Multiple Group Action Dlogs With(out) Precomputation Alexander May, Massimo Ostuzzi

Funded by the European Union

PKC 2025, 14/05/25

2

Company X

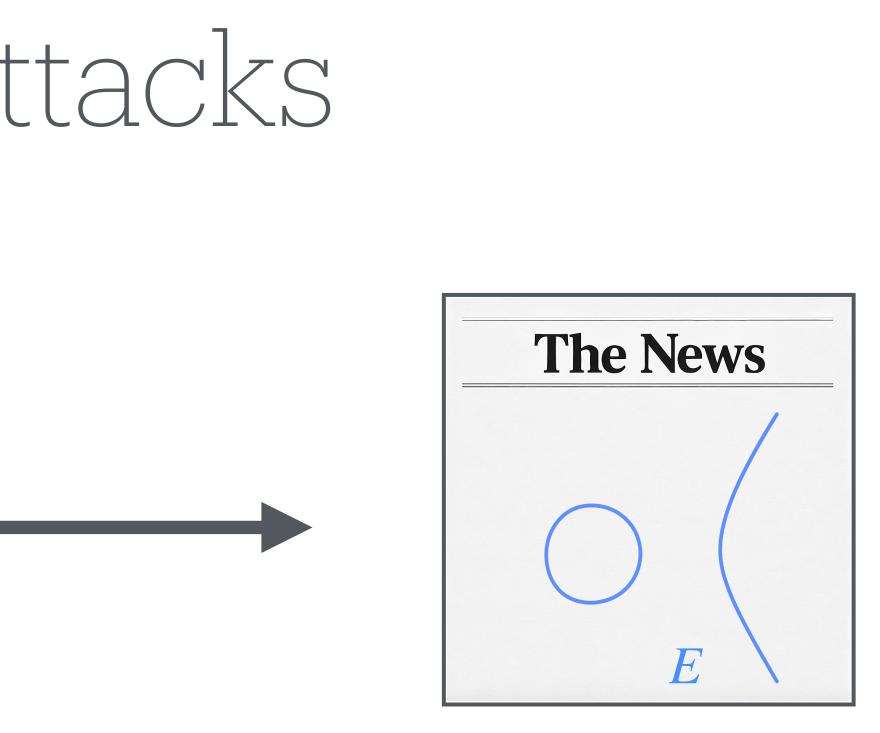
2

Company X

2

Company X

EC97: Shoup



If |E| = N, the time lower bound to solve one Dlog instance on E is $N^{1/2}$

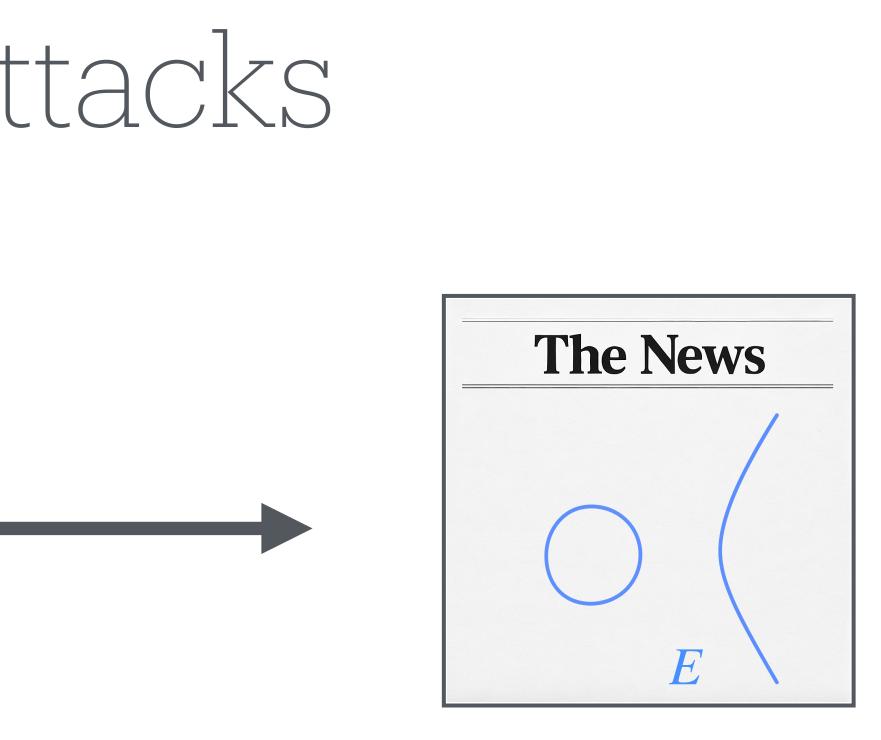
2

Company X

EC97: Shoup

Trivial Precomputation Attack

Compute and store the whole E



If |E| = N, the time lower bound to solve one Dlog instance on E is $N^{1/2}$

Upon receiving an instance, look up the corresponding Dlog

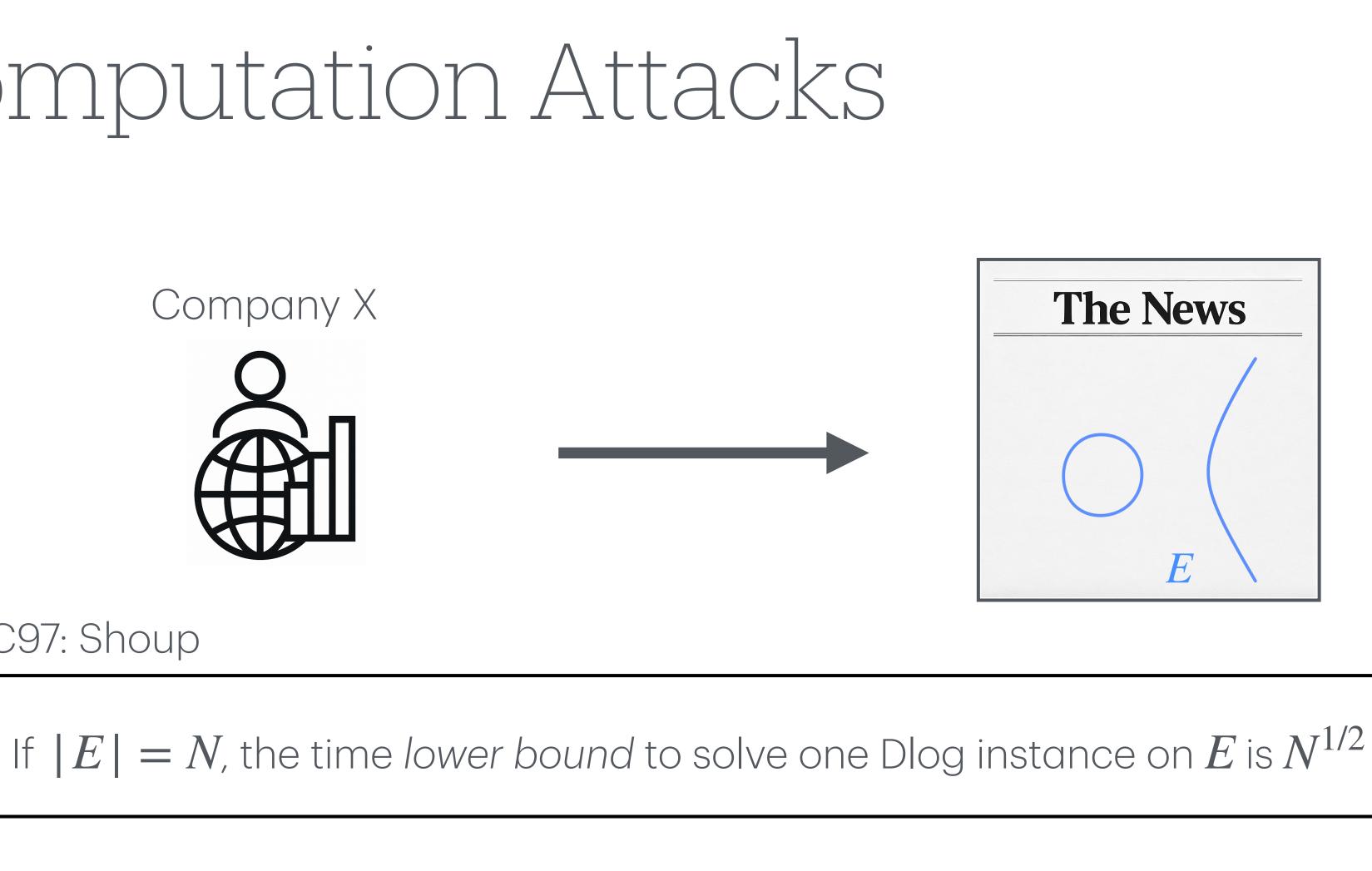
2

Company X

EC97: Shoup

EC18: Corrigan-Gibbs & Kogan

Precomputation of time: $N^{2/3}$



Online time: $N^{1/3}$ instead of $N^{1/2}$

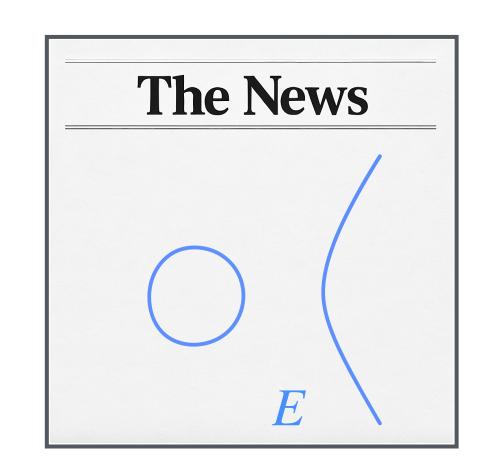
З

Company X

Precomputation Phase

Perform (heavy) instance-independent

computations to obtain a hint

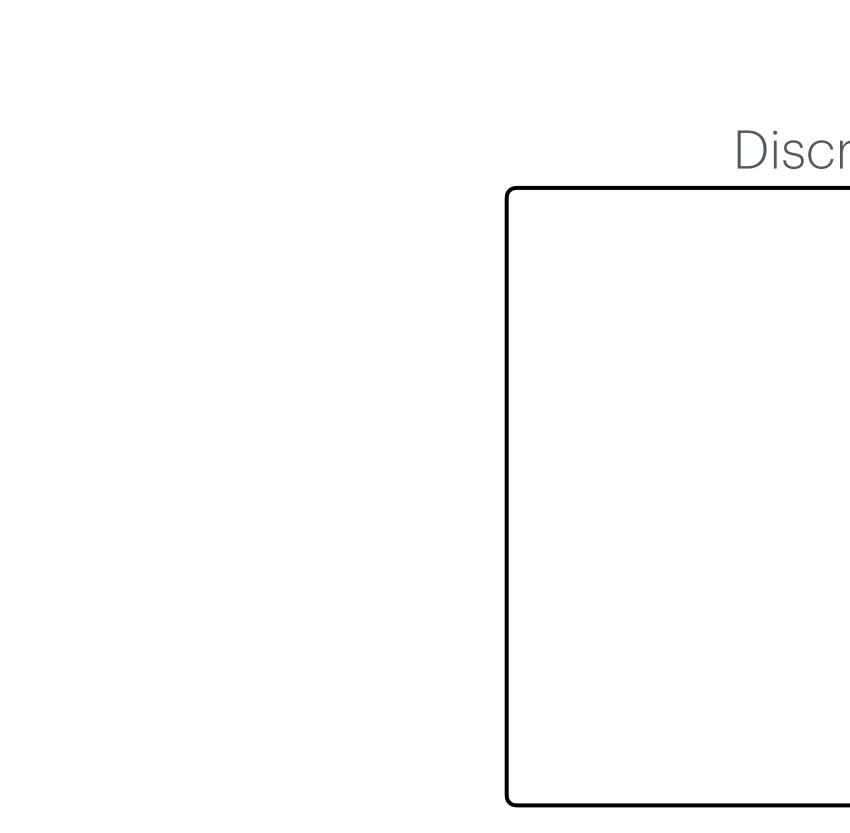


Online Phase

Upon receiving an instance, leverage

the hint to solve faster

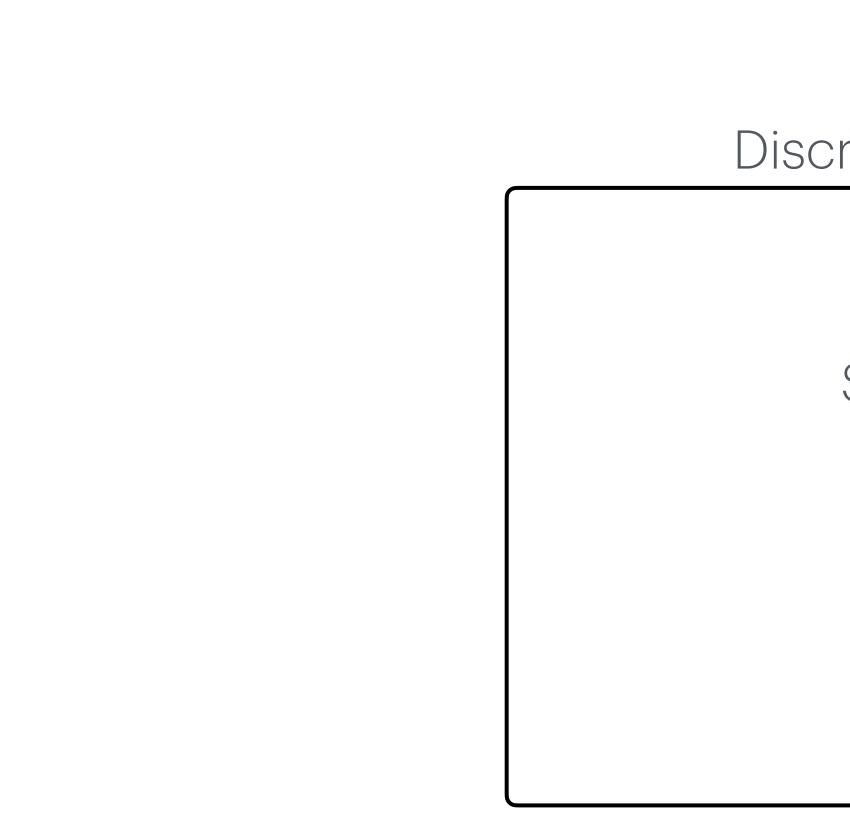
Group Action Discrete Log



Discrete Log

5

Group Action Discrete Log

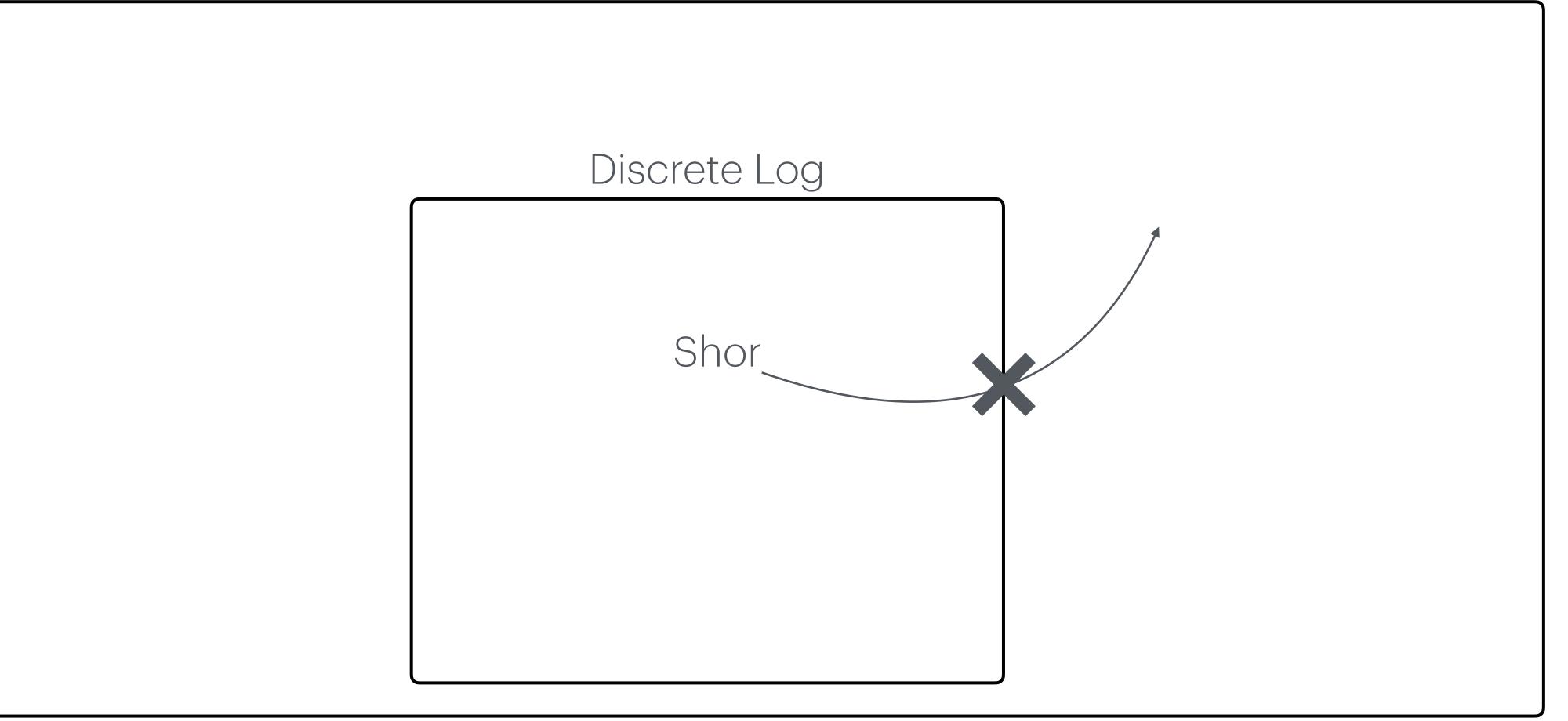


Discrete Log

Shor

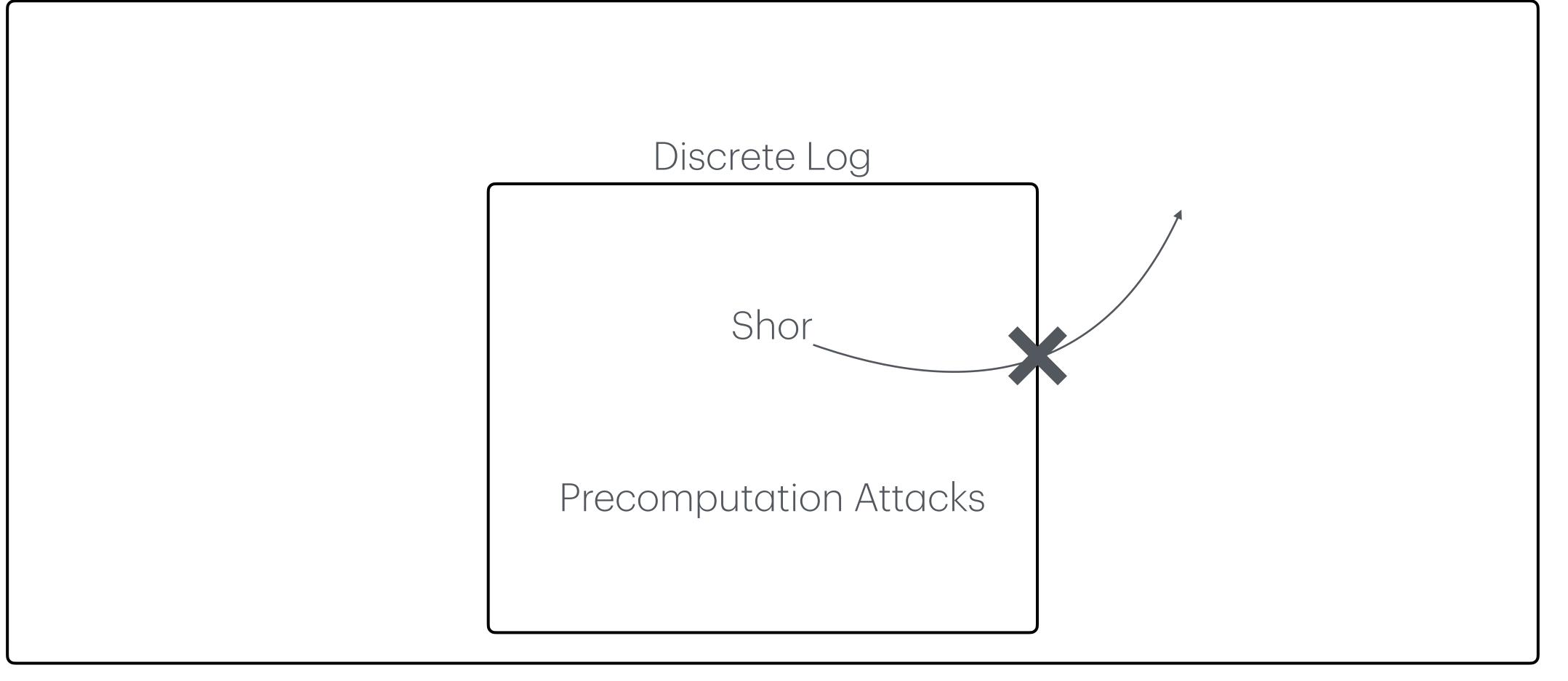
5

Group Action Discrete Log



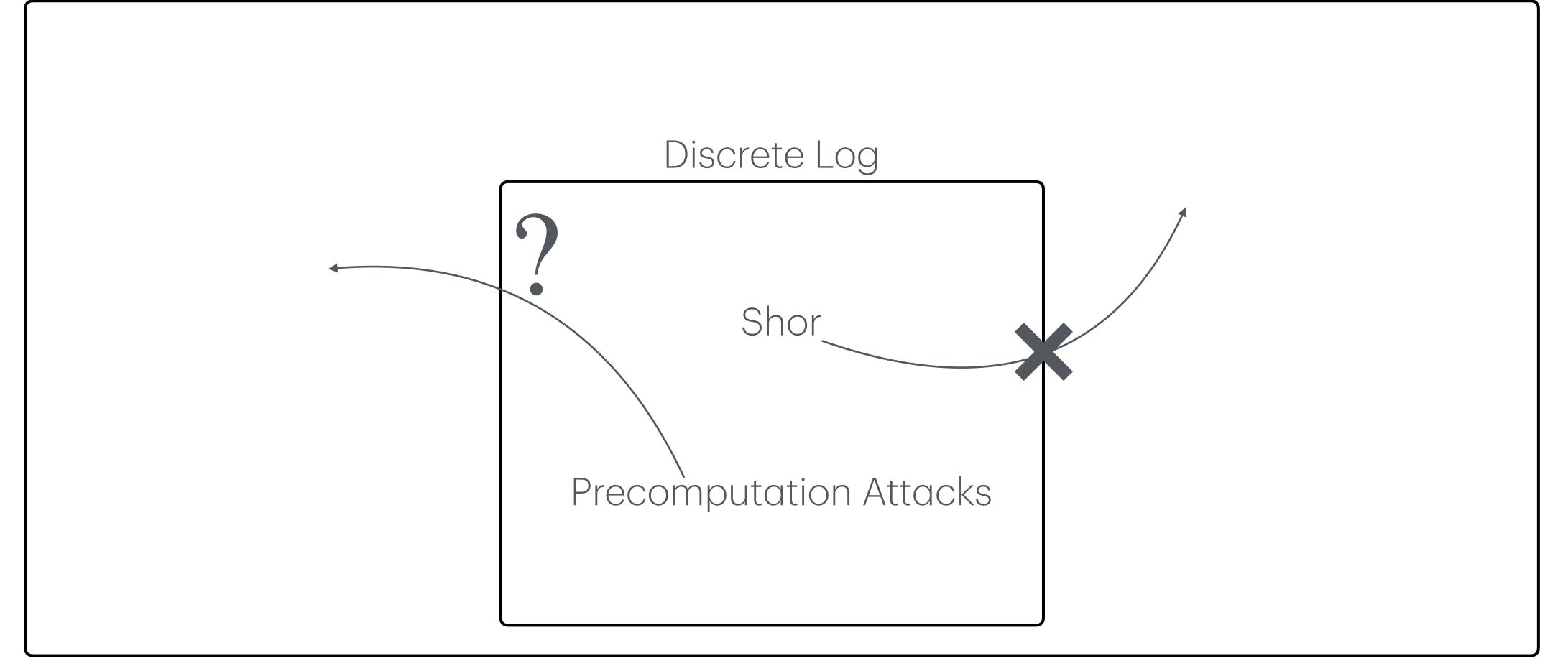
5

Group Action Discrete Log



5

Group Action Discrete Log



5

6

Given...

Any set \mathscr{X} , with a distinguished element $x \in \mathscr{X}$, called origin

