Thorough Power Analysis on Falcon Gaussian Samplers and Practical Countermeasure

PKC 2025

Speaker: Haoxiang Jin

Xiuhan Lin, Shiduo Zhang, Yang Yu, Weijia Wang, Qidi You, Ximing Xu, Xiaoyun Wang

This work mainly focuses on the side-channel security of Falcon

- further refines the key recovery of $[{\rm ZLYW23}]^1\!\!:\downarrow 85\%$
- gives complete power analysis for half Gaussian leakage and sign leakage existing in Falcon's integer Gaussian sampler
- proposes effective and easy-to-implement countermeasures against both leakages

^{1[}ZLYW23]: Improved Power Analysis Attacks on Falcon. Zhang, Lin, Yu and Wang 🕨 🛪 🗇 🛛 🗧 🖉 🔍 🖓

- Background
- Further improvements of [ZLYW23]
- Complete analysis of half Gaussian and sign leakages
- Countermeasures against two leakages

Background

 Falcon^2 is one of the three post-quantum signature schemes selected by NIST for standardization.

 Falcon^2 is one of the three post-quantum signature schemes selected by NIST for standardization.

Falcon has competitive overall performance especially the smallest communication cost (sizes of public key + signature) among other three selected signatures.

²https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms → < ≥ → < ≥ → < ≥ → 5/29

 Falcon^2 is one of the three post-quantum signature schemes selected by NIST for standardization.

Falcon has competitive overall performance especially the smallest communication cost (sizes of public key + signature) among other three selected signatures.

Falcon is a lattice-based hash-and-sign signature scheme.

Hash-and-sign construction

Evolution: GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

 $^{^3[{\}sf NR06}]:$ Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.

⁴[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

Evolution: GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

Early constructions (GGH, NTRUSign)

- signing: use deterministic algorithm to find close vector
- the distribution of signatures leaks information of ${f B}$, Insecure!³

 $^{^3[{\}sf NR06}]:$ Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.

⁴[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

Evolution: GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

Early constructions (GGH, NTRUSign)

- signing: use deterministic algorithm to find close vector
- \bullet the distribution of signatures leaks information of ${\bf B},\, {\rm Insecure!}^3$

[GPV08]⁴ proposed a provably secure hash-and-sign framework.

● signing ⇔ lattice Gaussian sampling (trapdoor sampler)

³[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.

⁴[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

Evolution: GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

Early constructions (GGH, NTRUSign)

- signing: use deterministic algorithm to find close vector
- the distribution of signatures leaks information of ${f B}$, Insecure!³

[GPV08]⁴ proposed a provably secure hash-and-sign framework.

● signing ⇔ lattice Gaussian sampling (trapdoor sampler)

Falcon = GPV + NTRU lattices + Fast Fourier Gaussian sampler (FFO)

³[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.

⁴[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

$$\begin{array}{c|c} \textbf{FFOSampler:}\\ \mathbf{s} \leftarrow D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}} \end{array} \qquad \begin{array}{c} \textbf{SamplerZ:}\\ z \leftarrow D_{\mathbb{Z},\sigma',c} \end{array} \qquad \begin{array}{c} \textbf{BaseSampler:}\\ z^+ \leftarrow D_{\mathbb{Z},\sigma_{\max},0}^+ \end{array}$$

Klein-GPV sampler

Input: NTRU basis $\mathbf{B} = (\mathbf{b}_0, \cdots, \mathbf{b}_{n-1})$, center \mathbf{c} and $\sigma \ge \|\mathbf{B}\|_{GS} \cdot \eta_{\epsilon}(\mathbb{Z})$ **Output:** a lattice point \mathbf{v} follows a distribution close to $D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}}$

1:
$$\mathbf{v}_{n} \leftarrow \mathbf{0}, \mathbf{c}_{n} \leftarrow \mathbf{c}$$

2: for $i = n - 1, \cdots, 0$ do
3: $d_{i} = \langle \mathbf{c}_{i}, \tilde{\mathbf{b}}_{i} \rangle / \|\tilde{\mathbf{b}}_{i}\|^{2}$
4: $z_{i} \leftarrow D_{\mathbb{Z},\sigma_{i},d_{i}}$ where $\sigma_{i} = \sigma / \|\tilde{\mathbf{b}}_{i}\|$
5: $\mathbf{c}_{i-1} \leftarrow \mathbf{c}_{i} - z_{i}\mathbf{b}_{i}, \mathbf{v}_{i-1} \leftarrow \mathbf{v}_{i} + z_{i}\mathbf{b}_{i}$

