
Stateless and Two-Round
Threshold Schnorr Signatures

Chelsea Komlo

May 15, 2025

University of Waterloo, NEAR One

1

(2,3) Example

Public Key

What are Threshold Signatures?

• Ideally -out-of-

• Key generation via
trusted dealer or DKG

• Secure up to (t-1)
corruptions

t n

2

(2,3) Example

Public Key

What are Threshold Signatures?

• Ideally -out-of-

• Key generation via
trusted dealer or DKG

• Secure up to (t-1)
corruptions

t n

Signing can be done
without revealing secret

keys other parties!

2

Unforgeability

𝒪Sign1

…

A threshold signature scheme is secure if no PPT adversary can win the following game
with non-negligible advantage:

T

(pk, (sk1, …, skn)) ← T . KeyGen(1λ)

𝒪Sign2

𝒪Signr

(pk, {ski}i∈𝖼𝗈𝗋𝗋𝗎𝗉𝗍)

Partial signing queries

on message, signing set

chosen by Adv

Adv. (m*, σ*)

Win if:

- was never queried to

- is valid under

m* 𝒪Sign

σ* (pk*, m*)

𝖼𝗈𝗋𝗋𝗎𝗉𝗍 ⊂ [n], |𝖼𝗈𝗋𝗋𝗎𝗉𝗍 | < t

3

Unforgeability

𝒪Sign1

…

A threshold signature scheme is secure if no PPT adversary can win the following game
with non-negligible advantage:

T

(pk, (sk1, …, skn)) ← T . KeyGen(1λ)

𝒪Sign2

𝒪Signr

(pk, {ski}i∈𝖼𝗈𝗋𝗋𝗎𝗉𝗍)

Partial signing queries

on message, signing set

chosen by Adv

Adv. (m*, σ*)

Win if:

- was never queried to

- is valid under

m* 𝒪Sign

σ* (pk*, m*)

𝖼𝗈𝗋𝗋𝗎𝗉𝗍 ⊂ [n], |𝖼𝗈𝗋𝗋𝗎𝗉𝗍 | < t

3

Unforgeability

𝒪Sign1

…

A threshold signature scheme is secure if no PPT adversary can win the following game
with non-negligible advantage:

T

(pk, (sk1, …, skn)) ← T . KeyGen(1λ)

𝒪Sign2

𝒪Signr

(pk, {ski}i∈𝖼𝗈𝗋𝗋𝗎𝗉𝗍)

Partial signing queries

on message, signing set

chosen by Adv

Adv. (m*, σ*)

Win if:

- was never queried to

- is valid under

m* 𝒪Sign

σ* (pk*, m*)

𝖼𝗈𝗋𝗋𝗎𝗉𝗍 ⊂ [n], |𝖼𝗈𝗋𝗋𝗎𝗉𝗍 | < t

3

Adversary is
allowed to participate

as a signer.

z ← r + c ⋅ sk

How to share ? sk
How to share ? r

Multi-Party Schnorr Signatures

sig = (R, z)
4

One-More Discrete Log (OMDL)
Concurrently Secure

Randomized (Stateful)

Multi-sigs
(n-of-n)

Threshold
(t-of-n)

MuSig [MPSW18, BDN18]

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21]

Schnorr
DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21]

DWMS [AB21]

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM

5

One-More Discrete Log (OMDL)
Concurrently Secure

Randomized (Stateful)

Multi-sigs
(n-of-n)

Threshold
(t-of-n)

MuSig [MPSW18, BDN18]

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21]

Schnorr
DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21]

DWMS [AB21]

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM

5

Honest minority:
up to (t-1) corrupt;
at least one honest

(t total).

Motivation

6

Round
One

Round
Two

Round
N

• Randomized multi-party
schemes require state-keeping
between rounds

Motivation

6

Round
One

Round
Two

Round
N

• Randomized multi-party
schemes require state-keeping
between rounds

• Key recovery attacks are
possible if state is re-used.

