Stateless and Two-Round
Threshold Schnorr Signatures

What are Threshold Signatures?

?Public Key

e [deally 7-out-of-n

e Key generation via
trusted dealer or DKG

e Secure up to (t-1)
corruptions

(2,3) Example 2

What are Threshold Signatures?

(2,3) Example 2

?Public Key

e [deally 7-out-of-n

e Key generation via
trusted dealer or DKG

e Secure up to (t-1)
corruptions

Unforgeability

A threshold signature scheme 1 is secure if no PPT adversary can win the following game
with non-negligible advantage:

corrupt C [n], | corrupt| < ¢
d———————————————————

(Dk, sk} iEcorrupt)

—»

(pk, (sky, ..., sk,)) < T.KeyGen(1*)

Partial signing queries Adv. v
on message, signing set (m*, 6)
chosen by Adv S

Win Iif:

- m* was never queried to (0°'8”
%k

- o is valid under (pk , m™)

Unforgeabillity

A threshold signature scheme 1 is secure if no PPT adversary can win the following game
with non-negligible advantage:

corrupt C [n], | corrupt| < ¢
d———————————————————

(pk, (sky, ..., sk,)) < T.KeyGen(1*)
(pk’ {Ski}iEcorrupt)

Partial signing queries Adv. v
on message, signing set (m*, 6)
chosen by Adv S
—
-_— .
Win if:
—

- m* was never queried to (0°'8”
. . *k
- o is valid under (pk , m™)

Unforgeabillity

A threshold signature scheme 1 is secure if no PPT adver Adversaryis ‘ollowing game

with non-negligible advantage: allowed to participate
as a signer.

corrupt C [n], | corrupt| < ¢
d———————————————————

(pk, (sky, ..., sk,)) < T.KeyGen(1*)
(pk’ {Ski}iEcorrupt)

Partial signing queries Adv. v
on message, signing set (m*, 6)
chosen by Adv S

Win Iif:

- m* was never queried to (0°'8”
%k

- o is valid under (pk , m™)

Multi-Party Schnorr Signatures

How to share sk ?

How to share r ? \ /

7—1r+c-sk

Sig = (RQ

- Signing
Scheme Assumptions Rounds
I\/I.uS|g [I\/IPSV\./18, BDN18] 31 +ROM ;
Multi-sigs SimpleMuSig [BDN18, CKM21]
(n-0t-n) MuSig2 [NRrs21]
DWMS [aB21] OMDL+ROM)
SpeedyMuSig [CkMm21]
Lindell22 Schnorr 3
Threshold Sparkle [ckm23] DL+ROM
(t-of-n) FROST [KG20, BCKMTZ22]
FROST2 [cKn21 OMDL+ROM | 2

Concurrently Secure \/
Randomized (Stateful) x One-More

Discrete Log (OMDL)

Multi-sigs
(n-of-n)

Threshold
(t-of-n)

Concurrently Secure \/

Scheme

Assumptions

Signing

Rounds
MuSig (MPSw18, BDN18]
SimpleMuSig [BDN18, CKM21] DL+ROM 3
MuSig2 [NRrs21]
DWMS [aB21] OMDL+ROM) Honest minority:

- up to (t-1) corrupt;
SpeedyMUSIQ [CKM21] at least one honest
Lindell22 Schnorr . (t total).
Sparkle [ckm23] DL+ROM
FROST [KG20, BCKMTZ22] OMDL +ROM)

FROST?2 [ckm21]

Randomized (Stateful) x

One-More Discrete Log (OMDL)

Motivation

Motivation o] — Ub

- Randomized multi-party \\
WO

schemes require state-keeping
between rounds

\
\
T
>
-

Motivation

- Randomized multi-party
schemes require state-keeping
between rounds

- Key recovery attacks are
possible If state Is re-used.

Motivation Foma] —

- Randomized multi-party
schemes require state-keeping Two

between rounds

- Key recovery attacks are
possible If state Is re-used.

+ Requires locks (when concurrent)
and careful deletion

Motivation Foma] —

- Randomized multi-party
schemes require state-keeping Two

between rounds

- Key recovery attacks are
possible If state Is re-used.