6: return \mathbf{v}_0

$$\begin{array}{c|c} \mathsf{FFOSampler:} \\ \mathbf{s} \leftarrow D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}} \end{array} \xrightarrow{\qquad \qquad } \begin{array}{c} \mathsf{SamplerZ:} \\ z \leftarrow D_{\mathbb{Z},\sigma',c} \end{array} \xrightarrow{\qquad \qquad } \begin{array}{c} \mathsf{BaseSampler:} \\ z^+ \leftarrow D_{\mathbb{Z},\sigma_{\max},0}^+ \end{array}$$

SamplerZ

Input: A center c and $\sigma \in [\sigma_{\min}, \sigma_{\max}]$ Output: An integer z derived from a distribution close to $D_{\mathbb{Z},\sigma,c}$ 1: $r \leftarrow c - \lfloor c \rfloor$, $ccs \leftarrow \sigma_{\min}/\sigma'$ 2: $z^+ \leftarrow \text{BaseSampler}()$ 3: $b \stackrel{\$}{\leftarrow} \{0,1\}$ 4: $z \leftarrow b + (2b-1)z^+$ 5: $x \leftarrow \frac{(z-r)^2}{2\sigma^2} - \frac{(z^+)^2}{2\sigma_{\max}^2}$ 6: return $z + \lfloor c \rfloor$ if BerExp(x, ccs) = 1, otherwise restart.

$$\begin{tabular}{|c|c|c|c|c|} \hline FFOSampler: & SamplerZ: & BaseSampler: \\ \hline $\mathbf{s} \leftarrow D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}}$ & $\mathbf{z} \leftarrow D_{\mathbb{Z},\sigma',c}$ & $\mathbf{z}^+ \leftarrow D_{\mathbb{Z},\sigma_{\max},0}^+$ \end{tabular}$$

BaseSampler

Input: -Output: An integer $z^+ \sim D^+_{\mathbb{Z},\sigma_{\max},0}$ 1: $u \stackrel{\$}{\leftarrow} \{0,1\}^{72}$ 2: $z^+ \leftarrow 0$ 3: for $i = 0, \cdots, 17$ do 4: $z^+ \leftarrow z^+ + \llbracket u < \mathsf{RCDT}[i] \rrbracket$ 5: return z^+

Half Gaussian leakage

BaseSampler

Input: -

Output: An integer $z^+ \sim D^+_{\mathbb{Z},\sigma_{\max},0}$ 1: $u \stackrel{\$}{\leftarrow} \{0,1\}^{72}$ 2: $z^+ \leftarrow 0$ 3: for $i = 0, \cdots, 17$ do 4: $z^+ \leftarrow z^+ + [u < \text{RCDT}[i]]$ 5: return z^+

Half Gaussian leakage [GMRR22]⁵

One can classify $z^+ = 0$ or $z^+ \neq 0$ by simple power analysis against the comparison of $[\![u < \mathsf{RCDT}[i]]\!]$.

⁵[GMRR22]: The Hidden Parallelepiped is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset and Rossi. $(\Box \triangleright (\Box \triangleright (\Xi \triangleright (\Xi \triangleright (\Xi \triangleright) \Xi))))$

Sign leakage

SamplerZ

Input: A center c and $\sigma \in [\sigma_{\min}, \sigma_{\max}]$ **Output:** An integer z derived from a distribution close to $D_{\mathbb{Z}_{r},\sigma,c}$

1: $r \leftarrow c - \lfloor c \rfloor$, $ccs \leftarrow \sigma_{\min} / \sigma'$ 2: $z^+ \leftarrow \text{BaseSampler}()$ 3: $b \stackrel{\$}{\leftarrow} \{0, 1\}$ 4: $z \leftarrow b + (2b - 1)z^+$ 5: $x \leftarrow \frac{(z-r)^2}{2\sigma^2} - \frac{(z^+)^2}{2\sigma_{\max}^2}$ 6: return $z + \lfloor c \rfloor$ if BerExp(x, ccs) = 1, otherwise restart.

Sign leakage [ZLYW23]⁶

One can classify b by template attacks against the operations $[\![b \stackrel{\$}{\leftarrow} \{0,1\}]\!]$, $[\![z \leftarrow b + (2b-1)z^+]\!]$ and $[\![x \leftarrow \frac{(z-r)^2}{2\sigma^2} - \frac{(z^+)^2}{2\sigma_{\max}^2}]\!]$.

