Transparent SNARKs over Galois Rings

Yuanju Wei^{1,2}, Xinxuan Zhang^{1,2} and Yi Deng^{1,2}

¹ Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS ² School of Cyber Security, University of Chinese Academy of Sciences

SNARK

• SNARK is a succinct non-interactive argument of knowledge.

- > Non-interactive.
- Succinctness: sublinear proof sizes and sublinear verifier time.
- > **Transparent:** It does not require a trusted setup.

- CPU computation over 2³² or 2⁶⁴;
- Floating-point operation over 2^k ;
- FHE ciphertext in integer rings (can be mapped to Galois rings);
- ...

Are Transparent Polynomial Commitments and SNARKs Possible Over Galois Rings?

PIOP+PCS

Our Contributions

Remainder of the talk

• Expander code over Galois rings construction

• Brakedown commitment over Galois rings

• PIOP over Galois rings

Galois Rings

• Galois Rings :

 $GR(p^s, r) \cong \mathbb{Z}_{p^s}[x]/f(x)$, where f(x) is a monic polynomial of degree r which is irreducible modulo p^s .

• Why Are SNARKs over Galois Rings So Challenging?

The presence of **zero divisors** in Galois rings invalidates the **Schwartz-Zippel lemma**, which is a fundamental component in proving the soundness of SNARKs.

Schwartz-Zippel lemma over fields

Let $P \in \mathbb{F}[x_1, \dots, x_n]$ be a non-zero polynomial of total degree $d \ge 0$ over the field \mathbb{F} and let r_1, \dots, r_n be selected at random independently and uniform from \mathbb{F} , then

$$\Pr[P(r_1, \cdots, r_n) = 0] \le \frac{d}{|\mathbb{F}|}$$

Generalized Schwartz-Zippel lemma

• Exceptional Set [GNSV23]

Let $A = \{a_1, \dots, a_n\} \subset R$. We say that A is an exceptional set if $\forall i \neq j, a_i - a_j \in R^*$, where R^* is the set of all invertible elements in the ring R.

• Generalized Schwartz-Zippel Lemma [GNSV23]

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an *n*-variate nonzero polynomial. Let $A \subseteq \mathbb{R}$ be a finite exceptional set. Let $\deg(f)$ denote the total degree of f. Then

$$\Pr_{a \in A^n}[f(a) = 0] \le \frac{\deg(f)}{|A|}$$

The exceptional set of $GR(p^s, r)$ is GF(p, r)

 $y_i = \sum_{x_i \in N(y_i)} e_{j,i} \cdot x_j$, $N(y_i)$ denote the neighbors of y_i .

• Expansion:

For every subset $S \subseteq L$ with $|S| = k, |N(S)| \ge b(k)$, where $b(k) = \max(k + 4, 1.28k)$

Nonzero:

For every subset $S \subseteq L$ satisfying the expansion and there is at least one nonzero element in S, the neighborhood N(S) contains at least one non-zero element.

 $y_i = \sum_{x_i \in N(y_i)} e_{j,i} \cdot x_j$, $N(y_i)$ denote the neighbors of y_i .

• Expansion:

For every subset $S \subseteq L$ with $|S| = k, |N(S)| \ge b(k)$, where $b(k) = \max(k + 4, 1.28k)$

Nonzero:

For every subset $S \subseteq L$ satisfying the expansion and there is at least one nonzero element in S, the neighborhood N(S) contains at least one non-zero element.

$$y_{i} = \sum_{\substack{x_{j} \in N(y_{i}) \\ \downarrow}} e_{j,i} \cdot x_{j}$$
$$\downarrow$$
$$Pr_{e_{i,j} \in GR(p^{s},r)}[y_{i}(e_{j,i}) = 0]$$

Generalized Schwartz-Zippel lemma fails to provide tight enough probability bounds.

• Tightening the Bounds: Beyond Generalized Schwartz-Zippel

GCD over Galois rings:

a is an element of ring $GR(p^s, r)$ and *n* is an integer. We define GCD(a, n) as $GCD(a_0, \dots, a_{r-1}, n)$. Where *a* is represented by $a_0 + a_1x + \dots + a_{r-1}x^{r-1}$.

• A key observation:

Consider elements $a, b \in GR(p^s, r)$. Let $d = GCD(a, p^s)$. The linear equation ax = b has at most d^r solutions.

$$\frac{d^r}{p^{sr}} \le \frac{1}{p^r}$$

Equality is achieved when d attains its maximal value of p^{s-1} .