+ Requires locks (when concurrent)
and careful deletion

« Determinism Is a means to
achieve statelessness m

(Single-Party) Schnorr Signatures

t1

£

To generate a key pair:
Sk<$—L-; PK(—gSk

(Single-Party) Schnorr Signatures

t1

£

To generate a key pair:
sk & F ; PK <« g%

To sign a message m:
$
r—2,; R<g
c — H(PK,m,R)
7« r+csk

(Single-Party) Schnorr Signatures

£

To generate a key pair:
sk & F ; PK <« g%

To sign a message m:
$
r—2,; R<g
c — H(PK,m,R)
7« r+csk

(Single-Party) Schnorr Signatures

)

Tokgeﬂ;ne_re.tte]D e}{ key paSLr: To verify (PK, o, m):
sk — [F ; — g ¢ — H(PK,m, R)

R - PK¢ = g7
To sign a message m: output accept/reject
re7 ; R« g’
q b
c — H(PK,m,R)
7 < r+csk

(Single-Party) EADSA Signatures

)

Tokggnf_réte][) e}{ key paSLr: To verify (PK, o, m):
SK «—) — 8 C(—H(PK,m,R)

R - PK¢ = g°
To sign a message m: output accept/reject
r— H(m,sk) ; R« g’
c — H(PK,m,R)

7 «— r+ csk

(Single-Party) EADSA Signatures

)

Tokggnf_réte][) a}{ key paSLr: To verify (PK, o, m):
SK «—) — 8 C(—H(PK,m,R)

(?

R - PK¢ = g7

To sign a message m: output accept/reject
e Hin b R <
c — H(PK,m,R)
7« r+csk

(Single-Party) EADSA Signatures

)

c=(R,2)

)

To generate a key paiir: To verify (PK, &, m):
sk & F; PK « g* Ty
’ Prevents issuesfrom ¢ <— H(PK, m, R)

(?

bad randomness. .
R - PK¢ = g~

To sign a message m: output accept/reject
e Hin b R <
c — H(PK,m,R)
7« r+csk

Naively applying EADSA-style
determinism to existing
randomized multi-party Schnorr
schemes Is not secure!

Naively applying EADSA-style
determinism to existing
randomized multi-party Schnorr
schemes Is not secure!

Summary: EdDSA-style determinism is not publicly verifiable;
Adversary can pick its nonce randomly without detection

9

Towards Multi-Party Deterministic Threshold Schnorr

Towards Multi-Party Deterministic Threshold Schnorr

o Strategy: All parties must prove they generated their nonces honestly.

10

Towards Multi-Party Deterministic Threshold Schnorr

o Strategy: All parties must prove they generated their nonces honestly.

* Prior approaches:

10

Towards Multi-Party Deterministic Threshold Schnorr

o Strategy: All parties must prove they generated their nonces honestly.

* Prior approaches:

* Generic SNARKs: MuSig-DN [GKMN21]

10

Towards Multi-Party Deterministic Threshold Schnorr

o Strategy: All parties must prove they generated their nonces honestly.

* Prior approaches:

* Generic SNARKs: MuSig-DN [GKMN21]
 Generic MPC [NRSWZ20]

10

Towards Multi-Party Deterministic Threshold Schnorr

o Strategy: All parties must prove they generated their nonces honestly.

* Prior approaches:

* Generic SNARKs: MuSig-DN [GKMN21]
 Generic MPC [NRSWZ20]

10

Arctic: A Two-Round Stateless
Threshold Schnorr Signature

Stateless Threshold Signatures, with Tradeoffs

y:Y

Stateless Threshold Signatures, with Tradeoffs

- We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

| y:Y

Stateless Threshold Signatures, with Tradeoffs

- We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

» Does not require generic MPC or SNARKS. \/

| y:Y

Stateless Threshold Signatures, with Tradeoffs

- We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

» Does not require generic MPC or SNARKS. \/

 Assumption of honest majority (minimum (2t-1) signers). x

12

Stateless Threshold Signatures, with Tradeoffs

- We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

» Does not require generic MPC or SNARKS. \/

 Assumption of honest majority (minimum (2t-1) signers). x

- Tolerates t-1 corruptions, assumes t honest signers

12

Stateless Threshold Signatures, with Tradeoffs

- We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

» Does not require generic MPC or SNARKS. \/

 Assumption of honest majority (minimum (2t-1) signers). x

- Tolerates t-1 corruptions, assumes t honest signers

v

- Efficient for moderately-sized groups (i.e., less than 25).

12

Arctic

KeyGen(1%)

. Derive

. Shamir secret share sk into
(ski, ..., sk;)

. Generate VPSS keys
(sky, ..., sk,)

. Send key shares (sk;, sk;)
to all parties.

