Towards Leakage-Resilient Ratcheted Key Exchange

Daniel Collins, Simone Colombo, Sina Schaeffler
Texas A&M University, King's College London, IBM Research/ETH Zurich

PKC, Rgros, 13t of May 2025

ING'S ===
TEXAS A&M College z ===
RF" UNIVERSITY M ==

ETH:zurich

Plan

1. Introduction

» Ratcheting
> Unidirectional ratcheting and its secturity
» Leakage

2. Security notions for leakage-resilient unidirectional ratcheting
> Key indistinguishability
» One-wayness

3. For future

2/13

Ratcheting

Introduction

RATCHETING: Key management technique in messaging
applications

Goal:

» AEAD

» Forward security

» Post-compromise security
Idea: Key updates
Example:

» One-way key derivation applied after
each send/receive

» DH with fresh ephemeral keys at each
complete exchange

3/13

Unidirectional Ratcheted Key Exchange (URKE)

Introduction

Simplified ratcheting for easier analysis

Principle:

Stategender StateReceiver

Sender On/y Sends randomness, ad C . l¢— ad
. . send ‘—{ receive
Receiver only receives k k

Stategender

i StateReceiver

randomness, ad C . <+— ad
. send ‘—ﬁ receive L)

Stategender l

Statereceiver

randomness, ad — C . <+— ad
. send ‘—{ receive .

Stategender L

StateReceiver

Definition from:

Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Résler, Vaudenay, Asiacrypt 2020
4/13

Balli, Rosler, Vaudenay on URKE without leakage

Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad)
Receive: (ctxt,ad)
Exposesender: 1
Exposereceiver: 1
Reveal: L
Challenge: id

LiL il

ctxt

1

StateSender
StateReceiver

Key
real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

KIND game and construction from:

Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Résler, Vaudenay, Asiacrypt 2020

5/13

Balli, Rosler, Vaudenay on URKE without leakage

Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad) —
Receive: (ctxt,ad) —
Exposesender: 1r —
Exposereceiver: L -
Reveal: 1 -
Challenge: id —

ctxt

1

StateSender
StateReceiver

Key
real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

Need to pl’event tr|V|a| attaCkS (Example: Exposegeceiver, Send, Challenge)

KIND game and construction from:

Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Résler, Vaudenay, Asiacrypt 2020

5/13

Balli, Rosler, Vaudenay on URKE without leakage

Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad)
Receive: (ctxt,ad)
Exposesender: 1
Exposereceiver: 1
Reveal: L
Challenge: id

LiL il

ctxt

1

StateSender
StateReceiver

Key
real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

Need to pl’event tr|V|a| attaCkS (Example: Exposegeceiver, Send, Challenge)

Construction built on

» SUF-secure MAC (Message Authentication Code)

> KUOW-SGCU re kuKEM (key updatable Key Exchange Mechanism)

KIND game and construction from:

Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Résler, Vaudenay, Asiacrypt 2020

5/13

Leakage Resilience

Introduction

Adversary's knowledge

Secret Secret

Normal Exposed

6/13

Leakage Resilience

Introduction

Adversary's knowledge

Secret Secret Secret

Normal Leakage Exposed

6/13

Leakage Resilience

Introduction

Adversary's knowledge

Secret Secret Secret

Normal Leakage Exposed

LEAKAGE RESILENCE (LR): Theorectical model for side channels

6/13

Leakage Resilience

Introduction

Adversary

: Choice

f : Secrets — {0,1}

Leakage Oracle

f(secret) € {0,1}

7/13

Leakage Resilience: Choice

Introduction

7/13

Adversary Leakage Oracle
f : Secrets — {0,1}

f(secret) € {0,1}

When to call it:
» Bounded leakage: Up to B calls to the oracle in entire game

» Continual leakage: Up to B calls to the oracle in each interval
(for ex. between 2 calls to another oracle)

LR-KIND definition for URKE

Security notions for LR-URKE

8/13

Send: (randomness,ad)
Receive: (ctxt,ad)
ExposeSender: 1
Exposereceiver: L
Reveal: L
Leaksender: FStatesende,H{O,l}