 $GR(p^s, r) = A_0 \cup \cdots \cup A_{s-1} \cup \{0\}$ $A_i = \{a \mid a \in GR(p^s, r) \cap gcd(a, p^s) = p^i\}, |A_i| = \left(\frac{p^s}{n^i}\right)^i$ $B_i = \{a \mid a \in GR(p^s, r) \cap \gcd(a, p^s) \ge p^i\}$ Define the event E_i as A_i^k transformed to get $0^{b(k)}$: $\Pr[E_i] \le |A_i|^k \frac{(p^i)^r}{p^{sr}} = \left(\frac{p^s}{p^i}\right)^{rk} \left(\frac{p^i}{p^r}\right)^{rb(k)} = \left(\left(\frac{p^i}{p^s}\right)^r\right)^{b(k)-k}$

• Extend Binius [DP23] Block-level encoding to Galois rings

Let Enc' is for linear encoding on R_2 , then Enc(x) = Enc'(x').

 $\forall a \in R_1, a \cdot Enc(\mathbf{x}) = a \cdot Enc'(\mathbf{x}') = Enc'(a \cdot \mathbf{x}') = Enc(a \cdot \mathbf{x})$

Brakedown over Galois Rings

$$f(x_{0}, \dots, x_{l-1}) = \sum_{b \in \{0,1\}^{l}} \prod_{i \in [0,l-1]} ((1 - x_{i})(1 - b_{i}) + x_{i}b_{i})f(b)$$

$$U = \begin{bmatrix} f(0, \dots, 0, 0, \dots 0) & f(0, \dots, 0, 0, \dots 1) & \dots & f(0, \dots, 0, 1, \dots 1) \\ f(0, \dots, 1, 0, \dots 0) & f(0, \dots, 1, 0, \dots 1) & \dots & f(0, \dots, 1, 1, \dots 1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f(1, \dots, 1, 0, \dots 0) & f(1, \dots, 1, 0, \dots 1) & \dots & f(1, \dots, 1, 1, \dots 1) \end{bmatrix}$$

$$s_{1} = ((1 - r_{0}, r_{0}) \otimes \dots \otimes (1 - r_{l/2-1}, r_{l/2-1}))$$

$$s_{2} = ((1 - r_{l/2}, r_{l/2}) \otimes \dots \otimes (1 - r_{l-1}, r_{l-1}))$$

$$f(r_{0}, \dots, r_{l-1}) = s_{1}^{T} U s_{2}$$

Brakedown over Galois Rings

$$f(x_{0}, \dots, x_{l-1}) = \sum_{b \in \{0,1\}^{l}} \prod_{i \in [0,l-1]} ((1 - x_{i})(1 - b_{i}) + x_{i}b_{i})f(b)$$

$$U = \begin{bmatrix} f(0, \dots, 0, 0, \dots 0) & f(0, \dots, 0, 0, \dots 1) & \dots & f(0, \dots, 0, 1, \dots 1) \\ f(0, \dots, 1, 0, \dots 0) & f(0, \dots, 1, 0, \dots 1) & \dots & f(0, \dots, 1, 1, \dots 1) \\ \vdots & \vdots & \vdots & \vdots \\ f(1, \dots, 1, 0, \dots 0) & f(1, \dots, 1, 0, \dots 1) & \dots & f(1, \dots, 1, 1, \dots 1) \end{bmatrix}$$

$$s_{1} = \left((1 - r_{0}, r_{0}) \otimes \dots \otimes (1 - r_{l/2-1}, r_{l/2-1}) \right)$$

$$s_{2} = \left((1 - r_{l/2}, r_{l/2}) \otimes \dots \otimes (1 - r_{l-1}, r_{l-1}) \right)$$

$$f(r_{0}, \dots, r_{l-1}) = s_{1}^{T} U s_{2}$$

Brakedown over Galois Rings : Commit Phase

Let $U \in GR(p^s, r)^{m \times m}$ be the coefficient matrix of the *l*-variable multilinear polynomial f to be committed, where $m = 2^{l/2}$ and $U = (u_0, \dots, u_{m-1})$.

Prover:

Where $\frac{1}{\gamma}$ is the code rate. The prover then constructs a Merkle tree from the \hat{U} and sends its root hash to the verifier as the commitment.

Brakedown over Galois Rings: Testing Phase

Soundness Weakness

The verifier randomly checks a linear combination of matrix U by sampling an m-length vector r_1 . By the Schwartz-Zippel Lemma, the soundness error is at most $\frac{1}{p^r}$. However, the required soundness error must be $\frac{1}{p^{kr}}$ to meet security guarantees.