13

KeyGen(1%)

. Derive

. Shamir secret share sk into
(ski, ..., sk;)

. Generate VPSS keys
(sky, ..., sk,)

. Send key shares (sk;, sk;)
to all parties.

Signl(sk}’, m, C)

(r,R;) « VPSS .Gen(sk;, m, C)
Output R,

13

KeyGen(I”) Signz(sk}’, sk;,m, C, (R:}ico)
. Derive
If VPSS . Verify(i, C, {R;},c0) # 1

. Shamir secret share sk into Output

(ski, ..., sky,) (r, R.) < VPSS .Gen(sk!, m, C)
. Generate VPSS keys

(sky, ..., sk,) R « HRZ.A"
. Send key shares (sk;, sk;) ieC

to all parties. c < H.(PK,m,R)

Sign, (sk;, m, C) g < 1;+ (¢ - sk;)
Output z,

(r,R;) « VPSS .Gen(sk;, m, C)
Output R,

13

KeyGen(1%) Sign,(sk;, sk;,m, C, {R;},cc) Combine(R, {z;},c¢)
. Derive
if VPSS . Verify(i, C, {R;},c) # 1

. Shamir secret share sk into Output

(ski, ..., sky,) (r, R.) < VPSS .Gen(sk!, m, C)
. Generate VPSS keys

(s, ..., sk") R < H R4 Output (m, o)
. Send key shares (sk;, sk;) c

to all parties. c < H.(PK,m,R)

Sign, (sk;, m, C) g < 1;+ (¢ - sk;)
Output z,

(r,R;) « VPSS .Gen(sk;, m, C)
Output R,

13

KeyGen(1%) Sign,(sk;, sk;,m, C, {R;},cc) Combine(R, {z;},c¢)
. Derive
if VPSS . Verify(i, C, {R;},c) # 1

. Shamir secret share sk into Output

(ski, ..., sky,) (r, R.) < VPSS .Gen(sk!, m, C)
. Generate VPSS keys

(s, ..., sk") R < H R4 Output (m, o)
. Send key shares (sk;, sk;) c

to all parties. c < H.(PK,m,R) Verify(PK, m, o)

\)
Sign, (sk;, m, C) g < Ii+ (c - sky) Identical to single-party
Output z, Schnorr.

(r,R;) « VPSS .Gen(sk;, m, C)
Output R,

13

Sign, (sk;, ski, m, C, {R;}cc) Combine(R, {z;} ;cc)
if VPSS. Verify(i,C, {R},cc) # 1

. Shamir secret share sk into Output
(SK1, -, 5kn) (r,R) < VPSS .Gen(sk!, m, C)

. Generate VPSS keys O
. utput (m,
(ski, ..., sk,) R « I IRl.’l’ put (m, o)
. Send key shares (sk;, sk;) ieC

to all parties. c < H.(PK,m,R) Verify(PK, m, o)

\)
Sign, (sk;, m, C) g < 1t (c - ski) Identical to single-party

' Sch .
(r,R;) « VPSS .Gen(sk;, m, C) Output $i chnorr

Output R,

Correctness: r = Z rd; and sk’ = 2 sk;A;
ieC ieC

13

Verifiable Pseudorandom Secret Sharing

Verifiable Pseudorandom Secret Sharing

- AKIn to a secret-shared PRF

14

Verifiable Pseudorandom Secret Sharing

- AKIn to a secret-shared PRF

» Builds on pseudorandom secret sharing scheme by Cramer et al.[CDIOS], but
with an additional Verify algorithm.

14

Verifiable Pseudorandom Secret Sharing

- AKIn to a secret-shared PRF

» Builds on pseudorandom secret sharing scheme by Cramer et al.[CDIOS], but
with an additional Verify algorithm.

» Verification ensures each party followed the protocol honestly.