A finitely generated abelian group $\mathcal{G} = \langle g_1, ..., g_n \rangle$,

$$|\mathcal{G}| = N$$

6

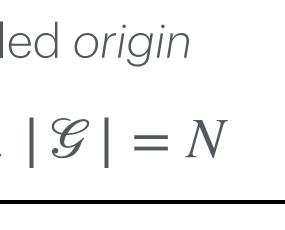
Given...

Any set \mathscr{X} , with a distinguished element $x \in \mathscr{X}$, called origin

A finitely generated abelian group $\mathscr{G} = \langle g_1, ..., g_n \rangle$, $|\mathscr{G}| = N$

Then...

A map $\star : \mathcal{G} \times \mathcal{X} \to \mathcal{X}$ is a group action if it satisfies: <u>Identity</u>: $1 \star y = y$ for all $y \in \mathcal{X}$ <u>Compatibility</u>: $g \star (h \star y) = (gh) \star y$ for all $g, h \in \mathcal{G}$ and $y \in \mathcal{X}$



6

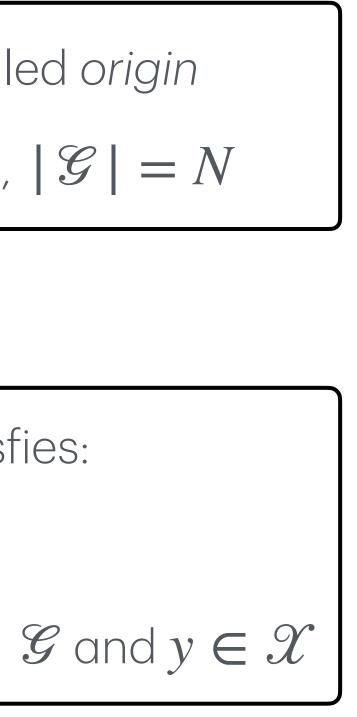
Given...

Any set \mathcal{X} , with a distinguished element $x\in\mathcal{X}$, called origin

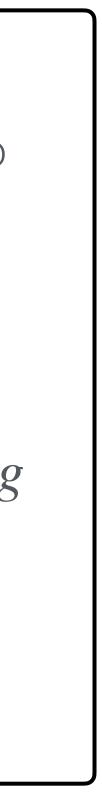
A finitely generated abelian group $\mathcal{G} = \langle g_1, ..., g_n \rangle$, $|\mathcal{G}| = N$

Then...

A map $\star : \mathscr{G} \times \mathscr{X} \to \mathscr{X}$ is a group action if it satisfies: <u>Identity</u>: $1 \star y = y$ for all $y \in \mathscr{X}$ <u>Compatibility</u>: $g \star (h \star y) = (gh) \star y$ for all $g, h \in \mathscr{G}$ and $y \in \mathscr{X}$ A special and familiar example...

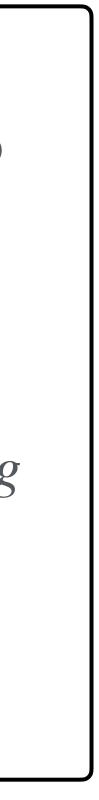


 $\begin{aligned} \mathscr{X} &= H = \langle h \rangle \text{ a finite cyclic group} \\ \text{Let } 1 \in H \text{ be the origin, } |H| = N \\ \mathscr{G} &= \mathbb{Z}_N \\ \star : \mathbb{Z}_N \times H \to H, (v,g) \mapsto h^v \cdot g \end{aligned}$