Our Solution: Repetition

[AHIV17] Repetition Version

Fixed any [l, n, d] code $C \subset R_2^l$ and a proximity parameter $e \in \{0, \dots, \lfloor \frac{d-1}{3} \rfloor\}$. For a matrix $\widehat{U} \in R_2^{m \times l}$ with $d(\widehat{U}, C^m) > e$, and a matrix $R \in R_1^{k \times m}$ where each element of R is randomly chosen from R_1 , let W = RU. Then:

$$\Pr[d(W, C^k) \le e] \le \frac{e+1}{p^{kr}}$$

where $d(W, C^k) \coloneqq \frac{|\{j \in [l] | \exists i \ s. \ t. \ W_i[j] \neq c_i[j]\}|}{d(W, C^k)}$ and c_i denote the closet codeword with row U_i in C.

Brakedown over Galois Rings: Testing Phase

The procedure:

- V sends a random matrix $R \in (GR(p^s, r))^{k \times m}$,
- P compute V = RU and sends V,
- V picks $\Theta(\lambda)$ column indices and check $\forall i \in [0, k-1]$: $Enc(V_i)[j] = \sum_{s \in [0, m-1]} R_i[s] \cdot \widehat{U}_s[j]$

PS: The fundamental verification unit after encoding is the $GR(p^s, kr)$.

Brakedown over Galois Rings: Evaluation Phase

The procedure follows the testing phase exactly, except:

- The verifier substitutes the matrix R with the vector s_1^{T} , and
- Computes the evaluation $v \top s_2$ upon receiving vector v from the prover and successfully verifying it.

Efficient Computation in Galois Ring Extensions

Polynomial Commitments with Coefficients over R_1 and Evaluations over R_2

The arithmetic circuit C performs all computations over R_1 , ensuring the polynomial f's coefficients lie in R_1 , while the evaluation of f is opened over R_2 for verifiable safety.

Sumcheck over Galois Rings

• Randomly chose *r* from the exceptional set from *R*

• Compute
$$p(r_0, \dots, r_{l-1}) = p_{l-1}(r)$$

HyperPlonk over Galois Rings

HyperPlonk [CBBZ22]

- Gate Constraints SumCheck
- Permutation Constraints

HyperPlonk over Galois Rings

HyperPlonk [CBBZ22]

- Gate Constraints
 SumCheck
- Permutation Constraints

Finite fields:

 $S \subset \mathbb{F}_p, \phi: S \to \mathbb{F}[x], \phi(S) = f_s: f_s(x) = \prod_{a \in S} (x - a)$

By the Schwartz-Zippel lemma, the function ϕ is guaranteed to be injective.

Galois rings:

The zero divisors interfere with the Schwartz-Zippel Lemma, causing ϕ not to be injective, e.g., under mod 8, both sets {3,5}, {1,7} get the polynomial $x^2 - 1$.

HyperPlonk over Galois Rings

HyperPlonk [CBBZ22]

- Gate Constraints ZeroCheck
- Permutation Constraints

Permutation $\sigma: \{0,1\}^l \to \{0,1\}^l$, $\tilde{\sigma} = (\sigma_0(x), \dots, \sigma_{l-1}(x))$, where σ_i denotes the i-th bit of the permutation. $f(\tilde{\sigma}(x)) - g(x) = 0, \forall x \in \{0,1\}^l$ $\sum_{y \in \{0,1\}^l} (f(y) \cdot eq(\tilde{\sigma}(x), y) - g(y) \cdot eq(x, y)) = 0, \forall x \in \{0,1\}^l$ $\sum_{x \in \{0,1\}^l} eq(x, y) \sum_{y \in \{0,1\}^l} (f(y) \cdot eq(\tilde{\sigma}(x), y) - g(y) \cdot eq(x, y)) = 0$

Transparent SNARK over Galois Rings

Thank you for your attention

Reference

- [THA22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur., 4(2-4):117–660, 2022. url:https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
- [GNSV23] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: Snarks for ring arithmetic. Journal of Cryptology, 36(4):41, 2023.
- [GLS+23] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Brakedown: linear-time and field-agnostic SNARKs for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193–226. Springer, Cham, August 2023. doi: 10.1007/978-3-031-38545-2_7.
- [DP23] Benjamin E. Diamond and Jim Posen. Succinct arguments over towers of binary fields. Cryptology ePrint Archive, Paper 2023/1784, 2023. URL: https: //eprint.iacr.org/2023/1784.

Reference

- [XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer Science, pages 733–764. Springer, 2019.
- [CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-time prover and high-degree custom gates. Cryptology ePrint Archive, Paper 2022/1355, 2022. URL: https://eprint.iacr.org/2022/1355.
- [AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 2087–2104. ACM, 2017.