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Public Key

What are Threshold Signatures?

• Ideally -out-of-  

• Key generation via 
trusted dealer or DKG 

• Secure up to (t-1) 
corruptions

t n

Signing can be done 
without revealing secret 

keys other parties!
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Unforgeability

𝒪Sign1

…

A threshold signature scheme  is secure if no PPT adversary can win the following game 
with non-negligible advantage:

T

(pk, (sk1, …, skn)) ← T . KeyGen(1λ)

𝒪Sign2

𝒪Signr

(pk, {ski}i∈𝖼𝗈𝗋𝗋𝗎𝗉𝗍)

Partial signing queries 

on message, signing set 


chosen by Adv

Adv. (m*, σ*)

Win if: 

-  was never queried to 

-  is valid under  

m* 𝒪Sign

σ* (pk*, m*)

𝖼𝗈𝗋𝗋𝗎𝗉𝗍 ⊂ [n], |𝖼𝗈𝗋𝗋𝗎𝗉𝗍 | < t
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Adversary is 
allowed to participate 

as a signer.



z ← r + c ⋅ sk

How to share  ? sk
How to share  ? r

Multi-Party Schnorr Signatures

sig = (R, z)
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One-More Discrete Log (OMDL)
Concurrently Secure

Randomized (Stateful)

Multi-sigs 
(n-of-n)

Threshold 
(t-of-n)

MuSig [MPSW18, BDN18] 

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22] 

FROST2 [CKM21]

Schnorr 
DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21] 

DWMS [AB21] 

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM
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Honest minority:  
up to (t-1) corrupt;  
at least one honest 

(t total).
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• Randomized multi-party 
schemes require state-keeping 
between rounds

• Key recovery attacks are 
possible if state is re-used.

• Requires locks (when concurrent) 
and careful deletion

• Determinism is a means to 
achieve statelessness

Motivation

6

Round  
One

Round  
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Round  
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(Single-Party) Schnorr Signatures

To generate a key pair:

sk $ 𝔽 ; PK ← gsk
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r $ ℤq ; R ← gr

c ← H(PK, m, R)
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To generate a key pair:

sk $ 𝔽 ; PK ← gsk
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(Single-Party) EdDSA Signatures

σ = (R, z)

To verify :
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(Single-Party) EdDSA Signatures

σ = (R, z)

To verify :






output accept/reject

(PK, σ, m)
c ← H(PK, m, R)

R ⋅ PKc ?= gz

To sign a message :







m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

Prevents issues from 
bad randomness.
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Naively applying EdDSA-style 
determinism to existing 

randomized multi-party Schnorr 
schemes is not secure!
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Naively applying EdDSA-style 
determinism to existing 

randomized multi-party Schnorr 
schemes is not secure!

Summary: EdDSA-style determinism is not publicly verifiable;

Adversary can pick its nonce randomly without detection
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• Strategy: All parties must prove they generated their nonces honestly.

• Prior approaches: 

• Generic SNARKs: MuSig-DN [GKMN21]

• Generic MPC [NRSW20]
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Goal of this work: To design a practical (efficient, simple) 
deterministic threshold signature. 

Towards Multi-Party Deterministic Threshold Schnorr



Arctic: A Two-Round Stateless 
Threshold Schnorr Signature

11



Stateless Threshold Signatures, with Tradeoffs

12



Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

12



Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

12



Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

• Assumption of honest majority (minimum (2t-1) signers).

12



Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

• Assumption of honest majority (minimum (2t-1) signers).

• Tolerates t-1 corruptions, assumes t honest signers

12



Stateless Threshold Signatures, with Tradeoffs
• We define Arctic, a two-round deterministic threshold Schnorr signature scheme.

• Does not require generic MPC or SNARKS.

• Assumption of honest majority (minimum (2t-1) signers).

• Tolerates t-1 corruptions, assumes t honest signers

• Efficient for moderately-sized groups (i.e., less than 25).
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1. Derive 



2. Shamir secret share sk into 



3. Generate VPSS keys



4. Send key shares  

to all parties.


sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)



Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive 



2. Shamir secret share sk into 



3. Generate VPSS keys



4. Send key shares  

to all parties.


sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)



Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive 



2. Shamir secret share sk into 



3. Generate VPSS keys



4. Send key shares  

to all parties.


sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)



Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(R, {zi}i∈C)

z ← ∑
i∈C

zi ⋅ λi

σ = (R, z)
Output (m, σ)

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive 



2. Shamir secret share sk into 



3. Generate VPSS keys



4. Send key shares  

to all parties.


sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)



Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(R, {zi}i∈C)

z ← ∑
i∈C

zi ⋅ λi

σ = (R, z)
Output (m, σ)

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive 



2. Shamir secret share sk into 



3. Generate VPSS keys



4. Send key shares  

to all parties.


sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv

i , sks
i)

𝖵𝖾𝗋𝗂𝖿𝗒(PK, m, σ)

Identical to single-party 

Schnorr.