A special and familiar example...

 $\begin{aligned} \mathscr{X} &= H = \langle h \rangle \text{ a finite cyclic group} \\ \text{Let } 1 \in H \text{ be the origin, } |H| = N \\ \mathscr{G} &= \mathbb{Z}_N \\ \star : \mathbb{Z}_N \times H \to H, (v,g) \mapsto h^v \cdot g \end{aligned}$



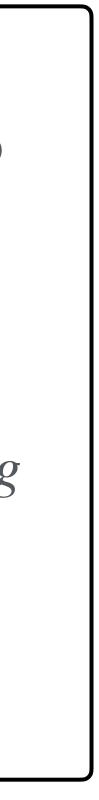
Notation...

For
$$v \in \mathbb{Z}^n$$
, write $\mathbf{g}^v = g_1^{v_1} \cdot \cdots \cdot g_n^{v_n}$.

Denote by Λ the kernel of the map $v \mapsto \mathbf{g}^v$

A special and familiar example...

 $\begin{aligned} \mathscr{X} &= H = \langle h \rangle \text{ a finite cyclic group} \\ \text{Let } 1 \in H \text{ be the origin, } |H| = N \\ \mathscr{G} &= \mathbb{Z}_N \\ \star : \mathbb{Z}_N \times H \to H, (v, g) \mapsto h^v \cdot g \end{aligned}$



Notation...

For
$$v \in \mathbb{Z}^n$$
, write $\mathbf{g}^v = g_1^{v_1} \cdot \cdots \cdot g_n^{v_n}$.

Denote by Λ the kernel of the map $v \mapsto \mathbf{g}^v$

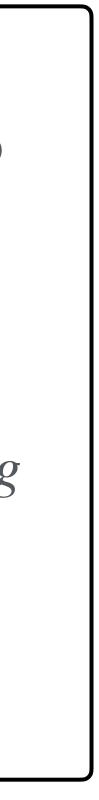
GA-Dlog

<u>Given</u>: one element $y \in \mathcal{X}$

Find: $v \in \mathbb{Z}^n$ such that $y = \mathbf{g}^v \star x$, modulo Λ

A special and familiar example...

 $\begin{aligned} \mathscr{X} &= H = \langle h \rangle \text{ a finite cyclic group} \\ \text{Let } 1 \in H \text{ be the origin, } |H| = N \\ \mathscr{G} &= \mathbb{Z}_N \\ \star : \mathbb{Z}_N \times H \to H, (v,g) \mapsto h^v \cdot g \end{aligned}$



Notation...

For
$$v \in \mathbb{Z}^n$$
, write $\mathbf{g}^v = g_1^{v_1} \cdot \cdots \cdot g_n^{v_n}$.