14

Replicated Secret Sharing: Example n

t1

corruption threshold t=2
minimum signers=3
total sighers n=4

15

Replicated Secret Sharing: Example n

corruption threshold t=2
minimum signers=3
total sighers n=4

15

Replicated Secret Sharing: Example n

Where sk" = ¢, + ¢, + ¢ + ¢,

Set sk; < {¢);} foreachi:j € q,

corruption threshold t=2
minimum signers=3
total sighers n=4

15

Replicated Secret Sharing: Example n

Where sk" = ¢, + ¢, + ¢ + ¢,

Set sk; < {¢);} foreachi:j € q,

Intuition: sk is information-theoretically hidden; corruption threshold t=2
each (t-1) corrupt parties lack exactly one ¢,. l minimum signers=3
total sighers n=4

15

Verifiable Pseudorandom Secret Sharing in Arctic

Verifiable Pseudorandom Secret Sharing in Arctic

To derive Arctic honces:

=
1, Z H(p,,m) - La,.(k)» for each ¢, € sk;
i=1

16

Verifiable Pseudorandom Secret Sharing in Arctic

To derive Arctic honces:

=
1, Z H(p,,m) - La,.(k)» for each ¢, € sk;
i=1

To derive joint Arctic nonce:
r = Zri-/lizf’(())forCC 7]

jeC

16

Verifiable Pseudorandom Secret Sharing in Arctic

To derive Arctic honces:

=
1, Z H(p,,m) - La,.(k)» for each ¢, € sk;
i=1

To derive joint Arctic nonce:

1 (0)ffor C C |n]

16

Verifiable Pseudorandom Secret Sharing in Arctic

To derive Arctic honces:

(1))
1, Z H(¢;, m) - L,(k), for each ¢; € sk;
i=1

To derive joint Arctic nonce:
Interpolate to

the constant term of an
unknown degree t-1

f /(O) for C C [n] polynomial f’.

16

Security of Arctic

Security of Arctic

+ Unforgeable, assuming:

17

Security of Arctic

+ Unforgeable, assuming:

» Discrete Logarithm + Random Oracle Model

17

Security of Arctic

+ Unforgeable, assuming:
» Discrete Logarithm + Random Oracle Model

+ Honest Majority

17

Performance of Arctic

Wall clock time (ms)

ok
-
W

ok
-
(\V)

ek
-
i

ek
-
o

l

T

- MuSig-DN

| | |

D 10 15

20
Number of parties (|C| = n)

20

MuSig-DN uses Bulletproofs to prove
a party generated their nonce honestly

—

e
-
W

Wall clock time (ms)

o
-
(\)

4-core 3.7 GHz

40-core 2.3 GHz
| l J J l l

1 2 4 8 16 32
Number of cores

lakeaways

lakeaways

o Statelessness is a desirable property for multi-party schemes

19

lakeaways

o Statelessness is a desirable property for multi-party schemes

* Arctic is an efficient stateless threshold Schnorr signature scheme

19

lakeaways

o Statelessness is a desirable property for multi-party schemes
* Arctic is an efficient stateless threshold Schnorr signature scheme

* Builds on verifiable pseudorandom secret sharing

19

lakeaways

o Statelessness is a desirable property for multi-party schemes
* Arctic is an efficient stateless threshold Schnorr signature scheme
» Builds on verifiable pseudorandom secret sharing

* Requires honest majority, efficient for small signing sets (less than 25)

19

20

21

22

VPSS Verification

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.
n—1

Step 21 Define b, = z r; - Lj[i]
j=1

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.
n—1

Step 21 Define b, = Z 7 Lj[i]
j=1

Step 3: Define f(x) = by + byx + box* + ... + b, _x""!

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.
n—1

Step 21 Define b, = Z 7 Lj[i]
j=1

Step 3: Define f(x) = by + byx + box* + ... + b, _x""!

Verify f(x) is of degree t-1 by checking the top-most coefficients

Step 4:
P b =0,..b_; =0

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.

n—1
: : - : Outputs from t honest
Step 2. Define bl' — Z 7:,) Lj[l] parties completely define a
i=1 polynomial of degree t-1.

Step 3: Define f(x) = by + by x + b,x* + ... + b, _x""!

Verify f(x) is of degree t-1 by checking the top-most coefficients

Step 4:
P b =0,..b_; =0

23

VPSS Verification

* Verifying parties honestly followed the protocol can be done collectively.

* Example where the coalition of signers |C| = n

Step 1: Let (7, ..., r,) be the outputs from each party.

n—1
: : - : Outputs from t honest
Step 2. Define bi — z 7:,) Lj[l] parties completely define a
i=1 polynomial of degree t-1.

Step 3: Define f(x) = by + byx + box* + ... + b, _x""!

Verify f(x) is of degree t-1 by checking the top-most coefficients

Step 4:
P b =0,..b_; =0

Publicly verifiable when performed over commitments (R;).-~

23