Arctic

𝖲𝗂𝗀𝗇1(skv
i , m, C)

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

Output Ri

𝖲𝗂𝗀𝗇2(skv
i , sks

i , m, C, {Ri}i∈C)

𝗂𝖿 𝖵𝖯𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, C, {Ri}i∈C) ≠ 1
𝖮𝗎𝗍𝗉𝗎𝗍 ⊥

(ri, Ri) ← 𝖵𝖯𝖲𝖲 . 𝖦𝖾𝗇(skv
i , m, C)

R ← ∏
i∈C

Rλi
i

c ← Hc(PK, m, R)
zi ← ri + (c ⋅ sks

i)
Output zi

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(R, {zi}i∈C)

z ← ∑
i∈C

zi ⋅ λi

σ = (R, z)
Output (m, σ)

13

𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
1. Derive 



2. Shamir secret share sk into 



3. Generate VPSS keys



4. Send key shares  

to all parties.


sks ← ℤq; PK ← gsks

(sks
1, …, sks

n)

(skv
1, …, skv

n)
(skv
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Identical to single-party 
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Correctness:     and     r = ∑
i∈C
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i∈C

sks
iλi
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Verifiable Pseudorandom Secret Sharing

• Akin to a secret-shared PRF.

• Builds on pseudorandom secret sharing scheme by Cramer et al.[CDI05], but 
with an additional Verify algorithm.

• Verification ensures each party followed the protocol honestly.
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Replicated Secret Sharing: Example

 corruption threshold t=2  
minimum signers=3  

total signers n=4

a1 = (2,3,4)
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Replicated Secret Sharing: Example

 corruption threshold t=2  
minimum signers=3  

total signers n=4

Where skv = ϕ1 + ϕ2 + ϕ3 + ϕ4

ϕ1 ϕ2 ϕ3 ϕ4

a1 = (2,3,4)

Set   for each skv
j ← {ϕi} i : j ∈ ai

15

a2 = (1,3,4) a3 = (1,2,4) a4 = (1,2,3)

Intuition:  is information-theoretically hidden;
each (t-1) corrupt parties lack exactly one .

skv

ϕi
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rk ←
(n − 1

t − 1 )
∑
i=1

H(ϕi, m) ⋅ Lai
(k),  for each ϕi ∈ skv

i
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To derive Arctic nonces:


To derive joint Arctic nonce:

Interpolate to 

the constant term of an 
unknown degree t-1 

polynomial f’. 
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Security of Arctic

• Unforgeable, assuming: 

• Discrete Logarithm + Random Oracle Model

• Honest Majority
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Performance of Arctic 
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MuSig-DN uses Bulletproofs to prove 
a party generated their nonce honestly
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Takeaways

• Statelessness is a desirable property for multi-party schemes

• Arctic is an efficient stateless threshold Schnorr signature scheme

• Builds on verifiable pseudorandom secret sharing

• Requires honest majority, efficient for small signing sets (less than 25)
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Step 1: Let  be the outputs from each party.(r1, …, rn)

Step 2: Define bi =
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∑
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Step 3: Define f(x) = b0 + b1x + b2x2 + … + bn−1xn−1:

23

Step 4:
Verify  is of degree t-1 by checking the top-most coefficients 

   

f(x)
bt = 0,…, bn−1 = 0

Outputs from t honest 
parties completely define a 
polynomial of degree t-1.
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Step 1: Let  be the outputs from each party.(r1, …, rn)
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∑
j=1

rj ⋅ Lj[i]

Step 3: Define f(x) = b0 + b1x + b2x2 + … + bn−1xn−1:

23

Step 4:
Verify  is of degree t-1 by checking the top-most coefficients 

   

f(x)
bt = 0,…, bn−1 = 0

Outputs from t honest 
parties completely define a 
polynomial of degree t-1.

Publicly verifiable when performed over commitments (Ri)i∈C


