
Towards Leakage-Resilient Ratcheted Key Exchange

Daniel Collins, Simone Colombo, Sina Schaeffler
Texas A&M University, King’s College London, IBM Research/ETH Zurich

PKC, Røros, 13th of May 2025



Plan

1. Introduction
▶ Ratcheting
▶ Unidirectional ratcheting and its secturity
▶ Leakage

2. Security notions for leakage-resilient unidirectional ratcheting
▶ Key indistinguishability
▶ One-wayness

3. For future

2/13



Ratcheting
Introduction

Ratcheting: Key management technique in messaging
applications

Goal:
▶ AEAD

▶ Forward security

▶ Post-compromise security

Idea: Key updates

Example:
▶ One-way key derivation applied after

each send/receive

▶ DH with fresh ephemeral keys at each
complete exchange

3/13



Unidirectional Ratcheted Key Exchange (URKE)
Introduction

Simplified ratcheting for easier analysis

Principle:

Sender only sends

Receiver only receives

keygen

StateSender StateReceiver

k

randomness, ad

StateSender

send
k

ad

StateReceiver

receive
C

k

randomness, ad

StateSender

send
k

ad

StateReceiver

receive
C

k

randomness, ad

StateSender

send
k

ad

StateReceiver

receive
C

4/13

Definition from:
Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Rösler, Vaudenay, Asiacrypt 2020



Balli, Rösler, Vaudenay on URKE without leakage
Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
Challenge: id → real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

Need to prevent trivial attacks (Example: ExposeReceiver, Send, Challenge)

Construction built on

▶ SUF-secure MAC (Message Authentication Code)

▶ KUOW-secure kuKEM (key updatable Key Exchange Mechanism)

5/13

KIND game and construction from:
Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Rösler, Vaudenay, Asiacrypt 2020



Balli, Rösler, Vaudenay on URKE without leakage
Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
Challenge: id → real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

Need to prevent trivial attacks (Example: ExposeReceiver, Send, Challenge)

Construction built on

▶ SUF-secure MAC (Message Authentication Code)

▶ KUOW-secure kuKEM (key updatable Key Exchange Mechanism)

5/13

KIND game and construction from:
Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Rösler, Vaudenay, Asiacrypt 2020



Balli, Rösler, Vaudenay on URKE without leakage
Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
Challenge: id → real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

Need to prevent trivial attacks (Example: ExposeReceiver, Send, Challenge)

Construction built on

▶ SUF-secure MAC (Message Authentication Code)

▶ KUOW-secure kuKEM (key updatable Key Exchange Mechanism)

5/13

KIND game and construction from:
Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Rösler, Vaudenay, Asiacrypt 2020



Leakage Resilience
Introduction

Adversary’s knowledge

Knowlegde Limit

Secret

Public

gNormalg

Knowlegde Limit

Secret

Public

Leakage

Knowlegde LimitSecret

Public

Exposed

Leakage Resilence (LR): Theorectical model for side channels

6/13



Leakage Resilience
Introduction

Adversary’s knowledge

Knowlegde Limit

Secret

Public

gNormalg

Knowlegde Limit

Secret

Public

Leakage

Knowlegde LimitSecret

Public

Exposed

Leakage Resilence (LR): Theorectical model for side channels

6/13



Leakage Resilience
Introduction

Adversary’s knowledge

Knowlegde Limit

Secret

Public

gNormalg

Knowlegde Limit

Secret

Public

Leakage

Knowlegde LimitSecret

Public

Exposed

Leakage Resilence (LR): Theorectical model for side channels

6/13



Leakage Resilience: Choice
Introduction

Adversary Leakage Oracle

f : Secrets → {0, 1}

f (secret)∈ {0, 1}

When to call it:

▶ Bounded leakage: Up to B calls to the oracle in entire game

▶ Continual leakage: Up to B calls to the oracle in each interval
(for ex. between 2 calls to another oracle)

7/13



Leakage Resilience: Choice
Introduction

Adversary Leakage Oracle

f : Secrets → {0, 1}

f (secret)∈ {0, 1}

When to call it:

▶ Bounded leakage: Up to B calls to the oracle in entire game

▶ Continual leakage: Up to B calls to the oracle in each interval
(for ex. between 2 calls to another oracle)

7/13



LR-KIND definition for URKE
Security notions for LR-URKE

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
LeakSender: FStateSender→{0,1} → {0, 1}
LeakReceiver: FStateReceiver→{0,1} → {0, 1}
Challenge: id → real-or-random Key

▶ Receive is deterministic and only depends on :
▶ The initial StateReceiver
▶ All received ciphertexts (public)

Trivial attack:

1. Call LeakReceiver with (iterated) decrypt function (using output of Send oracle)

2. Learn a bit of the key → (likely) win KIND

−→ Need to forbid all leakage on Receiver!