 $^{^{6}}$ [ZLYW23]: Improved Power Analysis Attacks on Falcon. Zhang, Lin, Yu and Wang: ightarrow < \exists ightarrow \gtrless ightarrow \gtrless ightarrow \Im \sim \sim

Further improvements of [ZLYW23]

Refining the learning with NTRU symplecticity

Due to NTRU symplecticity [GHN06]⁷, four rows of Falcon key satisfy:

$$\begin{split} \frac{\mathbf{b}_{0}^{*}}{\|\mathbf{b}_{0}^{*}\|} &= \frac{\mathbf{b}_{n/2}^{*}}{\|\mathbf{b}_{n/2}^{*}\|} \cdot \mathbf{P} = -\frac{\mathbf{b}_{3n/2-1}^{*}}{\|\mathbf{b}_{3n/2-1}^{*}\|} \cdot \mathbf{P} \cdot \mathbf{J} \cdot \mathbf{Q} = \frac{\mathbf{b}_{2n-1}^{*}}{\|\mathbf{b}_{2n-1}^{*}\|} \cdot \mathbf{J} \cdot \mathbf{Q} \\ \bullet \ \mathbf{P} &= \begin{pmatrix} -\mathbf{I}_{n/2} & \\ & & \\ & & \\ & & & \\$$

Refining the learning with NTRU symplecticity

1

Due to NTRU symplecticity [GHN06]⁷, four rows of Falcon key satisfy:

$$\begin{aligned} \frac{\mathbf{b}_{0}^{*}}{\|\mathbf{b}_{0}^{*}\|} &= \frac{\mathbf{b}_{n/2}^{*}}{\|\mathbf{b}_{n/2}^{*}\|} \cdot \mathbf{P} = -\frac{\mathbf{b}_{3n/2-1}^{*}}{\|\mathbf{b}_{3n/2-1}^{*}\|} \cdot \mathbf{P} \cdot \mathbf{J} \cdot \mathbf{Q} = \frac{\mathbf{b}_{2n-1}^{*}}{\|\mathbf{b}_{2n-1}^{*}\|} \cdot \mathbf{J} \cdot \mathbf{Q} \end{aligned}$$

$$\bullet \mathbf{P} = \begin{pmatrix} -\mathbf{I}_{n/2} & \\ & \mathbf{I}_{n/2} \\ & \mathbf{I}_{n/2} \end{pmatrix}$$

$$\bullet \mathbf{J} \text{ is a } 2n \times 2n \text{ reversed identity matrix, } \mathbf{Q} = \begin{pmatrix} -\mathbf{I}_{n} & \\ & \mathbf{I}_{n} \end{pmatrix}$$

One trace contributes more information $(4\times)$ compared with [ZLYW23].

⁷[GHN06]: Symplectic Lattice Reduction and NTRU. Gama, Howgrave-Graham and Nguyen + < = + < = +

We correct errors from the approximation by using probability-based Prest's decoding technique [Pre23] 8 [LSZ+24] 9 .

	Half Gaussian leakage	Sign leakage	Both leakages
[ZLYW23]	220,000	170,000	45,000
This work	27,500	25,000	6,500
Vs.	$\downarrow 88\%$	$\downarrow 85\%$	$\downarrow 86\%$

⁸[Pre23]: A Key-Recovery Attack against Mitaka in the t-Probing Model. Thomas Prest.

^{9[}LSZ+24]: Cryptanalysis of the Peregrine Lattice-Based Signature Scheme. Lin, Suzuki, Zhāng et al. 🔖 👍 🐑 🚊 🛷 🤍 🤉

Complete analysis of half Gaussian and sign leakages

We identify new sources of two existing power leakages and then give complete analysis against them.

- target: SamplerZ (Falcon reference implementation)
- exploit: half Gaussian leakage [GMRR22] and sign leakage [ZLYW23]
- approach: template attack
- platform: Chipwhisperer-Lite

Complete power analysis for half Gaussian leakage

For half Gaussian leakage:

- original sources: [GMRR22]
- new sources: this work

SamplerZ

Input: A center c and $\sigma \in [\sigma_{\min}, \sigma_{\max}]$ **Output:** An integer z derived from a distribution close to $D_{\mathbb{Z},\sigma,c}$ 1: $r \leftarrow c - \lfloor c \rfloor$, $ccs \leftarrow \sigma_{\min}/\sigma'$ 2: $z^+ \leftarrow \text{BaseSampler}()$ 3: $b \stackrel{\$}{\leftarrow} \{0,1\}$ 4: $z \leftarrow b + (2b-1)z^+$ 5: $x \leftarrow \frac{(z-r)^2}{2\sigma^2} - \frac{(z^+)^2}{2\sigma_{\max}^2}$ 6: **return** $z + \lfloor c \rfloor$ if BerExp(x, ccs) = 1, otherwise restart.

