝
∗ .

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

𝑘′ ≔ 𝑔,
𝑔1,0

𝛽1,0 𝑔2,0

𝛽2,0 ⋯ 𝑔𝑛,0

𝛽𝑛,0

𝑔1,1

𝛽1,1 𝑔2,1

𝛽2,1 ⋯ 𝑔𝑛,1

𝛽𝑛,1

Re-randomized keys are identically distributed as freshly sampled keys.

Key generation: uniformly sample α𝑖,𝑗 ← 𝑍𝑝
∗ and set 𝑔𝑖,𝑗 = 𝑔α𝑖,𝑗.

Construction

Key re-randomization: uniformly sample 𝛽𝑖,𝑗 ← 𝑍𝑝
∗ .

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

𝑘′ ≔ 𝑔,
𝑔1,0

𝛽1,0 𝑔2,0

𝛽2,0 ⋯ 𝑔𝑛,0

𝛽𝑛,0

𝑔1,1

𝛽1,1 𝑔2,1

𝛽2,1 ⋯ 𝑔𝑛,1

𝛽𝑛,1

Re-randomized keys are identically distributed as freshly sampled keys.

Hard to invert the re-randomization.

Key generation: uniformly sample α𝑖,𝑗 ← 𝑍𝑝
∗ and set 𝑔𝑖,𝑗 = 𝑔α𝑖,𝑗.

Construction

Construction

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Construction

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Hash(k, x) = ∏𝑖=1
𝑛 𝑔i,𝑥i

Construction

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Hash(k, x) = ∏𝑖=1
𝑛 𝑔i,𝑥i

𝑘′ ≔ 𝑔,
𝑔1,0

𝛽1,0 𝑔2,0

𝛽2,0 ⋯ 𝑔𝑛,0

𝛽𝑛,0

𝑔1,1

𝛽1,1 𝑔2,1

𝛽2,1 ⋯ 𝑔𝑛,1

𝛽𝑛,1

Construction

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Hash(k, x) = ∏𝑖=1
𝑛 𝑔i,𝑥i

𝑘′ ≔ 𝑔,
𝑔1,0

𝛽1,0 𝑔2,0

𝛽2,0 ⋯ 𝑔𝑛,0

𝛽𝑛,0

𝑔1,1

𝛽1,1 𝑔2,1

𝛽2,1 ⋯ 𝑔𝑛,1

𝛽𝑛,1

Hash(k’, x) = ∏ 𝑖=1
𝑛 𝑔

i,𝑥i

𝛽𝑖,𝑥i

Construction

𝑘 ≔ 𝑔,
𝑔1,0 𝑔2,0 ⋯ 𝑔𝑛,0

𝑔1,1 𝑔2,1 ⋯ 𝑔𝑛,1

Hash(k, x) = ∏𝑖=1
𝑛 𝑔i,𝑥i

𝑘′ ≔ 𝑔,
𝑔1,0

𝛽1,0 𝑔2,0

𝛽2,0 ⋯ 𝑔𝑛,0

𝛽𝑛,0

𝑔1,1

𝛽1,1 𝑔2,1

𝛽2,1 ⋯ 𝑔𝑛,1

𝛽𝑛,1

Hash(k’, x) = ∏ 𝑖=1
𝑛 𝑔

i,𝑥i

𝛽𝑖,𝑥i

By hardness of DL,
Hash(k’, ⋅) is collision
resistant for honestly
sampled k.

Open Problems

Open Problems

• Require Ω(n) number of decryption updates.

Open Problems

• Require Ω(n) number of decryption updates.

Necessary under assumptions satisfied by known constructions.

Open Problems

• Require Ω(n) number of decryption updates.

Necessary under assumptions satisfied by known constructions.

• Require strong cryptographic tools while standard RBE can be
constructed from CDH.

Open Problems

• Require Ω(n) number of decryption updates.

Necessary under assumptions satisfied by known constructions.

• Require strong cryptographic tools while standard RBE can be
constructed from CDH.

• Schemes with better concrete efficiency?

Thanks for listening!