Motivation

6

Round
One

Round
Two

Round
N

• Randomized multi-party
schemes require state-keeping
between rounds

• Key recovery attacks are
possible if state is re-used.

• Requires locks (when concurrent)
and careful deletion

Motivation

6

Round
One

Round
Two

Round
N

• Randomized multi-party
schemes require state-keeping
between rounds

• Key recovery attacks are
possible if state is re-used.

• Requires locks (when concurrent)
and careful deletion

• Determinism is a means to
achieve statelessness

Motivation

6

Round
One

Round
Two

Round
N

(Single-Party) Schnorr Signatures

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

7

(Single-Party) Schnorr Signatures

To sign a message :

m
r $ ℤq ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

7

(Single-Party) Schnorr Signatures

σ = (R, z)

To sign a message :

m
r $ ℤq ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

7

(Single-Party) Schnorr Signatures

σ = (R, z)

To verify :

output accept/reject

(PK, σ, m)
c ← H(PK, m, R)

R ⋅ PKc ?= gz

To sign a message :

m
r $ ℤq ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

7

(Single-Party) EdDSA Signatures

σ = (R, z)

To verify :

output accept/reject

(PK, σ, m)
c ← H(PK, m, R)

R ⋅ PKc ?= gz

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

8

(Single-Party) EdDSA Signatures

σ = (R, z)

To verify :

output accept/reject

(PK, σ, m)
c ← H(PK, m, R)

R ⋅ PKc ?= gz

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

8

(Single-Party) EdDSA Signatures

σ = (R, z)

To verify :

output accept/reject

(PK, σ, m)
c ← H(PK, m, R)

R ⋅ PKc ?= gz

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

Prevents issues from
bad randomness.

8

Naively applying EdDSA-style
determinism to existing

randomized multi-party Schnorr
schemes is not secure!

9

Naively applying EdDSA-style
determinism to existing

randomized multi-party Schnorr
schemes is not secure!

Summary: EdDSA-style determinism is not publicly verifiable;

Adversary can pick its nonce randomly without detection

9

10

Towards Multi-Party Deterministic Threshold Schnorr

• Strategy: All parties must prove they generated their nonces honestly.

10

Towards Multi-Party Deterministic Threshold Schnorr

• Strategy: All parties must prove they generated their nonces honestly.

• Prior approaches:

10

Towards Multi-Party Deterministic Threshold Schnorr

• Strategy: All parties must prove they generated their nonces honestly.

• Prior approaches:

• Generic SNARKs: MuSig-DN [GKMN21]

10

Towards Multi-Party Deterministic Threshold Schnorr

• Strategy: All parties must prove they generated their nonces honestly.

• Prior approaches:

• Generic SNARKs: MuSig-DN [GKMN21]

• Generic MPC [NRSW20]

10

Towards Multi-Party Deterministic Threshold Schnorr

• Strategy: All parties must prove they generated their nonces honestly.

• Prior approaches:

• Generic SNARKs: MuSig-DN [GKMN21]

• Generic MPC [NRSW20]

10

Goal of this work: To design a practical (efficient, simple)
deterministic threshold signature.

Towards Multi-Party Deterministic Threshold Schnorr

Arctic: A Two-Round Stateless
Threshold Schnorr Signature

11

Stateless Threshold Signatures, with Tradeoffs

12

Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

12

Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

12

Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

• Assumption of honest majority (minimum (2t-1) signers).

12

Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

• Assumption of honest majority (minimum (2t-1) signers).

• Tolerates t-1 corruptions, assumes t honest signers

12

Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

• Assumption of honest majority (minimum (2t-1) signers).

• Tolerates t-1 corruptions, assumes t honest signers

• Efficient for moderately-sized groups (i.e., less than 25).