Denote by Λ the kernel of the map $v \mapsto \mathbf{g}^v$

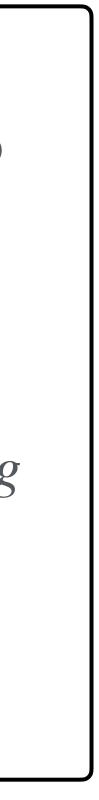
GA-Dlog

<u>Given</u>: one element $y \in \mathcal{X}$

Find: $v \in \mathbb{Z}^n$ such that $y = \mathbf{g}^v \star x$, modulo Λ

A special and familiar example...

 $\begin{aligned} \mathscr{X} &= H = \langle h \rangle \text{ a finite cyclic group} \\ \text{Let } 1 \in H \text{ be the origin, } |H| = N \\ \mathscr{G} &= \mathbb{Z}_N \\ \star : \mathbb{Z}_N \times H \to H, (v,g) \mapsto h^v \cdot g \\ \star \text{ is a regular action} \end{aligned}$



Notation...

For
$$v \in \mathbb{Z}^n$$
, write $\mathbf{g}^v = g_1^{v_1} \cdot \cdots \cdot g_n^{v_n}$.

Denote by Λ the kernel of the map $v \mapsto \mathbf{g}^v$

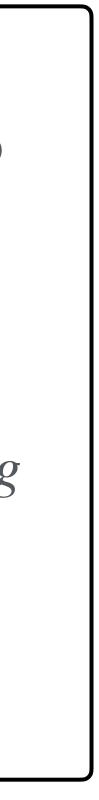
GA-Dlog

<u>Given</u>: one element $y \in \mathcal{X}$

Find: $v \in \mathbb{Z}^n$ such that $y = \mathbf{g}^v \star x$, modulo Λ

A special and familiar example...

 $\begin{aligned} \mathscr{X} &= H = \langle h \rangle \text{ a finite cyclic group} \\ \text{Let } 1 \in H \text{ be the origin, } |H| = N \\ \mathscr{G} &= \mathbb{Z}_N \\ \star : \mathbb{Z}_N \times H \to H, (v, g) \mapsto h^v \cdot g \\ \star \text{ is a regular action} \\ \text{The GA-Dlog is the usual Dlog} \end{aligned}$



Our Results For GA-Dlogs

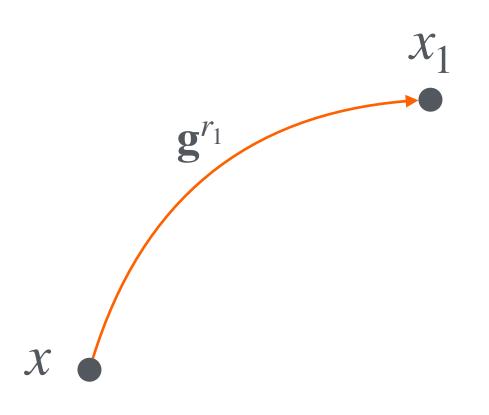
Extend the generic precomputation algorithms to the Group Action Dlog setting: Single-instance with precomputation Multi-instance with precomputation

Multi-instance "without" precomputation algorithm for GA-Dlogs

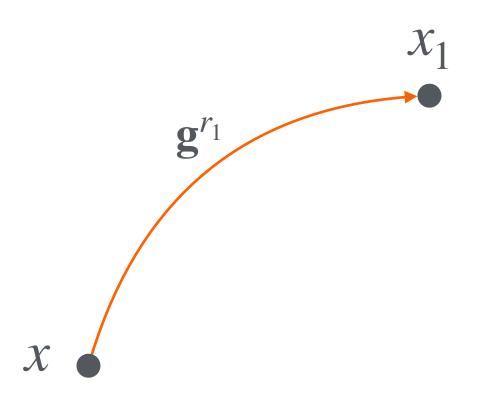
Multi-instance "without" precomputation algorithm for usual Dlogs

8

9



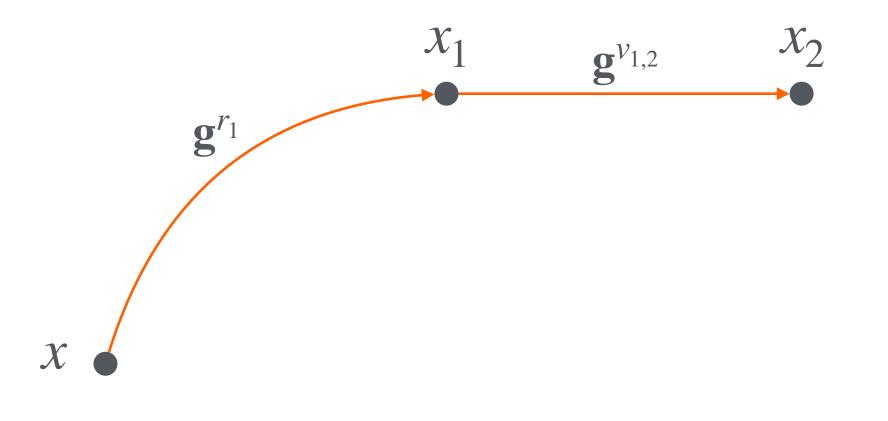
9



Memoryless Walk

The next step of the walk only depends on the vertex currently visited

9

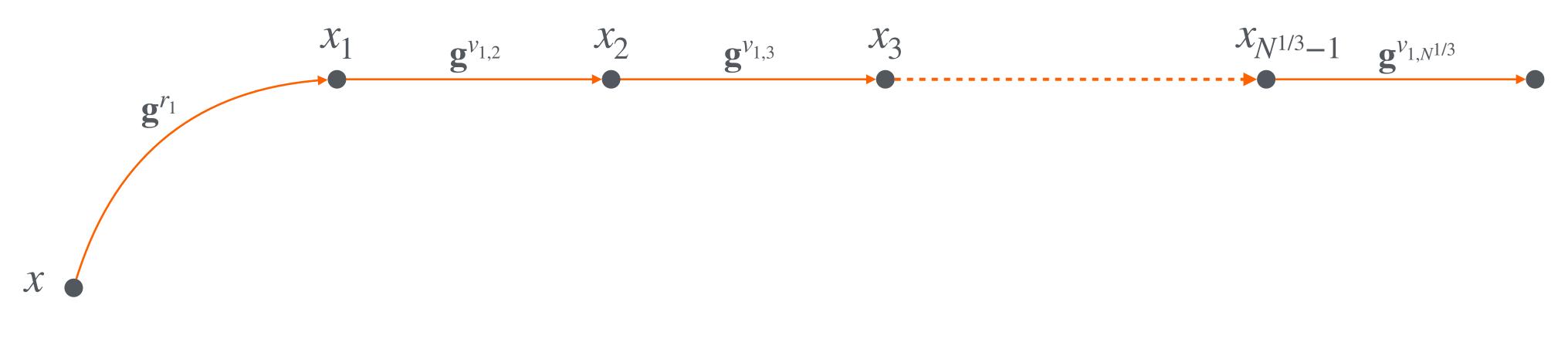


The next step of the walk only depends on the vertex currently visited

 $N = |\mathcal{G}|$

Memoryless Walk

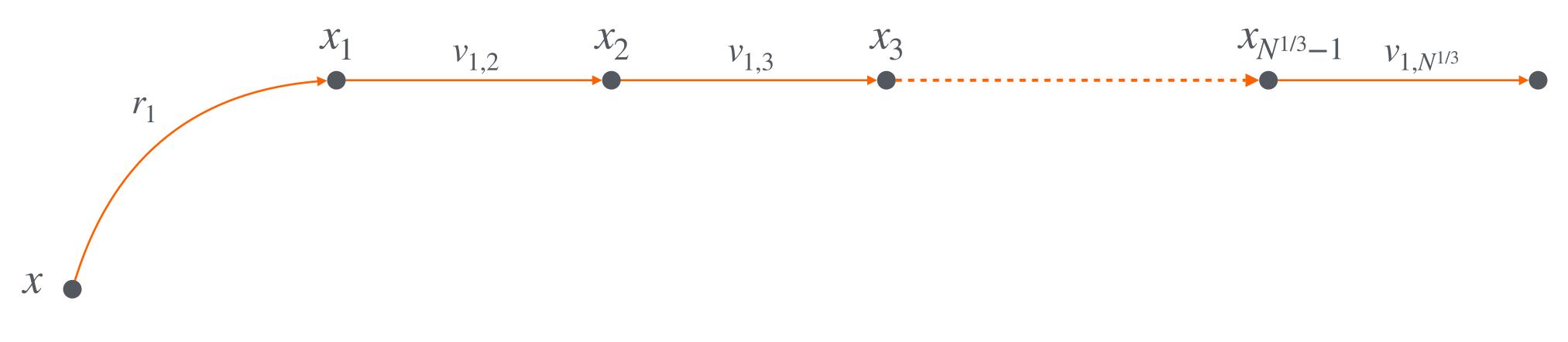
9



Memoryless Walk

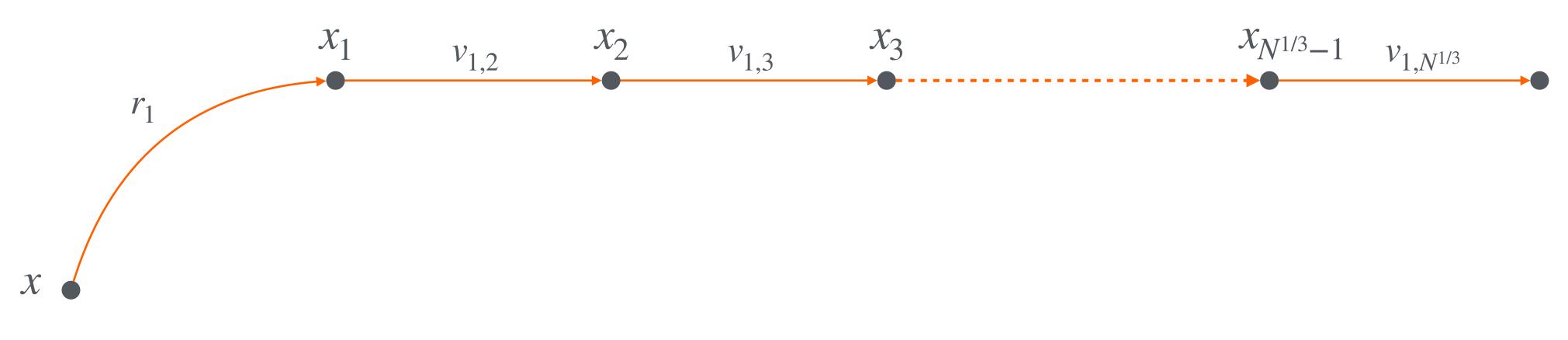
The next step of the walk only depends on the vertex currently visited