	Slide 1: Registration-Based Encryption in the Plain Model
	Slide 2: Identity Based Encryption [Shamir86, BF01]
	Slide 3: Identity Based Encryption [Shamir86, BF01]
	Slide 4: Identity Based Encryption [Shamir86, BF01]
	Slide 5: Identity Based Encryption [Shamir86, BF01]
	Slide 6: Identity Based Encryption [Shamir86, BF01]
	Slide 7: Identity Based Encryption [Shamir86, BF01]
	Slide 8: Identity Based Encryption [Shamir86, BF01]
	Slide 9: Identity Based Encryption [Shamir86, BF01]
	Slide 10: Identity Based Encryption [Shamir86, BF01]
	Slide 11: Identity Based Encryption [Shamir86, BF01]
	Slide 12: Identity Based Encryption [Shamir86, BF01]
	Slide 13: Identity Based Encryption [Shamir86, BF01]
	Slide 14: Key Escrow: What if the CA is bad?
	Slide 15: Key Escrow: What if the CA is bad?
	Slide 16: Key Escrow: What if the CA is bad?
	Slide 17: Registration based Encryption [GHMR18]
	Slide 18: Registration based Encryption [GHMR18]
	Slide 19: Registration based Encryption [GHMR18]
	Slide 20: Registration based Encryption [GHMR18]
	Slide 21: Registration based Encryption [GHMR18]
	Slide 22: Registration based Encryption [GHMR18]
	Slide 23: Registration based Encryption [GHMR18]
	Slide 24: Registration based Encryption [GHMR18]
	Slide 25: Registration based Encryption [GHMR18]
	Slide 26: Registration based Encryption [GHMR18]
	Slide 27: Registration based Encryption [GHMR18]
	Slide 28: Registration based Encryption [GHMR18]
	Slide 29: Registration based Encryption [GHMR18]
	Slide 30: Registration based Encryption [GHMR18]
	Slide 31: Registration based Encryption [GHMR18]
	Slide 32: Registration based Encryption [GHMR18]
	Slide 33: Registration based Encryption [GHMR18]
	Slide 34: Registration based Encryption [GHMR18]
	Slide 35: Registration based Encryption [GHMR18]
	Slide 36: Registration based Encryption [GHMR18]
	Slide 37: Can trusted setup be removed?
	Slide 38: Can trusted setup be removed?
	Slide 39: Can trusted setup be removed?
	Slide 40: Can trusted setup be removed?
	Slide 41: Standard Security Definition
	Slide 42: Standard Security Definition
	Slide 43: Standard Security Definition
	Slide 44: Standard Security Definition
	Slide 45: Standard Security Definition
	Slide 46: Standard Security Definition
	Slide 47: Standard Security Definition
	Slide 48: Impossibility of Standard RBE
	Slide 49: Impossibility of Standard RBE
	Slide 50: Impossibility of Standard RBE
	Slide 51: Impossibility of Standard RBE
	Slide 52: Impossibility of Standard RBE
	Slide 53: Impossibility of Standard RBE
	Slide 54: Impossibility of Standard RBE
	Slide 55: Impossibility of Standard RBE
	Slide 56: Impossibility of Standard RBE
	Slide 57: Impossibility of Standard RBE
	Slide 58: Impossibility of Standard RBE
	Slide 59: New Security Definition
	Slide 60: New Security Definition
	Slide 61: New Security Definition
	Slide 62: New Security Definition
	Slide 63: Construction
	Slide 64: Construction
	Slide 65: Construction
	Slide 66: Construction
	Slide 67: Construction
	Slide 68: Construction
	Slide 69: Construction
	Slide 70: Construction
	Slide 71: Construction
	Slide 72: Construction
	Slide 73: Construction
	Slide 74: Construction
	Slide 75: Construction
	Slide 76: Construction
	Slide 77: Construction
	Slide 78: Construction
	Slide 79: Construction
	Slide 80: Construction
	Slide 81: Construction
	Slide 82: Construction
	Slide 83: Construction
	Slide 84: Construction
	Slide 85: Construction
	Slide 86: Construction
	Slide 87: Construction
	Slide 88: Construction
	Slide 89: Construction
	Slide 90: Construction
	Slide 91: Construction
	Slide 92: Construction
	Slide 93: Construction
	Slide 94: Construction
	Slide 95: Construction
	Slide 96: Construction
	Slide 97: Construction
	Slide 98: Construction
	Slide 99: Construction
	Slide 100: Open Problems
	Slide 101: Open Problems
	Slide 102: Open Problems
	Slide 103: Open Problems
	Slide 104: Open Problems
	Slide 105: Thanks for listening!

