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SNARK

® SNARK is a succinct non-interactive argument of knowledge.

» Non-interactive.
» Succinctness: sublinear proof sizes and sublinear verifier time.
» Transparent: It does not require a trusted setup.
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Rinocchio [GNSV23]

* O(l + mlogm) prover time;
* 0(1) proof size;

* 0O(|x|) verifier time, where x is the statement;

* O(l+ m)length CRS.
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Remainder of the talk

® Expander code over Galois rings construction

® Brakedown commitment over Galois rings

® PIOP over Galois rings



Galois Rings

® Galois Rings :

GR(p®,1) = Zys[x]/f(x), where f(x) is a monic polynomial of degree r which is
irreducible modulo p*.

® Why Are SNARKSs over Galois Rings So Challenging?

The presence of zero divisors in Galois rings invalidates the Schwartz-Zippel lemma, which
is a fundamental component in proving the soundness of SNARKSs.

Schwartz-Zippel lemma over fields

Let P € [F[xq, -, x,] be a non-zero polynomial of total degree d > 0 over the field F and let
Ty, '+, T, be selected at random independently and uniform from [F, then

d
Pr[P(ry,-+,1,) =0] < m



Generalized Schwartz-Zippel lemma

® Exceptional Set [GNSV23]

Let A = {ay,---,a, } © R. We say that A is an exceptional set if Vi # j,a; — a; € R", where
R™ is the set of all invertible elements in the ring R.

® Generalized Schwartz-Zippel Lemma [GNSV23]

Let f: R™ — R be an n-variate nonzero polynomial. Let A € R be a finite exceptional set.
Let deg(f) denote the total degree of f. Then

Pr [f(a) = 0] < 28U

aceA™ |A|

The exceptional set of GR(p®,r) is GF (p, 1)



Core Procedure in Expander Code

©
eo1 > Vi = ijEN(yi) ej i - xj, N(y;) denote the neighbors of y;.

® Expansion:
7@ For every subset S € L with |S| = k,|N(S)| =

b(k), where b(k) = max(k + 4,1.28k)

€1,d-1

® Nonzero:

€n—-1,0

K For every subset S € L satisfying the expansion and

€n—1,d-1 there is at least one nonzero element in S, the
neighborhood N (S) contains at least one non-zero
element.

R
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(xO' "'ixn—l) = (yO' '"!ym—l)
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Core Procedure in Expander Code
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Core Procedure in Expander Code

e0,0
€0,1 Pr— yi — Z ej;i ) x]

€1,d-1
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€n-11

€n—1,d-1

®

R
A bipartite graph G = (L, R, E)
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X;EN(Y;)

l

Pr  [yi(e;;) =0]

ei'jEGR(pS,T)

Generalized Schwartz-Zippel lemma fails to provide
tight enough probability bounds.



Our Solution: Refined Parameter Analysis

® Tightening the Bounds: Beyond Generalized Schwartz-Zippel

GCD over Galois rings:

a is an element of ring GR(p®,r) and n is an integer. We define GCD(a,n) as
GCD(ay, **,a,_1,n). Where a is represented by ag + a;x + -+ + a,_;x" 1.

® A key observation:

Consider elements a,b € GR(p®,r). Let d = GCD(a, p°). The linear equation ax = b
has at most d” solutions.

d” 1
pST‘ — pT
Equality is achieved when d attains its maximal value of p5~1.




Our Solution: Refined Parameter Analysis
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Our Solution: Refined Parameter Analysis
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Our Solution: Refined Parameter Analysis

® Extend Binius [DP23] Block-level encoding to Galois rings

CQ ®) ®) &) - C xElRf‘

“ ® ® ® - ‘ ¥ e Ry

O R;:GR(p3,7), Ry expands k-fold into R,. R,: GR(p%, kr) and p*" = 0(2%)

Let Enc’ is for linear encoding on R, then Enc(x) = Enc'(x").

Va€Ri,a -Enc(x) =a-Enc'(x') =Enc'(a-x") = Enc(a - x)



Brakedown over Galois Rings

foo-aD= ) || (@=xwa-b)+xb)re

be{0,1}L i€[0,l-1]

S1 = ((1 —157) ® - ® (1 - 7‘1/2—1»7‘1/2—1))
Sy = ((1 — T2, Ty2) @ - Q (1 — 7”1—1;7”1—1))

f(ro, =, 1—1) = SIUSZ

£(0,-+,0,0,--0) £(0,--,0,0,--1) £0,-, 0,1, -
£(0,--,1,0,--0) £(0,-+,1,0,--1) £0, -, 1,1,

f(1,-,1,0,--0) f(1,+,1,0,--1) F(1,, 1,1,
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Brakedown over Galois Rings : Commit Phase

Let U € GR(p®, )™ ™ be the coefficient matrix of the [-variable multilinear polynomial f to be
committed, where m = 22 and U = (uy, -+, Uyy_1).

Prover:

000
000

00O

O
O

O

U € GR(p®, r)™™

Pack

)

Encode

)

U' € GR(pS, kr)™*(m/k)

U € GR(p®, kr)™><v(m/k)

O R;:GR(p5, 1), Ry expands k-fold into R,.