9



Memoryless Walk

The next step of the walk only depends on the vertex currently visited



Memoryless Walk

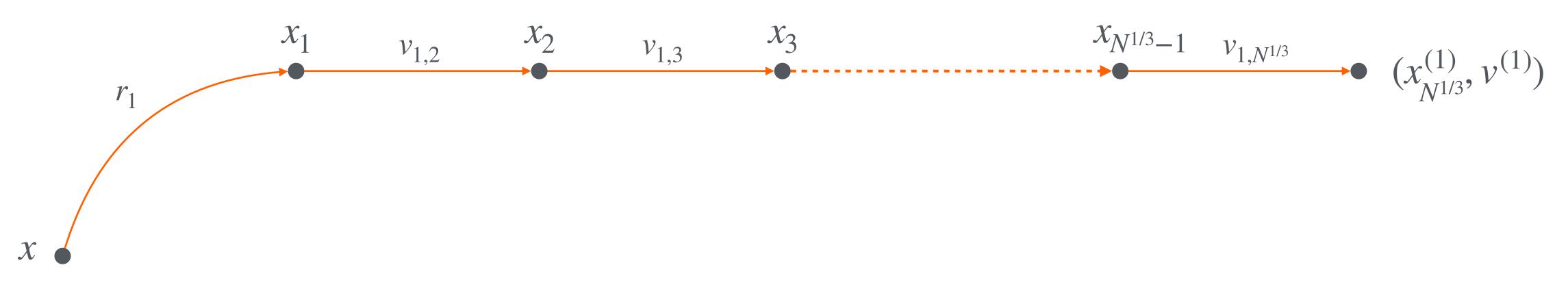
The next step of the walk only depends on the vertex currently visited

$$v^{(1)} := r_1$$

 $N = |\mathcal{G}|$

Notation

 $+ v_{1,2} + \cdots + v_{1,N^{1/3}}$



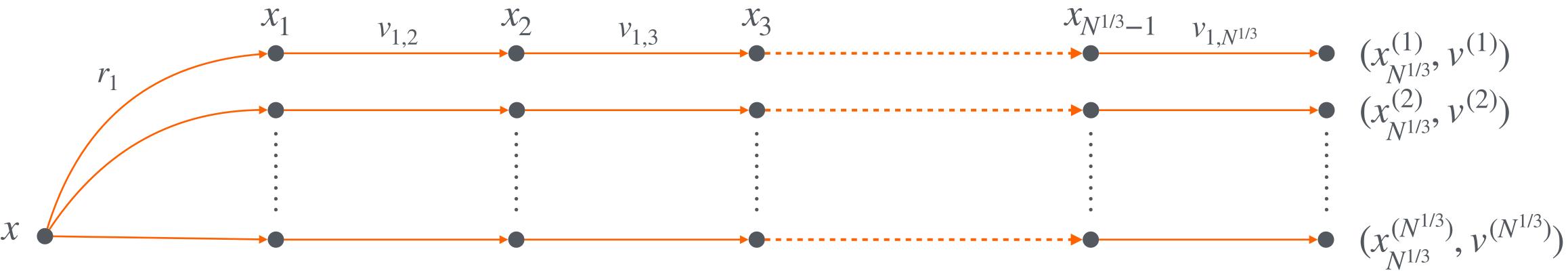
Memoryless Walk

The next step of the walk only depends on the vertex currently visited

$$v^{(1)} := r_1$$

Notation

 $+ v_{1,2} + \cdots + v_{1,N^{1/3}}$



Memoryless Walk

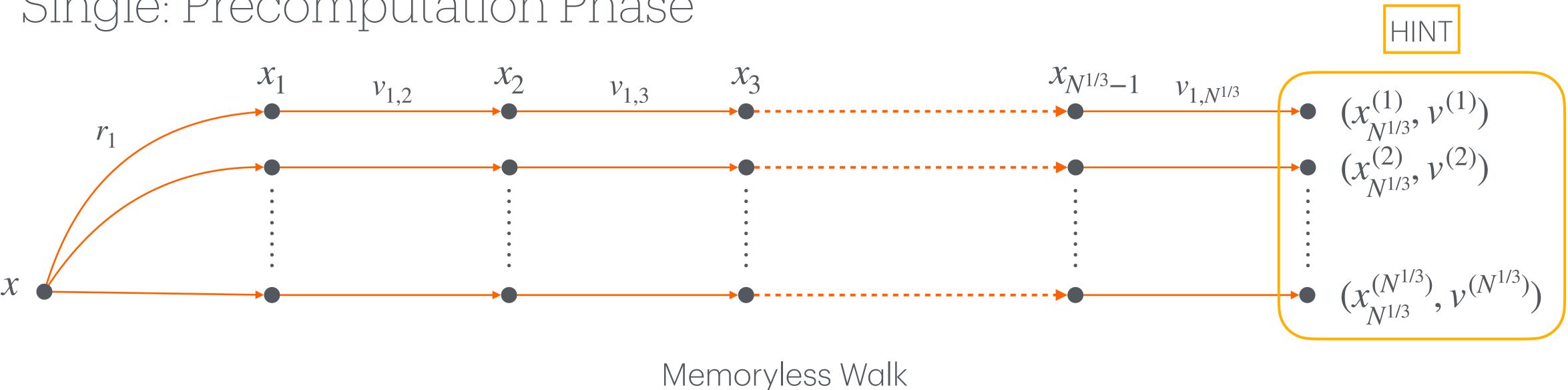
The next step of the walk only depends on the vertex currently visited

 $v^{(1)} := r_1$

 $N = |\mathcal{G}|$

Notation

$$+ v_{1,2} + \cdots + v_{1,N^{1/3}}$$

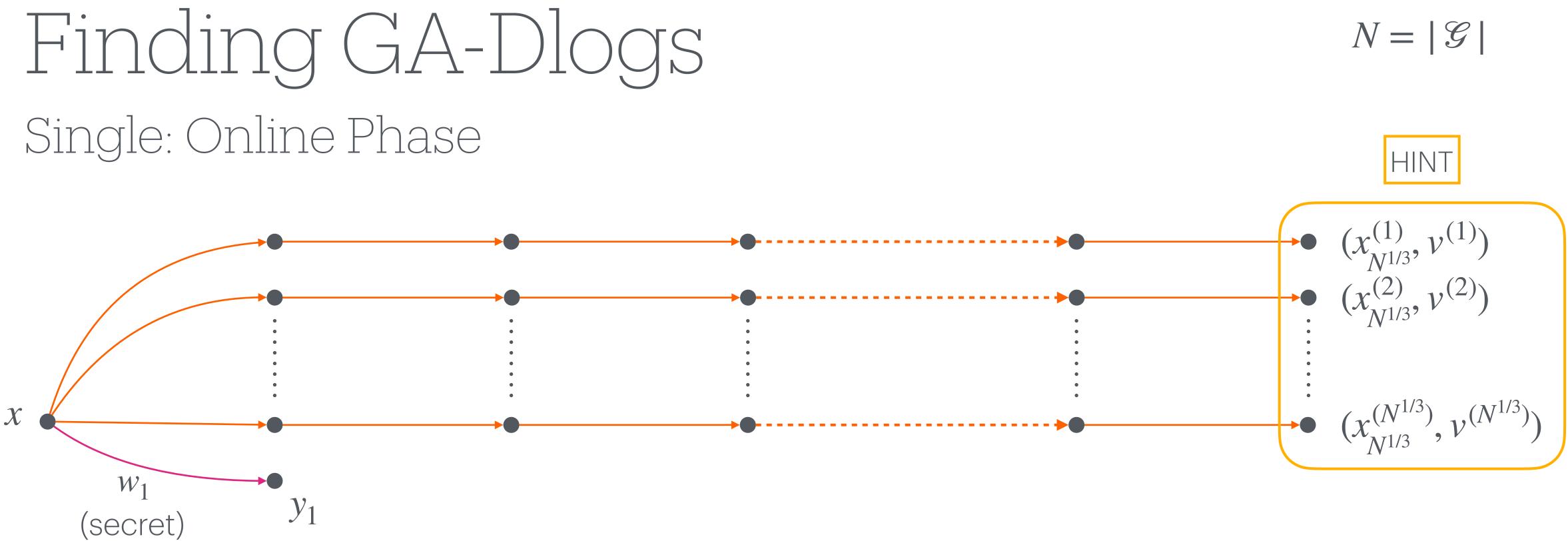


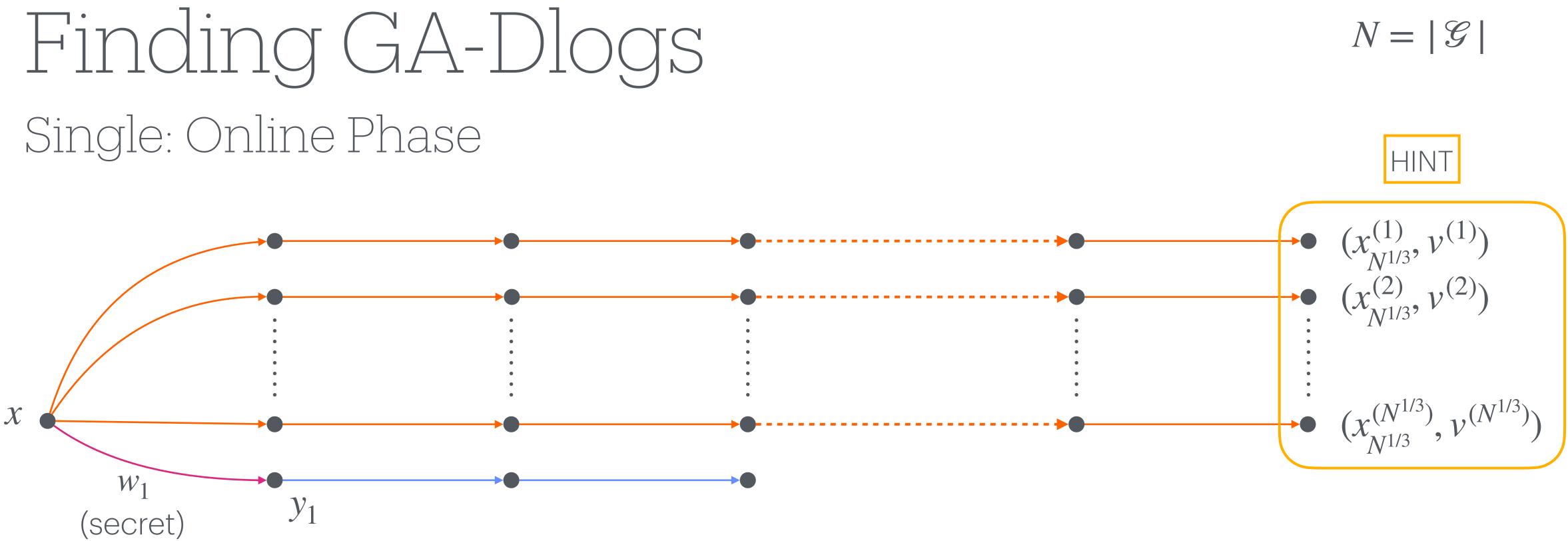
The next step of the walk only depends on the vertex currently visited