12

Arctic

13

Arctic

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive

2. Shamir secret share sk into

3. Generate VPSS keys

4. Send key shares

to all parties.

sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive

2. Shamir secret share sk into

3. Generate VPSS keys

4. Send key shares

to all parties.

sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive

2. Shamir secret share sk into

3. Generate VPSS keys

4. Send key shares

to all parties.

sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(R, {zi}i∈C)

z ← ∑
i∈C

zi ⋅ λi

σ = (R, z)
Output (m, σ)

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive

2. Shamir secret share sk into

3. Generate VPSS keys

4. Send key shares

to all parties.

sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(R, {zi}i∈C)

z ← ∑
i∈C

zi ⋅ λi

σ = (R, z)
Output (m, σ)

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive

2. Shamir secret share sk into

3. Generate VPSS keys

4. Send key shares

to all parties.

sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

𝖵𝖾𝗋𝗂𝖿𝗒(PK, m, σ)

Identical to single-party

Schnorr.

Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(R, {zi}i∈C)

z ← ∑
i∈C

zi ⋅ λi

σ = (R, z)
Output (m, σ)

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive

2. Shamir secret share sk into

3. Generate VPSS keys

4. Send key shares

to all parties.

sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

𝖵𝖾𝗋𝗂𝖿𝗒(PK, m, σ)

Identical to single-party

Schnorr.

Correctness: and r = ∑
i∈C

riλi sks = ∑
i∈C

sks
iλi

Verifiable Pseudorandom Secret Sharing

14

Verifiable Pseudorandom Secret Sharing

• Akin to a secret-shared PRF.

14

Verifiable Pseudorandom Secret Sharing

• Akin to a secret-shared PRF.

• Builds on pseudorandom secret sharing scheme by Cramer et al.[CDI05], but
with an additional Verify algorithm.

14

Verifiable Pseudorandom Secret Sharing

• Akin to a secret-shared PRF.

• Builds on pseudorandom secret sharing scheme by Cramer et al.[CDI05], but
with an additional Verify algorithm.

• Verification ensures each party followed the protocol honestly.

14

Replicated Secret Sharing: Example

 corruption threshold t=2
minimum signers=3

total signers n=4

a1 = (2,3,4)

15

a2 = (1,3,4) a3 = (1,2,4) a4 = (1,2,3)

Replicated Secret Sharing: Example

 corruption threshold t=2
minimum signers=3

total signers n=4

Where skv = ϕ1 + ϕ2 + ϕ3 + ϕ4

ϕ1 ϕ2 ϕ3 ϕ4

a1 = (2,3,4)

15

a2 = (1,3,4) a3 = (1,2,4) a4 = (1,2,3)

Replicated Secret Sharing: Example

 corruption threshold t=2
minimum signers=3

total signers n=4

Where skv = ϕ1 + ϕ2 + ϕ3 + ϕ4

ϕ1 ϕ2 ϕ3 ϕ4

a1 = (2,3,4)

Set for each skv
j ← {ϕi} i : j ∈ ai

15

a2 = (1,3,4) a3 = (1,2,4) a4 = (1,2,3)

Replicated Secret Sharing: Example

 corruption threshold t=2
minimum signers=3

total signers n=4

Where skv = ϕ1 + ϕ2 + ϕ3 + ϕ4

ϕ1 ϕ2 ϕ3 ϕ4

a1 = (2,3,4)

Set for each skv
j ← {ϕi} i : j ∈ ai

15

a2 = (1,3,4) a3 = (1,2,4) a4 = (1,2,3)

Intuition: is information-theoretically hidden;
each (t-1) corrupt parties lack exactly one .

skv

ϕi

Verifiable Pseudorandom Secret Sharing in Arctic

16

Verifiable Pseudorandom Secret Sharing in Arctic

rk ←
(n − 1

t − 1)
∑
i=1

H(ϕi, m) ⋅ Lai
(k), for each ϕi ∈ skv

i

16

To derive Arctic nonces:

Verifiable Pseudorandom Secret Sharing in Arctic

rk ←
(n − 1

t − 1)
∑
i=1

H(ϕi, m) ⋅ Lai
(k), for each ϕi ∈ skv

i

 for r = ∑
j∈C

ri ⋅ λi = f′ (0) C ⊂ [n]

16

To derive Arctic nonces:

To derive joint Arctic nonce:

Verifiable Pseudorandom Secret Sharing in Arctic

rk ←
(n − 1

t − 1)
∑
i=1

H(ϕi, m) ⋅ Lai
(k), for each ϕi ∈ skv

i

 for r = ∑
j∈C

ri ⋅ λi = f′ (0) C ⊂ [n]

16

To derive Arctic nonces:

To derive joint Arctic nonce:

Verifiable Pseudorandom Secret Sharing in Arctic

rk ←
(n − 1

t − 1)
∑
i=1

H(ϕi, m) ⋅ Lai
(k), for each ϕi ∈ skv

i

 for r = ∑
j∈C

ri ⋅ λi = f′ (0) C ⊂ [n]

16

To derive Arctic nonces:

To derive joint Arctic nonce:

Interpolate to

the constant term of an
unknown degree t-1

polynomial f’.

Security of Arctic

17

Security of Arctic

• Unforgeable, assuming:

17

Security of Arctic

• Unforgeable, assuming:

• Discrete Logarithm + Random Oracle Model

17

Security of Arctic

• Unforgeable, assuming:

• Discrete Logarithm + Random Oracle Model

• Honest Majority

17

Performance of Arctic

18

MuSig-DN uses Bulletproofs to prove
a party generated their nonce honestly

Takeaways

19

Takeaways

• Statelessness is a desirable property for multi-party schemes

19

Takeaways

• Statelessness is a desirable property for multi-party schemes

• Arctic is an efficient stateless threshold Schnorr signature scheme

19

Takeaways

• Statelessness is a desirable property for multi-party schemes

• Arctic is an efficient stateless threshold Schnorr signature scheme

• Builds on verifiable pseudorandom secret sharing

19

Takeaways

• Statelessness is a desirable property for multi-party schemes

• Arctic is an efficient stateless threshold Schnorr signature scheme

• Builds on verifiable pseudorandom secret sharing

• Requires honest majority, efficient for small signing sets (less than 25)

19

20

21

22

VPSS Verification

23

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

23

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

23

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

Step 1: Let be the outputs from each party.(r1, …, rn)

23

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

Step 1: Let be the outputs from each party.(r1, …, rn)

Step 2: Define bi =
n−1

∑
j=1

rj ⋅ Lj[i]

23

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

Step 1: Let be the outputs from each party.(r1, …, rn)

Step 2: Define bi =
n−1

∑
j=1

rj ⋅ Lj[i]

Step 3: Define f(x) = b0 + b1x + b2x2 + … + bn−1xn−1:

23

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

Step 1: Let be the outputs from each party.(r1, …, rn)

Step 2: Define bi =
n−1

∑
j=1

rj ⋅ Lj[i]

Step 3: Define f(x) = b0 + b1x + b2x2 + … + bn−1xn−1:

23

Step 4:
Verify is of degree t-1 by checking the top-most coefficients

f(x)
bt = 0,…, bn−1 = 0

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

Step 1: Let be the outputs from each party.(r1, …, rn)

Step 2: Define bi =
n−1

∑
j=1

rj ⋅ Lj[i]

Step 3: Define f(x) = b0 + b1x + b2x2 + … + bn−1xn−1:

23

Step 4:
Verify is of degree t-1 by checking the top-most coefficients

f(x)
bt = 0,…, bn−1 = 0

Outputs from t honest
parties completely define a
polynomial of degree t-1.

VPSS Verification
• Verifying parties honestly followed the protocol can be done collectively.

• Example where the coalition of signers |C| = n

Step 1: Let be the outputs from each party.(r1, …, rn)

Step 2: Define bi =
n−1

∑
j=1

rj ⋅ Lj[i]

Step 3: Define f(x) = b0 + b1x + b2x2 + … + bn−1xn−1:

23

Step 4:
Verify is of degree t-1 by checking the top-most coefficients

f(x)
bt = 0,…, bn−1 = 0

Outputs from t honest
parties completely define a
polynomial of degree t-1.

Publicly verifiable when performed over commitments (Ri)i∈C