Complete analysis = original sources + new sources

イロン 不同 とくほど 不良 とうせい

For half Gaussian leakage, the classification accuracy of single trace attacks is:

Complete power analysis for sign leakage

For sign leakage:

- original sources: [ZLYW23]
- new sources: this work

SamplerZ

Input: A center c and $\sigma \in [\sigma_{\min}, \sigma_{\max}]$ **Output:** An integer z derived from a distribution close to $D_{\mathbb{Z},\sigma,c}$ 1: $r \leftarrow c - \lfloor c \rfloor$, $ccs \leftarrow \sigma_{\min}/\sigma'$ 2: $z^+ \leftarrow \text{BaseSampler}()$ 3: $b \stackrel{\$}{\leftarrow} \{0,1\}$ 4: $z \leftarrow b + (2b-1)z^+$ 5: $x \leftarrow \frac{(z-r)^2}{2\sigma^2} - \frac{(z^+)^2}{2\sigma_{\max}^2}$ 6: **return** $z + \lfloor c \rfloor$ if BerExp(x, ccs) = 1, otherwise restart.

Complete analysis = original sources + new sources

(日) (同) (E) (E) (E)

For sign leakage, the classification accuracy of single trace attacks is:

Countermeasures against two leakages

Validation for the countermeasures of [GMRR22]:

- tricks: $\{0, 255\} \Rightarrow \{0, 1\}$
- platform: Chipwhisperer-Lite
- \bullet the classification accuracy is still at least 97%

Validation for the countermeasures of [GMRR22]:

- tricks: $\{0, 255\} \Rightarrow \{0, 1\}$
- platform: Chipwhisperer-Lite
- \bullet the classification accuracy is still at least 97%

Our countermeasures

- $\textcircled{0} \{0,255\} \Rightarrow \{0,1\} \Rightarrow \{1,2\}$
- 2 multiple sampling
- (3) the traversal of $z^+ \in \{0, \cdots, 18\}$
- () table look-ups with index z^{+}

For half Gaussian leakage, the classification accuracy is at most $\approx 58\%$.

When the accuracy is $\leq 65\%$, the required traces for full key recovery are much more than 10 million. Impractical!¹⁰

¹⁰see Figure 5 of [ZLYW23].

Validation for the countermeasures of [ZLYW23]:

- tricks: $\{0,1\} \Rightarrow \{1,2\}$
- platform: Chipwhisperer-Lite
- the classification accuracy for the computation of x is still 75%

Validation for the countermeasures of [ZLYW23]:

- tricks: $\{0,1\} \Rightarrow \{1,2\}$
- platform: Chipwhisperer-Lite
- the classification accuracy for the computation of x is still 75%

Our countermeasures

- $\bullet \ \{0,1\} \Rightarrow \{1,2\}$
- 2 the traversal of $b' \in \{1,2\}$
- O table look-ups with index b'

For sign leakage, the classification accuracy is at most $\approx 62\%$.

When the accuracy is $\leq 65\%$, the required traces for full key recovery are much more than 10 million. Impractical!¹¹

¹¹see Figure 12 of [ZLYW23].

Performance evaluations

We also report benchmarks for Falcon's signing (SD: dynamic mode, ST: tree mode) with countermeasures

- based on the reference implementation of Falcon
- platform: Intel Core i5-1135G7 CPU
- compilation: Clang-10.0.0 with cflags -00

Claimed Security	Falcon-512		Falcon-1024	
	SD	ST	SD	ST
Unprotected (ms)	6.7	3.1	14.8	6.5
Protected (ms)	24.5	20.5	49.4	41.0
Vs.	3.7×	6.6×	3.3×	6.3×
Unprotected (Mcycles)	16.6	7.3	35.6	15.7
Protected (Mcycles)	58.7	49.9	119.6	99.4
Vs.	$3.5 \times$	6.8×	3.4 imes	$6.3 \times$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Conclusion

This work gives complete power analysis for Falcon's integer Gaussian sampler from the perspective of attacks and protections.

Our source code is available at

https://github.com/lxhcrypto/FalconAnalysis

With the deployment underway, the side-channel security of post-quantum schemes requires more investigations.

Thank you!