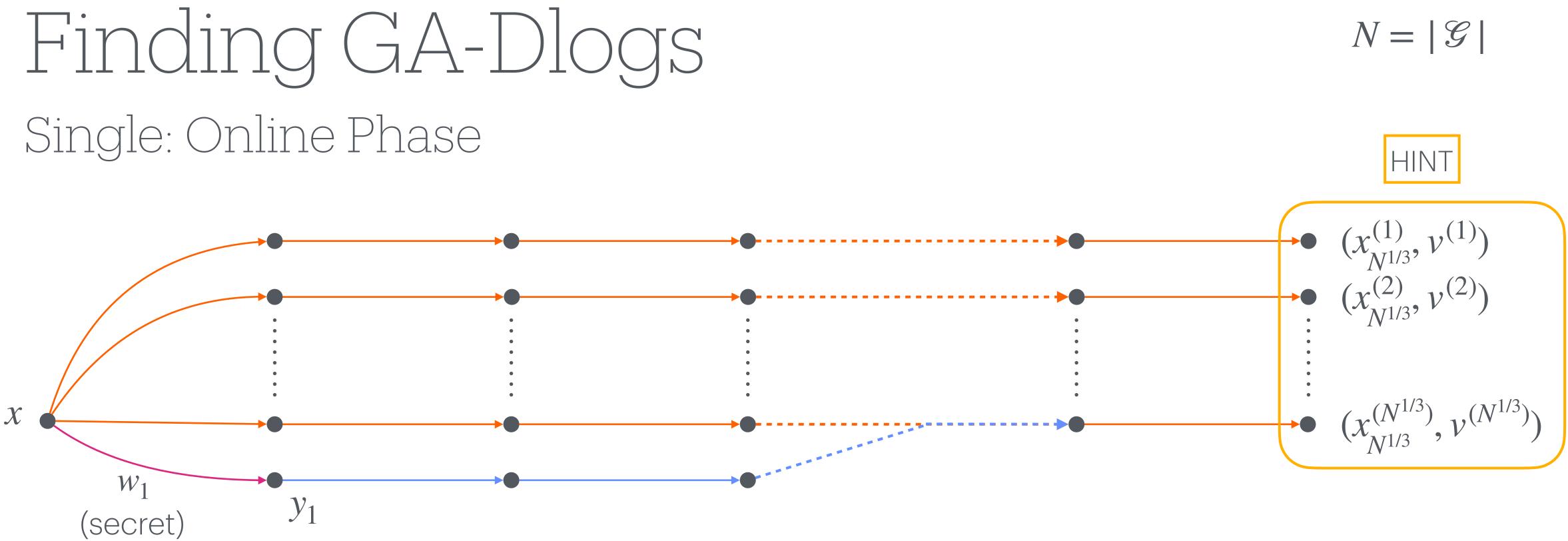
 $v^{(1)} := r_1$

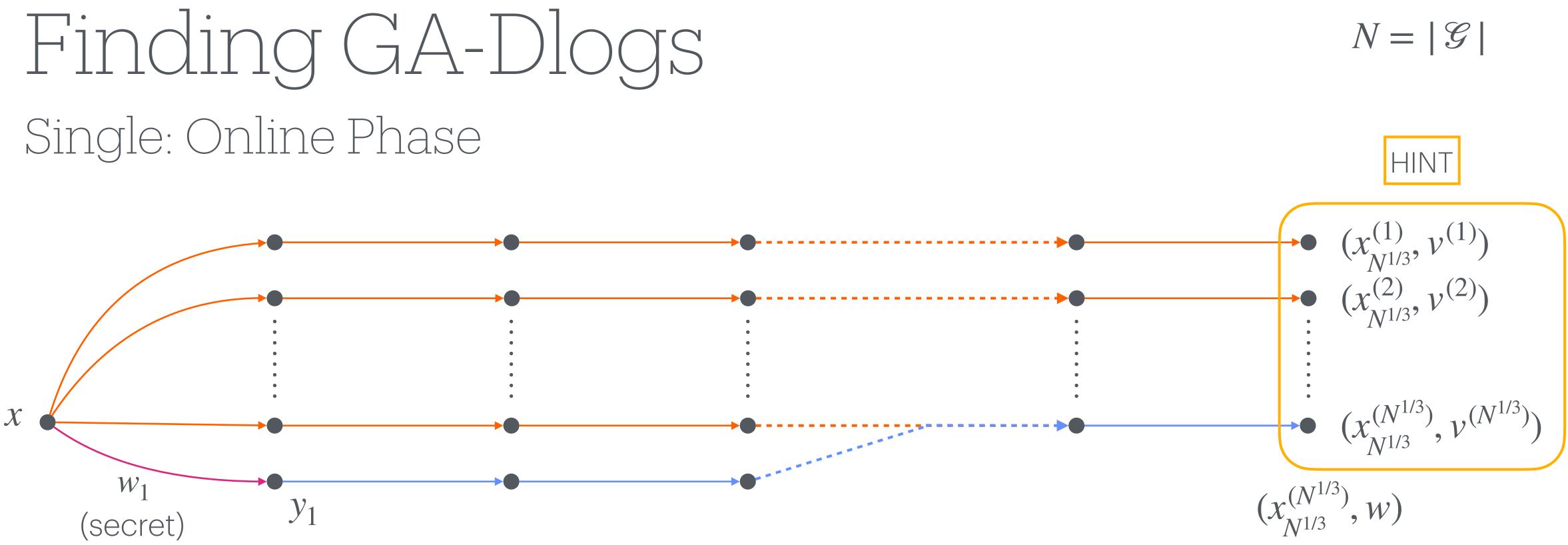
Notation

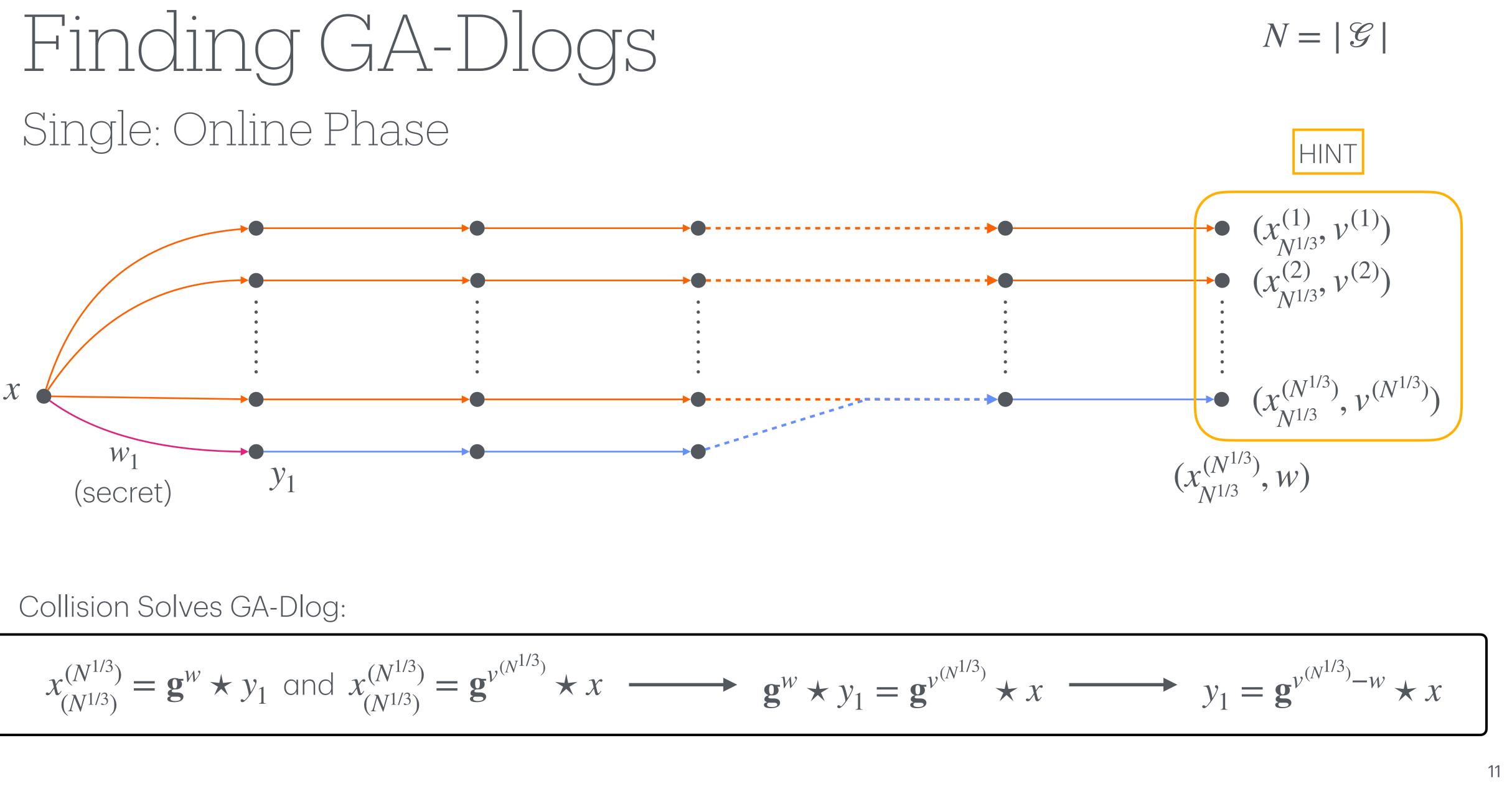
$$+ v_{1,2} + \cdots + v_{1,N^{1/3}}$$