R,: GR(pS, kr) and p*" = 0(2%)

1, ~ :
Where - is the code rate. The prover then constructs a Merkle tree from the U and sends its root hash to

the verifier as the commitment.



Brakedown over Galois Rings: Testing Phase

Soundness Weakness

The verifier randomly checks a linear combination of ym

matrix U by sampling an m-length vector r;. By the '
Schwartz-Zippel Lemma, the soundness error is at

1 :
most o However, the required soundness error r

1 .
must be —r to meet security guarantees.
p




Our Solution: Repetition

[AHIV17] Repetition Version

Fixed any [, n, d] code C © R} and a proximity ym
parameter e € {0, -, l%]}. For a matrix U € RQ’"‘XZ

with d(U, Cm) > e, and a matrix R € R¥*™ where
each element of R is randomly chosen from Ry, let | o
W = RU. Then:

e+1
pkr

Prid(w,C¥) <e| <

[ € [1|3is.t. Wilj] # [}

n

and ¢; denote the closet codeword with row U; in C.

where d(W,C") =



Brakedown over Galois Rings: Testing Phase

m
-
R

The procedure:

e V sends arandom matrix R € (GR(pS,r))

e PcomputeV = RU and sends I/,

* I picks ®(A) column indices and check Vi € [0,k — 1]:
Enc(V)Ij] = Zse[o,m—l] R;i[s] - Us[]]

PS: The fundamental verification unit after encoding is the GR(p®, kr).

kxm
V4



Brakedown over Galois Rings: Evaluation Phase

The procedure follows the testing phase exactly, except:

* The verifier substitutes the matrix R with the vector s{, and
* Computes the evaluation vTs, upon receiving vector v from the prover and successfully verifying it.



Efficient Computation in Galois Ring Extensions

Polynomial Commitments with Coefficients over R, and Evaluations over R,

The arithmetic circuit C performs all computations over R, ensuring the polynomial f’s coefficients lie in R4,
while the evaluation of f is opened over R, for verifiable safety.

Q00O O

Q00O O

Q00O O
s, € R U € R

Unpack

© O Q00 O
© O Q00 O
© O Q00 o
S, € Rk U € Rvm

Brakedown

—)

© O

O o Pack
—)

© O

V € Rk

]

v ERT

O R;:GR(p3, 1), Ry expands k-fold into R,.

R,: GR(p%, kr) and p*" = 0(2%)



Sumcheck over Galois Rings

statement ZZ "'Zp(xo."nxz—l) =H
X1 X X
Prover
Round i, i € [0,] — 2]
pi(Xi)
 Compute p;(X;) = )
Z(xi_,_l,---,xl_l) p(ro,++ Ti—1, Xiy Xig1,+» X1-1) .
C——
Round [
« Computep;_1(X;_1) = p1-1(Xi-1)

|

p(rOI ) rl—ZIXl—l)

let Hy = H,and 1, := 0

Verifier

[,

Check if p;(0) + p; (1) = H;

Randomly chose r from the exceptional
set from R

Compute H;yq = pi(7)

(The size of exceptional set is 0(2%))

Check if p;_1(0) + p;—1(1) = H;_4
Randomly chose r from the
exceptional set from R

Compute p(7y, ", 71-1) = D1-1(7)



HyperPlonk over Galois Rings

HyperPlonk [CBBZ22]
* Gate Constraints SumCheck

*  Permutation Constraints

Permutation Check

I

Multiset Check

|

Product Check

I

ZeroCheck

I

Sumcheck




HyperPlonk over Galois Rings

HyperPlonk [CBBZ22]
e Gate Constraints SumCheck

*  Permutation Constraints

Permutation Check Finite fields:
| SCF, ¢:5 - Flxl, ¢(S) = fi: fr(x0) = MaesCx — @)
Multiset Check By the Schwartz-Zippel lemma, the function ¢ is guaranteed to be

* injective.

Product Check

Galois rings:

I The zero divisors interfere with the Schwartz-Zippel Lemma,
Zeielivzeis causing ¢ not to be injective, e.g., under mod 8, both sets

I {3,5},{1,7} get the polynomial x2? — 1.
Sumcheck




HyperPlonk over Galois Rings

HyperPlonk [CBBZ22]
e @Gate Constraints ZeroCheck

e  Permutation Constraints

Permutation ¢:{0,1}! - {0,1}}, 6 = (ao(x), T al_l(x)), where

Permutation Check o; denotes the i-th bit of the permutation.
| f(6(x) —gx) =0,V x € {01}
ZeroCheck l
ye{o,1}! l
Sumcheck

> eawy) Y (FO)-eq6(),y) - 93 - ea(x,y) = 0

x€{0,1}! ye{0,1}!



ransparent SNARK over Galois Rings

s A transparent
Expander code polynomial

over Galois rings » commitment over

Galois rings

.

\

/

Brakedown [GLS+23]

over Galois Rings

A polynomial
interactive oracle
proof (PIOP) over

Galois rings

Libra [XZZ+19] and
Hyperplonk [CBBZ22
over Galois rings

]

\

/

Fiat-Shamir
transformation

Interactive Transparent

arguments of SNARKs over

knowledge over Galois rings
Galois rings



Thank you for your
attention
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