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Company X

If , the time lower bound to solve one Dlog instance on  is |E | = N E N1/2

EC97: Shoup

Trivial Precomputation Attack

Compute and store the whole E
Upon receiving an instance, look up

the corresponding Dlog



Precomputation Attacks

3

E

Company X

If , the time lower bound to solve one Dlog instance on  is |E | = N E N1/2

EC97: Shoup

EC18: Corrigan-Gibbs & Kogan

Precomputation of time: N2/3 Online time:  instead of N1/3 N1/2
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Precomputation Phase Online Phase

Perform (heavy) instance-independent 

computations to obtain a hint

Upon receiving an instance, leverage

the hint to solve faster



Extensions?

5

Group Action Discrete Log

Discrete Log



Extensions?

5

Group Action Discrete Log

Discrete Log

Shor



Extensions?

5

Group Action Discrete Log

Discrete Log

Shor



Extensions?

5

Group Action Discrete Log

Discrete Log

Shor

Precomputation Attacks



Extensions?

5

Group Action Discrete Log

Discrete Log

Shor

Precomputation Attacks

?



Group Actions
Basic Definitions

6



Given…

Group Actions

A finitely generated abelian group , 𝒢 = ⟨g1, …, gn⟩ |𝒢 | = N

Any set , with a distinguished element , called origin𝒳 x ∈ 𝒳

Basic Definitions

6



Then…

Given…

Group Actions

A finitely generated abelian group , 𝒢 = ⟨g1, …, gn⟩ |𝒢 | = N

Any set , with a distinguished element , called origin𝒳 x ∈ 𝒳

A map  is a group action if it satisfies:⋆ : 𝒢 × 𝒳 → 𝒳

Identity:  for all 1 ⋆ y = y y ∈ 𝒳

Compatibility:  for all  and g ⋆ (h ⋆ y) = (gh) ⋆ y g, h ∈ 𝒢 y ∈ 𝒳

Basic Definitions

6



Then…

Given…

Group Actions

A finitely generated abelian group , 𝒢 = ⟨g1, …, gn⟩ |𝒢 | = N

Any set , with a distinguished element , called origin𝒳 x ∈ 𝒳

A map  is a group action if it satisfies:⋆ : 𝒢 × 𝒳 → 𝒳

Identity:  for all 1 ⋆ y = y y ∈ 𝒳

Compatibility:  for all  and g ⋆ (h ⋆ y) = (gh) ⋆ y g, h ∈ 𝒢 y ∈ 𝒳

A special and familiar example…

Basic Definitions

 a finite cyclic group𝒳 = H = ⟨h⟩

𝒢 = ℤN

 , ⋆ : ℤN × H → H (v, g) ↦ hv ⋅ g

Let  be the origin, 1 ∈ H |H | = N

6



A special and familiar example…

 a finite cyclic group𝒳 = H = ⟨h⟩

𝒢 = ℤN

 , ⋆ : ℤN × H → H (v, g) ↦ hv ⋅ g

Let  be the origin, 1 ∈ H |H | = N

GA-Dlogs

Group Actions

7



A special and familiar example…

 a finite cyclic group𝒳 = H = ⟨h⟩

𝒢 = ℤN

 , ⋆ : ℤN × H → H (v, g) ↦ hv ⋅ g

Let  be the origin, 1 ∈ H |H | = N

Notation…

GA-Dlogs

Group Actions

For , write . v ∈ ℤn gv = gv1
1 ⋅ ⋯ ⋅ gvn

n

Denote by  the kernel of the map Λ v ↦ gv

7



A special and familiar example…

 a finite cyclic group𝒳 = H = ⟨h⟩

𝒢 = ℤN

 , ⋆ : ℤN × H → H (v, g) ↦ hv ⋅ g

Let  be the origin, 1 ∈ H |H | = N

Notation…

GA-Dlogs

Group Actions

GA-Dlog

Given: one element y ∈ 𝒳

Find:  such that , modulo v ∈ ℤn y = gv ⋆ x Λ

For , write . v ∈ ℤn gv = gv1
1 ⋅ ⋯ ⋅ gvn

n

Denote by  the kernel of the map Λ v ↦ gv

7



A special and familiar example…

 a finite cyclic group𝒳 = H = ⟨h⟩

𝒢 = ℤN

 , ⋆ : ℤN × H → H (v, g) ↦ hv ⋅ g

Let  be the origin, 1 ∈ H |H | = N

Notation…

GA-Dlogs

Group Actions

GA-Dlog

Given: one element y ∈ 𝒳

Find:  such that , modulo v ∈ ℤn y = gv ⋆ x Λ

For , write . v ∈ ℤn gv = gv1
1 ⋅ ⋯ ⋅ gvn

n

Denote by  the kernel of the map Λ v ↦ gv

  is a regular action⋆

7
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 a finite cyclic group𝒳 = H = ⟨h⟩

𝒢 = ℤN

 , ⋆ : ℤN × H → H (v, g) ↦ hv ⋅ g

Let  be the origin, 1 ∈ H |H | = N

Notation…
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Group Actions

GA-Dlog

Given: one element y ∈ 𝒳

Find:  such that , modulo v ∈ ℤn y = gv ⋆ x Λ

For , write . v ∈ ℤn gv = gv1
1 ⋅ ⋯ ⋅ gvn

n

Denote by  the kernel of the map Λ v ↦ gv

  is a regular action⋆

The GA-Dlog is the usual Dlog
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For GA-Dlogs

Our Results
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Multi-instance “without” precomputation algorithm for GA-Dlogs

Extend the generic precomputation algorithms to the Group Action Dlog setting:

• Multi-instance with precomputation
• Single-instance with precomputation

Multi-instance “without” precomputation algorithm for usual Dlogs
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Solve ONE GA-Dlog with 

Constant Success Probability
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Precomputation: N1/4 ⋅ N1/2 = N3/2

Space:  N1/2
Solve ALL GA-Dlog with 

Constant Success Probability
Online:  (expected)N1/4 ⋅ N1/4 = N1/2
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Repeat the  algorithmN1/2 Solve ALL  GA-Dlog inm

Naïvely

 timesm time m ⋅ N1/2

Solve ALL  GA-Dlog with 

runtime 

m

m1/2 ⋅ N1/2

Balancing Precomputation and Online times…

Precomputation: m1/2 ⋅ N1/2

Space:  m
Online: m1/2 ⋅ N1/2
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In practice, the technique performs better than in theory
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