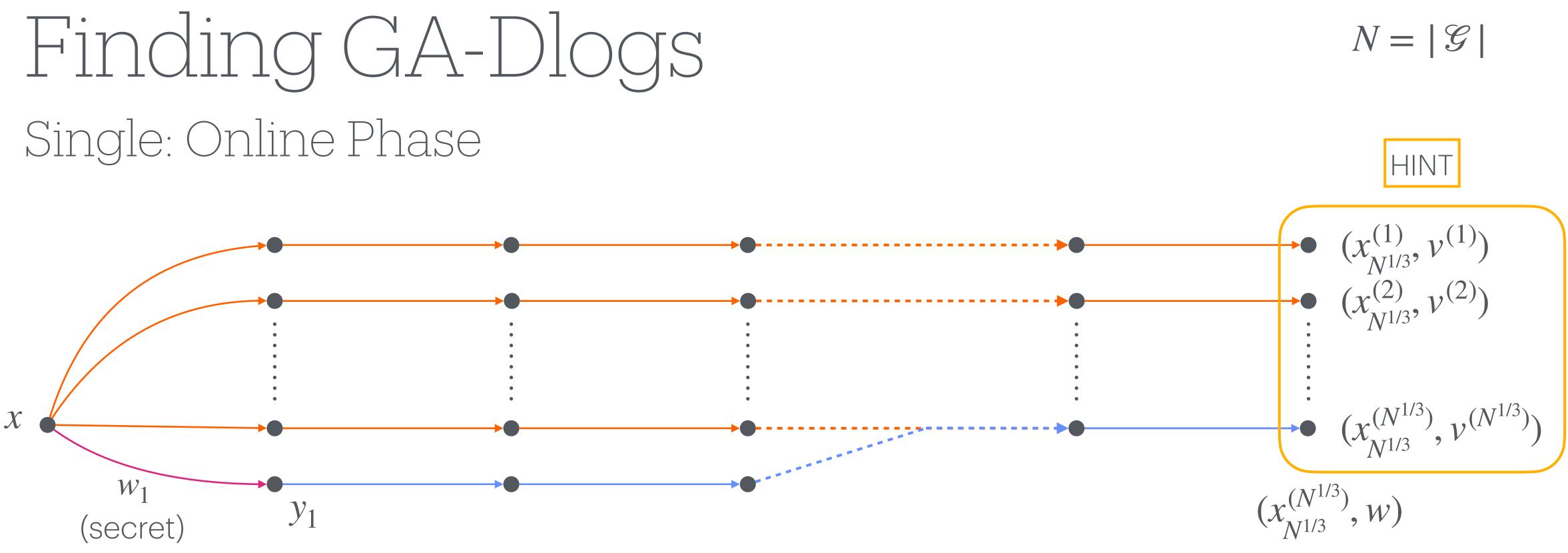








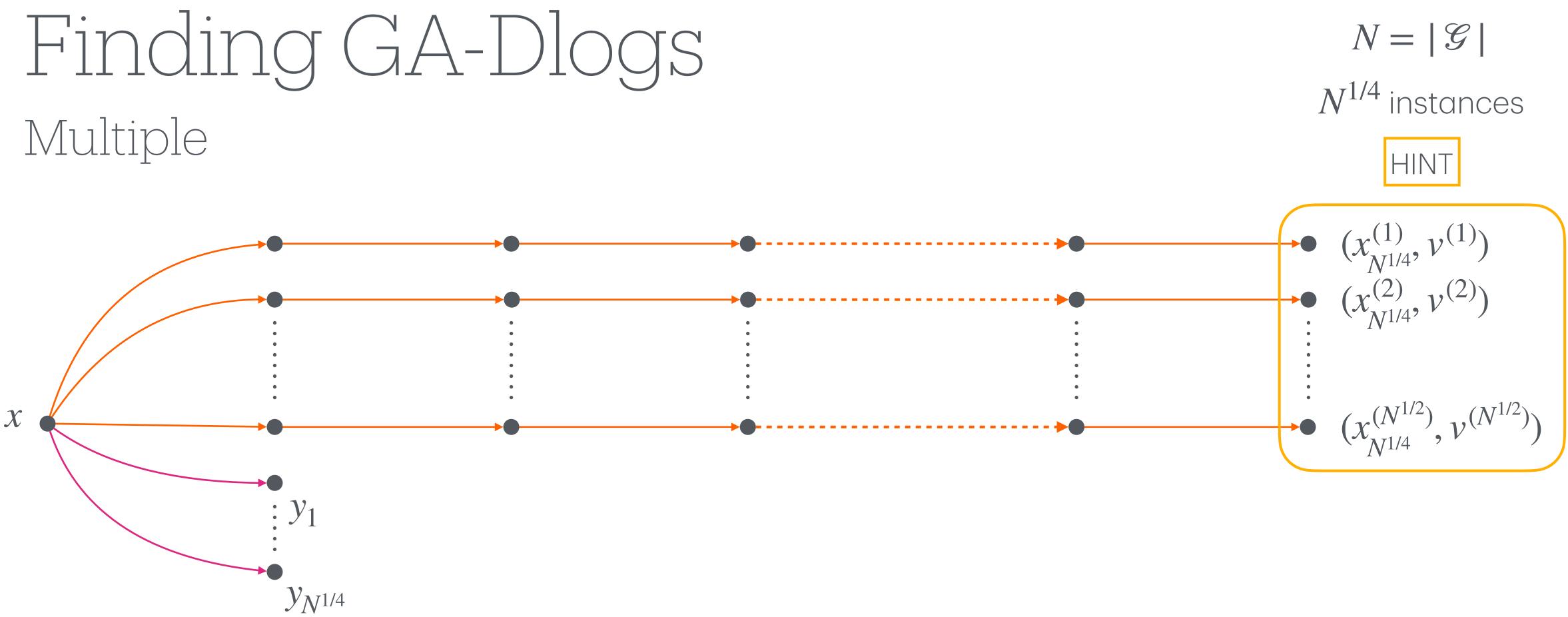
$$x_{(N^{1/3})}^{(N^{1/3})} = \mathbf{g}^{w} \star y_{1} \text{ and } x_{(N^{1/3})}^{(N^{1/3})} = \mathbf{g}^{v^{(N^{1/3})}} \star x - - -$$

