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Ratcheting
Introduction

Ratcheting: Key management technique in messaging
applications

Goal:
▶ AEAD

▶ Forward security

▶ Post-compromise security

Idea: Key updates

Example:
▶ One-way key derivation applied after

each send/receive

▶ DH with fresh ephemeral keys at each
complete exchange
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Unidirectional Ratcheted Key Exchange (URKE)
Introduction

Simplified ratcheting for easier analysis

Principle:
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Receiver only receives
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Definition from:
Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Rösler, Vaudenay, Asiacrypt 2020



Balli, Rösler, Vaudenay on URKE without leakage
Introduction

Security game for key indistinguishability (KIND) oracles:

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
Challenge: id → real-or-random key

KIND: Adversary tries to distinguish exchanged keys from random

Need to prevent trivial attacks (Example: ExposeReceiver, Send, Challenge)

Construction built on

▶ SUF-secure MAC (Message Authentication Code)

▶ KUOW-secure kuKEM (key updatable Key Exchange Mechanism)
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KIND game and construction from:
Determining the Core Primitive for Optimally Secure Ratcheting by Balli, Rösler, Vaudenay, Asiacrypt 2020
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Leakage Resilience
Introduction

Adversary’s knowledge
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Leakage Resilence (LR): Theorectical model for side channels
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Leakage Resilience: Choice
Introduction

Adversary Leakage Oracle

f : Secrets → {0, 1}

f (secret)∈ {0, 1}

When to call it:

▶ Bounded leakage: Up to B calls to the oracle in entire game

▶ Continual leakage: Up to B calls to the oracle in each interval
(for ex. between 2 calls to another oracle)
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LR-KIND definition for URKE
Security notions for LR-URKE

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver: ⊥ → StateReceiver
Reveal: ⊥ → Key
LeakSender: FStateSender→{0,1} → {0, 1}
LeakReceiver: FStateReceiver→{0,1} → {0, 1}
Challenge: id → real-or-random Key

▶ Receive is deterministic and only depends on :
▶ The initial StateReceiver
▶ All received ciphertexts (public)

Trivial attack:

1. Call LeakReceiver with (iterated) decrypt function (using output of Send oracle)

2. Learn a bit of the key → (likely) win KIND

−→ Need to forbid all leakage on Receiver!
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Advantages and issues of LR-KIND security
Security notions for LR-URKE

+ Can leak in one case we cannot expose

+ Continual leakage

+ Simple construction
▶ Bounded LR-SUF MAC
▶ Non-LR kuKEM

− No leakage on receiver is not realistic

− KIND and leakage seem hard to achieve simultaneously

→ What about a one-wayness security definition for LR-URKE?
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LR-OW definition for URKE
Security notions for LR-URKE

Send: (randomness,ad) → ctxt
Receive: (ctxt,ad) → ⊥
ExposeSender: ⊥ → StateSender
ExposeReceiver ⊥ → StateReceiver
RevealKey: ⊥ → Key
LeakSender: FStateSender→{0,1} → {0, 1}
LeakReceiver: FStateReceiver→{0,1} → {0, 1}
LeakKey: FKey→{0,1} → {0, 1}
Challenge: (guessed key, id) → ⊥

OW: Adversary tries to guess an exchanged key

−→ Trivial attacks include leaking too much on Receiver
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LR-OW URKE constructions
Security notions for LR-URKE

Construction

▶ Bounded LR-SUF MAC

▶ Bounded LR-KUOW kuKEM

▶ The obtained scheme is also LR-KIND!

LR-KUOW

▶ LR-KUOW: KOUW game with bounded leakage on secret key

▶ Reduction to LR-HIBE (Leakage-Resilient Hierarchical Identity-Based Encryption)

▶ No suitable LR-HIBE construction exists
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Conclusions on LR-OW
Security notions for LR-URKE

+ Allows for more leakage than KIND

+ Allows some leakage on exchanged keys

− Still bounded leakage on Receiver

− No KIND security any more

− No full construction
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Future directions
Conclusion

▶ Construct the missing LR-HIBE

▶ Investigate other leakage models

▶ Extend to bidirectional ratcheting
▶ Challenge: everyone receives
▶ Advantage: everyone sends

eprint 2025/332
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