Stateless and Two-Round
Threshold Schnorr Signatures
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Unforgeabillity

A threshold signature scheme 1 is secure if no PPT adver  Adversaryis  ‘ollowing game

with non-negligible advantage: allowed to participate
as a signer.

corrupt C [n], | corrupt| < ¢
d———————————————————

(pk, (sky, ..., sk,)) < T.KeyGen(1*)
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Multi-Party Schnorr Signatures

How to share sk ?

How to share r ? \ /

7—1r+c-sk

Sig = (RQ
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Multi-sigs
(n-of-n)

Threshold
(t-of-n)

Concurrently Secure \/

Scheme

Assumptions

Signing

Rounds
MuSig (MPSw18, BDN18]
SimpleMuSig [BDN18, CKM21] DL+ROM 3
MuSig2 [NRrs21]
DWMS [aB21] OMDL+ROM ) Honest minority:

- up to (t-1) corrupt;
SpeedyMUSIQ [CKM21] at least one honest
Lindell22 Schnorr . (t total).
Sparkle [ckm23] DL+ROM
FROST [KG20, BCKMTZ22] OMDL +ROM )

FROST?2 [ckm21]

Randomized (Stateful) x

One-More Discrete Log (OMDL)
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Motivation Foma] —

- Randomized multi-party
schemes require state-keeping Two

between rounds

- Key recovery attacks are
possible If state Is re-used.

+ Requires locks (when concurrent)
and careful deletion

« Determinism Is a means to
achieve statelessness m
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(Single-Party) EADSA Signatures

)

c=(R,2)

)

To generate a key paiir: To verify (PK, &, m):
sk & F; PK « g* Ty
’ Prevents issuesfrom ¢ <— H(PK, m, R)

(?

bad randomness. .
R - PK¢ = g~

To sign a message m: output accept/reject
e Hin b R <
c — H(PK,m,R)
7« r+csk
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Naively applying EADSA-style
determinism to existing
randomized multi-party Schnorr
schemes Is not secure!

Summary: EdDSA-style determinism is not publicly verifiable;
Adversary can pick its nonce randomly without detection
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Stateless Threshold Signatures, with Tradeoffs

- We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

» Does not require generic MPC or SNARKS. \/

 Assumption of honest majority (minimum (2t-1) signers). x

- Tolerates t-1 corruptions, assumes t honest signers

v

- Efficient for moderately-sized groups (i.e., less than 25).

12
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. Send key shares (sk;, sk;) c

to all parties. c < H.(PK,m,R) Verify(PK, m, o)

\)
Sign, (sk;, m, C) g < Ii+ (c - sky) Identical to single-party
Output z, Schnorr.
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Sign, (sk;, ski, m, C, {R;}cc) Combine(R, {z;} ;cc)
if VPSS. Verify(i,C, {R},cc) # 1

. Shamir secret share sk into Output
(SK1, -, 5kn) (r,R) < VPSS .Gen(sk!, m, C)

. Generate VPSS keys O
. utput (m,
(ski, ..., sk,) R « I IRl.’l’ put (m, o)
. Send key shares (sk;, sk;) ieC

to all parties. c < H.(PK,m,R) Verify(PK, m, o)

\)
Sign, (sk;, m, C) g < 1t (c - ski) Identical to single-party

' Sch .
(r,R;) « VPSS .Gen(sk;, m, C) Output $i chnorr

Output R,

Correctness: r = Z rd; and sk’ = 2 sk;A;
ieC ieC
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Verifiable Pseudorandom Secret Sharing

- AKIn to a secret-shared PRF

» Builds on pseudorandom secret sharing scheme by Cramer et al.[CDIOS], but
with an additional Verify algorithm.

» Verification ensures each party followed the protocol honestly.
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Replicated Secret Sharing: Example n

Where sk" = ¢, + ¢, + ¢ + ¢,

Set sk; < {¢);} foreachi:j € q,

Intuition: sk is information-theoretically hidden; corruption threshold t=2
each (t-1) corrupt parties lack exactly one ¢,. l minimum signers=3
total sighers n=4

15
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Verifiable Pseudorandom Secret Sharing in Arctic

To derive Arctic honces:

(1))
1, Z H(¢;, m) - L,(k), for each ¢; € sk;
i=1

To derive joint Arctic nonce:
Interpolate to

the constant term of an
unknown degree t-1

f /(O) for C C [n] polynomial f’.
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Security of Arctic

+ Unforgeable, assuming:
» Discrete Logarithm + Random Oracle Model

+ Honest Majority
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Performance of Arctic
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lakeaways

o Statelessness is a desirable property for multi-party schemes
* Arctic is an efficient stateless threshold Schnorr signature scheme
» Builds on verifiable pseudorandom secret sharing

* Requires honest majority, efficient for small signing sets (less than 25)
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Step 1: Let (7, ..., r,) be the outputs from each party.

n—1
: : - : Outputs from t honest
Step 2. Define bl' — Z 7:, ) Lj[l] parties completely define a
i=1 polynomial of degree t-1.

Step 3:  Define f(x) = by + by x + b,x* + ... + b, _x""!
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VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.

n—1
: : - : Outputs from t honest
Step 2. Define bi — z 7:, ) Lj[l] parties completely define a
i=1 polynomial of degree t-1.

Step 3:  Define f(x) = by + byx + box* + ... + b, _x""!

Verify f(x) is of degree t-1 by checking the top-most coefficients

Step 4:
P b =0,..b_; =0

Publicly verifiable when performed over commitments (R;).-~
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