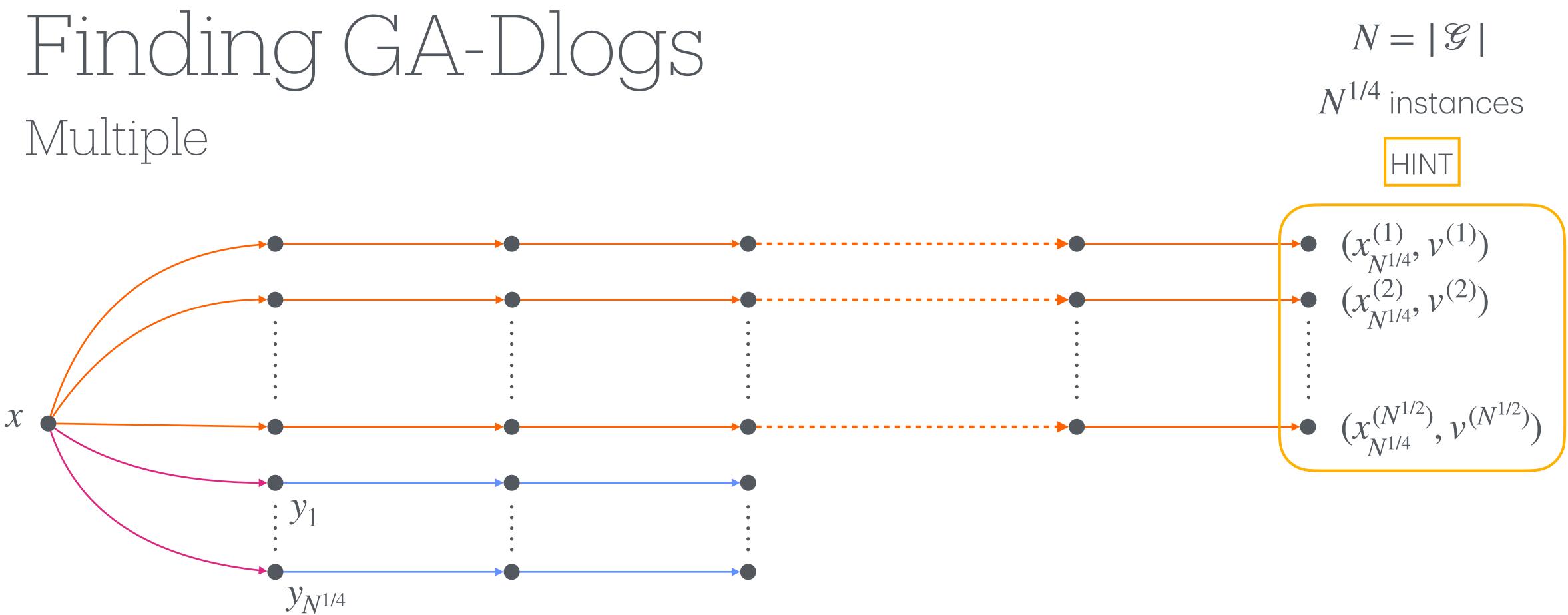


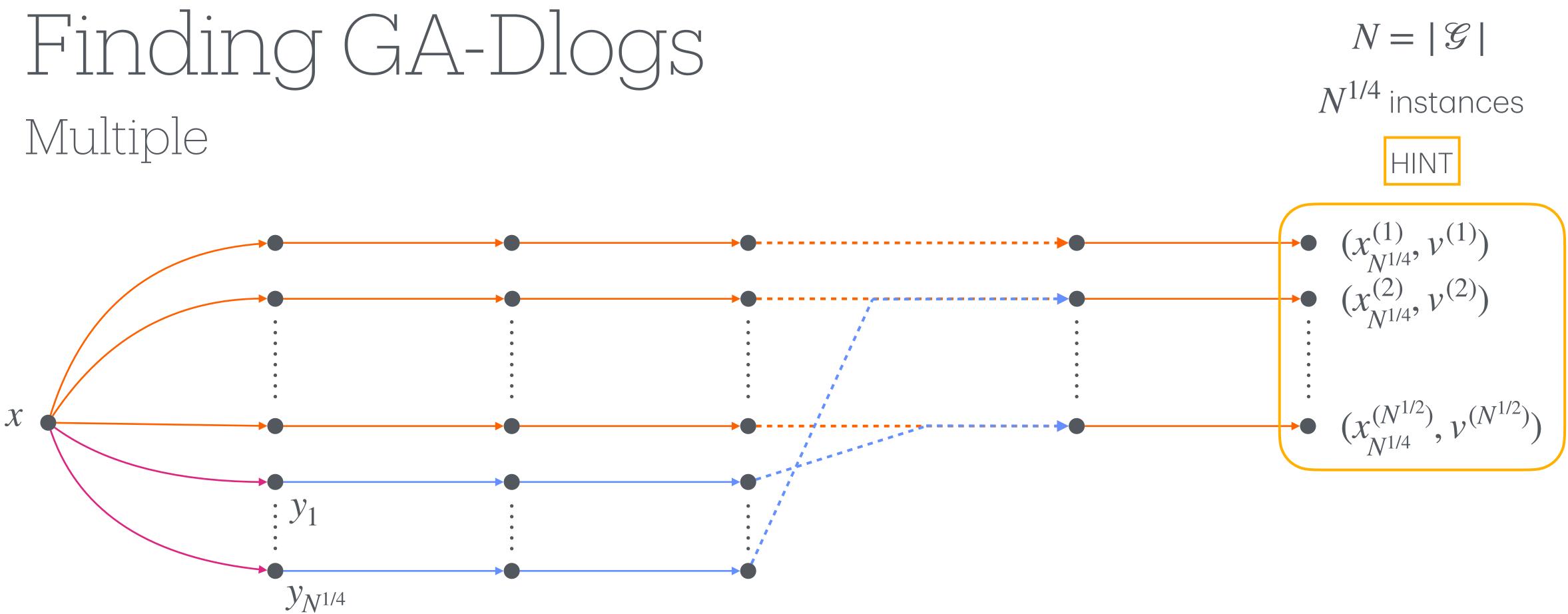
<u>Precomputation</u>: $N^{1/3} \cdot N^{1/3} = N^{2/3}$ <u>Space</u>: N^{1/3} <u>Online</u>: N^{1/3}

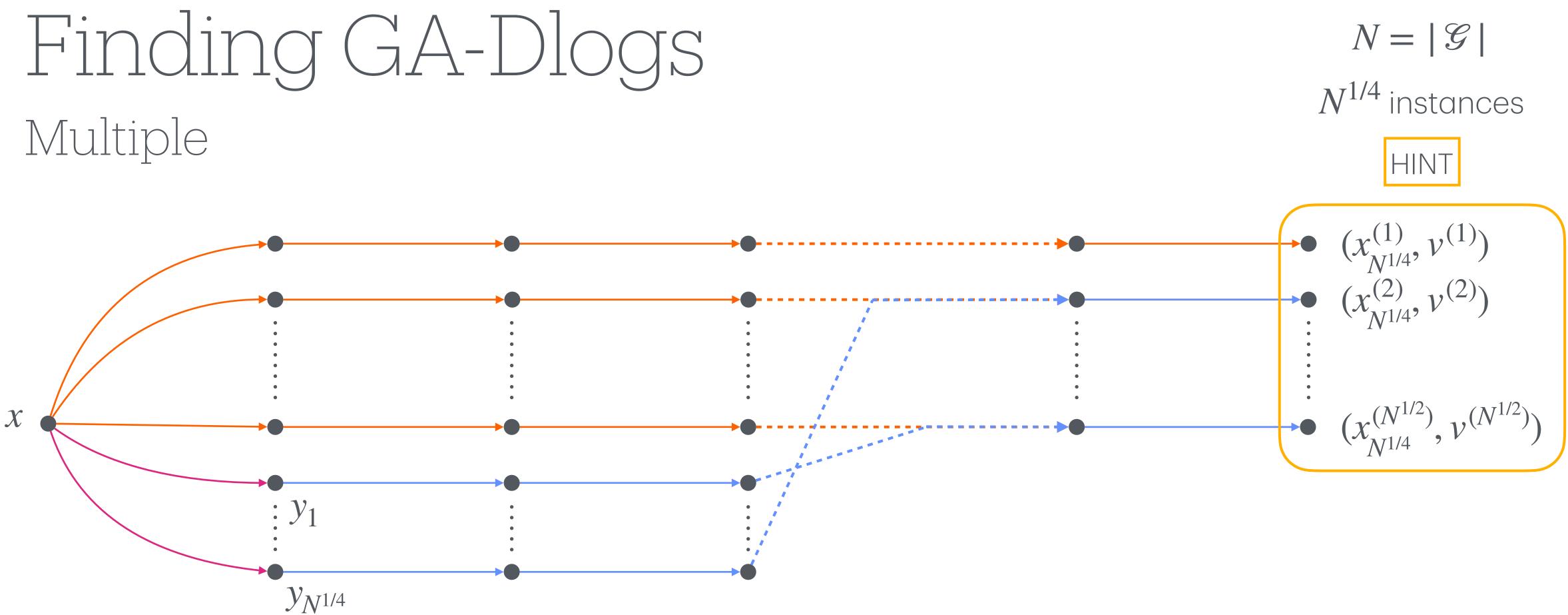
Solve ONE GA-Dlog with

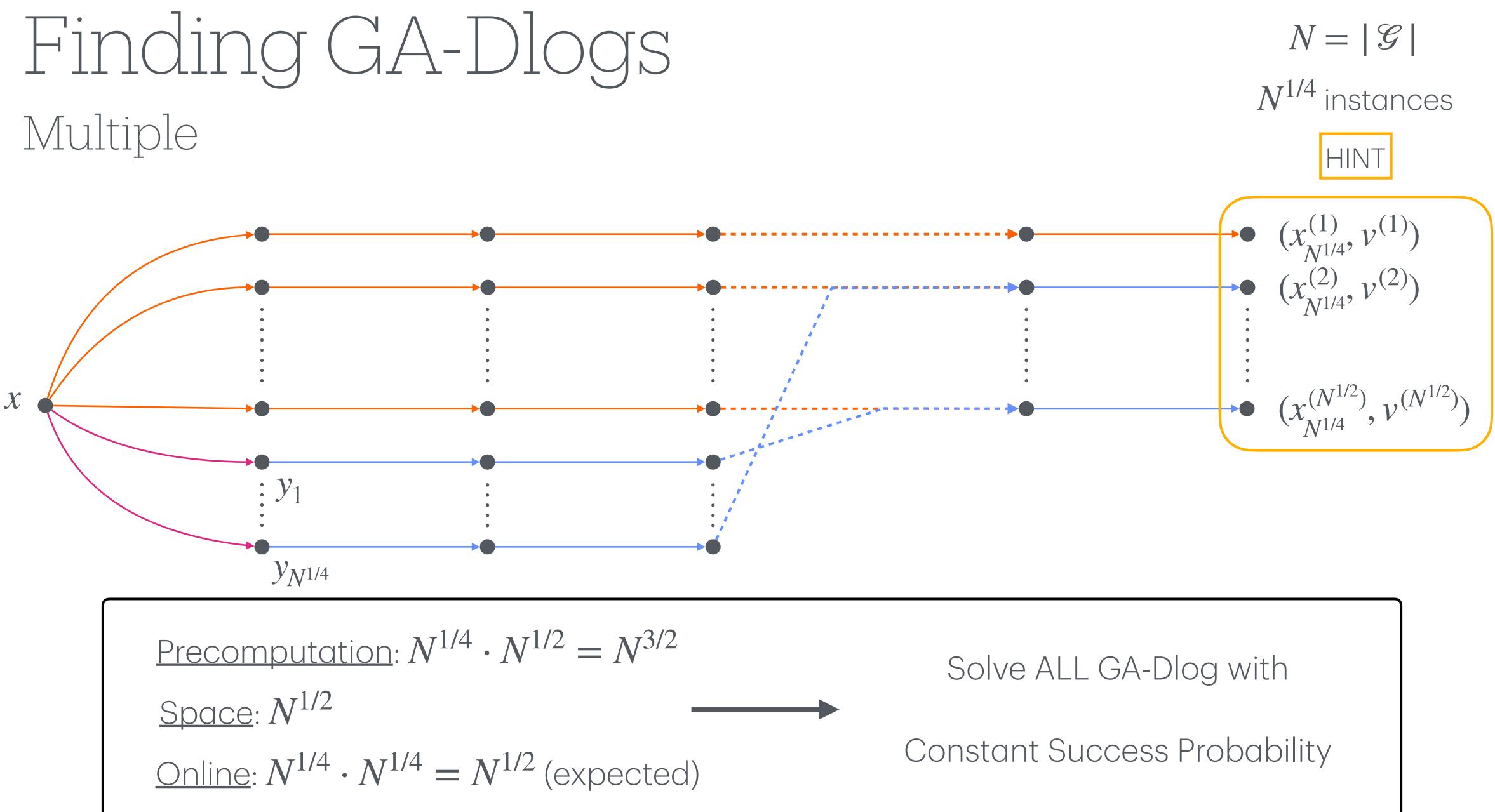
Constant Success Probability











Finding GA-Dlogs Multiple, "without" Precomputation

Finding GA-Dlogs Multiple, "without" Precomputation

Naïvely

Repeat the $N^{1/2}$ algorithm

m times

Solve ALL *m* GA-Dlog in time $m \cdot N^{1/2}$

Finding GA-Dlogs Multiple, "without" Precomputation

Naïvely

Repeat the $N^{1/2}$ algorithm *m* times

Balancing Precomputation and Online times...

Precomputation: $m^{1/2} \cdot N^{1/2}$ Space: *m* <u>Online</u>: $m^{1/2} \cdot N^{1/2}$

Solve ALL *m* GA-Dlog in time $m \cdot N^{1/2}$

Solve ALL *m* GA-Dlog with

runtime $m^{1/2} \cdot N^{1/2}$

Experiments On CSIDH

From the Theorems...

In practice...

Experiments On CSIDH

From the Theorems...

The probability of success of the online phase is ≥ 1/8 On average, online phase needs to be <u>repeated</u> 8 times

In practice...

Experiments On CSIDH

From the Theorems...

The probability of success of the online phase is ≥ 1/8 On average, online phase needs to be <u>repeated</u> 8 times

In practice...

$\log N$	# of runs
5	1.3
8	1.0
10	1.2
12	1.0
15	1.0
18	1.0
21	1.1
24	1.2
27	1.1
29	1.1

Precomputation Attacks for Dlog can be extended to the GA-Dlog framework

New multi-instance "without" precomputation attack as a corollary

In practice, the technique performs better than in theory



Precomputation Attacks for Dlog can be extended to the GA-Dlog framework

New multi-instance "without" precomputation attack as a corollary

In practice, the technique performs better than in theory

Thank you!

Questions?