LeakReceiver: FStateRece‘-ve,H{O,l}
Challenge: id

LLilliilld

ctxt

1
StateSender
StateReceiver
Key

{0,1)
{0,1}

real-or-random Key

LR-KIND definition for URKE

Security notions for LR-URKE

8/13

Send: (randomness,ad)
Receive: (ctxt,ad)
EXposeSender: 1
Exposereceiver: L
Reveal: L
Leaksender: FStatesende,H{O,l}

LeakReceiver: FStateRece‘-ve,%{O,l}
Challenge: id

» The initial StateReceiver

> All received ciphertexts (public)

A AN

ctxt

1
StateSender
StateReceiver
Key

0,1}
{0,1}

real-or-random Key

» Receive is deterministic and only depends on :

LR-KIND definition for URKE

Security notions for LR-URKE

Send: (randomness,ad) — ctxt

Receive: (ctxt,ad) — L

ExposeSender: L - StateSender
Exposereceiver: 1 — Statereceiver

Reveal: 1 = Key

Leaksender: FStatesende,H{O,l} - {0 1}

LeakReceiver: FStateRecewe,%{O,l} - {0,1}

Challenge: id — real-or-random Key

» Receive is deterministic and only depends on :

» The initial Statereceiver
> All received ciphertexts (public)

Trivial attack:

1. Call Leakgeceiver With (iterated) decrypt function (using output of Send oracle)
2. Learn a bit of the key — (likely) win KIND
— Need to forbid all leakage on Receiver!

8/13

Advantages and issues of LR-KIND security

Security notions for LR-URKE

-+ Can leak in one case we cannot expose
+ Continual leakage

9/13

Advantages and issues of LR-KIND security

Security notions for LR-URKE

-+ Can leak in one case we cannot expose
+ Continual leakage

-+ Simple construction

» Bounded LR-SUF MAC
» Non-LR kuKEM

9/13

Advantages and issues of LR-KIND security

Security notions for LR-URKE

-+ Can leak in one case we cannot expose

+ Continual leakage
-+ Simple construction

» Bounded LR-SUF MAC
» Non-LR kuKEM

— No leakage on receiver is not realistic

— KIND and leakage seem hard to achieve simultaneously

— What about a one-wayness security definition for LR-URKE?

9/13

LR-OW definition for URKE

Security notions for LR-URKE

Send:
Receive:
Exposesender:
ExposeReceiver
Revealkey:
Lea kSender:
Lea kReceiver:
Lea kKey:
Challenge:

(randomness,ad)
(ctxt,ad)

1

1

1
Fstatesenser—{0,1}
FStateReceﬂwe,—>{0,l}

FKey%{O,l}
(guessed key, id)

A R AR

ctxt

1
StateSender
StateReceiver
Key

{0,1}
{0,1}
{0,1)

1

OW: Adversary tries to guess an exchanged key

— Trivial attacks include leaking too much on Receiver

10/13

LR-OW URKE constructions

Security notions for LR-URKE

Construction
» Bounded LR-SUF MAC
» Bounded LR-KUOW kuKEM
» The obtained scheme is also LR-KIND!

LR-KUOW
> LR-KUOW: KOUW game with bounded leakage on secret key

» Reduction to LR-HIBE (Leakage-Resilient Hierarchical Identity-Based Encryption)

» No suitable LR-HIBE construction exists

11/13

Conclusions on LR-OW

Security notions for LR-URKE

+ Allows for more leakage than KIND

+ Allows some leakage on exchanged keys

12/13

Conclusions on LR-OW

Security notions for LR-URKE

+ Allows for more leakage than KIND

+ Allows some leakage on exchanged keys

— Still bounded leakage on Receiver
— No KIND security any more

— No full construction

12/13

Future directions

Conclusion

» Construct the missing LR-HIBE

P Investigate other leakage models

> Extend to bidirectional ratcheting

» Challenge: everyone receives
» Advantage: everyone sends

eprint 2025/332

13/13