8/13



LR-KIND definition for URKE
Security notions for LR-URKE

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
LeakSender: FStateSender→{0,1} → {0, 1}
LeakReceiver: FStateReceiver→{0,1} → {0, 1}
Challenge: id → real-or-random Key

▶ Receive is deterministic and only depends on :
▶ The initial StateReceiver
▶ All received ciphertexts (public)

Trivial attack:

1. Call LeakReceiver with (iterated) decrypt function (using output of Send oracle)

2. Learn a bit of the key → (likely) win KIND

−→ Need to forbid all leakage on Receiver!

8/13



LR-KIND definition for URKE
Security notions for LR-URKE

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
LeakSender: FStateSender→{0,1} → {0, 1}
LeakReceiver: FStateReceiver→{0,1} → {0, 1}
Challenge: id → real-or-random Key

▶ Receive is deterministic and only depends on :
▶ The initial StateReceiver
▶ All received ciphertexts (public)

Trivial attack:

1. Call LeakReceiver with (iterated) decrypt function (using output of Send oracle)

2. Learn a bit of the key → (likely) win KIND

−→ Need to forbid all leakage on Receiver!

8/13



Advantages and issues of LR-KIND security
Security notions for LR-URKE

+ Can leak in one case we cannot expose

+ Continual leakage

+ Simple construction
▶ Bounded LR-SUF MAC
▶ Non-LR kuKEM

− No leakage on receiver is not realistic

− KIND and leakage seem hard to achieve simultaneously

→ What about a one-wayness security definition for LR-URKE?

9/13



Advantages and issues of LR-KIND security
Security notions for LR-URKE

+ Can leak in one case we cannot expose

+ Continual leakage

+ Simple construction
▶ Bounded LR-SUF MAC
▶ Non-LR kuKEM

− No leakage on receiver is not realistic

− KIND and leakage seem hard to achieve simultaneously

→ What about a one-wayness security definition for LR-URKE?

9/13



Advantages and issues of LR-KIND security
Security notions for LR-URKE

+ Can leak in one case we cannot expose

+ Continual leakage

+ Simple construction
▶ Bounded LR-SUF MAC
▶ Non-LR kuKEM

− No leakage on receiver is not realistic

− KIND and leakage seem hard to achieve simultaneously

→ What about a one-wayness security definition for LR-URKE?

9/13



LR-OW definition for URKE
Security notions for LR-URKE

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver ⊥ → StateReceiver
RevealKey: ⊥ → Key
LeakSender: FStateSender→{0,1} → {0, 1}
LeakReceiver: FStateReceiver→{0,1} → {0, 1}
LeakKey: FKey→{0,1} → {0, 1}
Challenge: (guessed key, id) → ⊥

OW: Adversary tries to guess an exchanged key

−→ Trivial attacks include leaking too much on Receiver

10/13



LR-OW URKE constructions
Security notions for LR-URKE

Construction

▶ Bounded LR-SUF MAC

▶ Bounded LR-KUOW kuKEM

▶ The obtained scheme is also LR-KIND!

LR-KUOW

▶ LR-KUOW: KOUW game with bounded leakage on secret key

▶ Reduction to LR-HIBE (Leakage-Resilient Hierarchical Identity-Based Encryption)

▶ No suitable LR-HIBE construction exists

11/13



Conclusions on LR-OW
Security notions for LR-URKE

+ Allows for more leakage than KIND

+ Allows some leakage on exchanged keys

− Still bounded leakage on Receiver

− No KIND security any more

− No full construction

12/13



Conclusions on LR-OW
Security notions for LR-URKE

+ Allows for more leakage than KIND

+ Allows some leakage on exchanged keys

− Still bounded leakage on Receiver

− No KIND security any more

− No full construction

12/13



Future directions
Conclusion

▶ Construct the missing LR-HIBE

▶ Investigate other leakage models

▶ Extend to bidirectional ratcheting
▶ Challenge: everyone receives
▶ Advantage: everyone sends

eprint 2025/332

13/13


