
Thorough Power Analysis on Falcon Gaussian
Samplers and Practical Countermeasure

PKC 2025

Speaker: Haoxiang Jin

Xiuhan Lin, Shiduo Zhang, Yang Yu, Weijia Wang,
Qidi You, Ximing Xu, Xiaoyun Wang

1 / 29



Overview

This work mainly focuses on the side-channel security of Falcon
further refines the key recovery of [ZLYW23]1: ↓ 85%
gives complete power analysis for half Gaussian leakage and sign
leakage existing in Falcon’s integer Gaussian sampler
proposes effective and easy-to-implement countermeasures against
both leakages

1[ZLYW23]: Improved Power Analysis Attacks on Falcon. Zhang, Lin, Yu and Wang.
2 / 29



Outline

Background
Further improvements of [ZLYW23]
Complete analysis of half Gaussian and sign leakages
Countermeasures against two leakages

3 / 29



Background

4 / 29



Falcon

Falcon2 is one of the three post-quantum signature schemes selected by
NIST for standardization.

Falcon has competitive overall performance especially the smallest
communication cost (sizes of public key + signature) among other three
selected signatures.

Falcon is a lattice-based hash-and-sign signature scheme.

2https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms
5 / 29

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms


Falcon

Falcon2 is one of the three post-quantum signature schemes selected by
NIST for standardization.

Falcon has competitive overall performance especially the smallest
communication cost (sizes of public key + signature) among other three
selected signatures.

Falcon is a lattice-based hash-and-sign signature scheme.

2https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms
5 / 29

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms


Falcon

Falcon2 is one of the three post-quantum signature schemes selected by
NIST for standardization.

Falcon has competitive overall performance especially the smallest
communication cost (sizes of public key + signature) among other three
selected signatures.

Falcon is a lattice-based hash-and-sign signature scheme.

2https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms
5 / 29

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms


Hash-and-sign construction
Evolution: GGH, NTRUSign → GPV → Falcon

Early constructions (GGH, NTRUSign)
signing: use deterministic algorithm to find close vector
the distribution of signatures leaks information of B, Insecure!3

[GPV08]4 proposed a provably secure hash-and-sign framework.
signing ⇔ lattice Gaussian sampling (trapdoor sampler)

⇒

Falcon = GPV + NTRU lattices + Fast Fourier Gaussian sampler (FFO)

3[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.
4[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 29



Hash-and-sign construction
Evolution: GGH, NTRUSign → GPV → Falcon

Early constructions (GGH, NTRUSign)
signing: use deterministic algorithm to find close vector
the distribution of signatures leaks information of B, Insecure!3

[GPV08]4 proposed a provably secure hash-and-sign framework.
signing ⇔ lattice Gaussian sampling (trapdoor sampler)

⇒

Falcon = GPV + NTRU lattices + Fast Fourier Gaussian sampler (FFO)

3[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.
4[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 29



Hash-and-sign construction
Evolution: GGH, NTRUSign → GPV → Falcon

Early constructions (GGH, NTRUSign)
signing: use deterministic algorithm to find close vector
the distribution of signatures leaks information of B, Insecure!3

[GPV08]4 proposed a provably secure hash-and-sign framework.
signing ⇔ lattice Gaussian sampling (trapdoor sampler)

⇒

Falcon = GPV + NTRU lattices + Fast Fourier Gaussian sampler (FFO)

3[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.
4[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 29



Hash-and-sign construction
Evolution: GGH, NTRUSign → GPV → Falcon

Early constructions (GGH, NTRUSign)
signing: use deterministic algorithm to find close vector
the distribution of signatures leaks information of B, Insecure!3

[GPV08]4 proposed a provably secure hash-and-sign framework.
signing ⇔ lattice Gaussian sampling (trapdoor sampler)

⇒

Falcon = GPV + NTRU lattices + Fast Fourier Gaussian sampler (FFO)
3[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev.
4[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 29



Falcon’s integer Gaussian samplers

FFOSampler:
s← DL(B),σ,c

SamplerZ:
z ← DZ,σ′,c

BaseSampler:
z+ ← D+

Z,σmax,0

Klein-GPV sampler
Input: NTRU basis B = (b0, · · · , bn−1), center c and σ ≥ ∥B∥GS · ηϵ(Z)
Output: a lattice point v follows a distribution close to DL(B),σ,c

1: vn ← 0, cn ← c
2: for i = n− 1, · · · , 0 do
3: di = ⟨ci, b̃i⟩/∥b̃i∥2
4: zi ← DZ,σi,di

where σi = σ/∥b̃i∥
5: ci−1 ← ci − zibi, vi−1 ← vi + zibi

6: return v0

7 / 29



Falcon’s integer Gaussian samplers

FFOSampler:
s← DL(B),σ,c

SamplerZ:
z ← DZ,σ′,c

BaseSampler:
z+ ← D+

Z,σmax,0

SamplerZ
Input: A center c and σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1: r ← c− ⌊c⌋, ccs← σmin/σ′

2: z+ ← BaseSampler()
3: b

$← {0, 1}
4: z ← b + (2b− 1)z+

5: x← (z−r)2

2σ2 − (z+)2

2σ2
max

6: return z + ⌊c⌋ if BerExp(x, ccs) = 1, otherwise restart.

8 / 29



Falcon’s integer Gaussian samplers

FFOSampler:
s← DL(B),σ,c

SamplerZ:
z ← DZ,σ′,c

BaseSampler:
z+ ← D+

Z,σmax,0

BaseSampler
Input: -
Output: An integer z+ ∼ D+

Z,σmax,0

1: u
$← {0, 1}72

2: z+ ← 0
3: for i = 0, · · · , 17 do
4: z+ ← z+ + [[u < RCDT[i]]]
5: return z+

9 / 29



Half Gaussian leakage

BaseSampler
Input: -
Output: An integer z+ ∼ D+

Z,σmax,0

1: u
$← {0, 1}72

2: z+ ← 0
3: for i = 0, · · · , 17 do
4: z+ ← z+ + [[u < RCDT[i]]]
5: return z+

Half Gaussian leakage [GMRR22]5

One can classify z+ = 0 or z+ ̸= 0 by simple power analysis against the
comparison of [[u < RCDT[i]]].

5[GMRR22]: The Hidden Parallelepiped is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset and
Rossi.

10 / 29



Sign leakage

SamplerZ
Input: A center c and σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1: r ← c− ⌊c⌋, ccs← σmin/σ′

2: z+ ← BaseSampler()
3: b

$← {0, 1}
4: z ← b + (2b− 1)z+

5: x← (z−r)2

2σ2 − (z+)2

2σ2
max

6: return z + ⌊c⌋ if BerExp(x, ccs) = 1, otherwise restart.

Sign leakage [ZLYW23]6
One can classify b by template attacks against the operations
[[b $← {0, 1}]], [[z ← b + (2b− 1)z+]] and [[x← (z−r)2

2σ2 − (z+)2

2σ2
max

]].

6[ZLYW23]: Improved Power Analysis Attacks on Falcon. Zhang, Lin, Yu and Wang.
11 / 29



Further improvements of [ZLYW23]

12 / 29



Refining the learning with NTRU symplecticity

Due to NTRU symplecticity [GHN06]7, four rows of Falcon key satisfy:

b∗
0

∥b∗
0∥

=
b∗

n/2
∥b∗

n/2∥
·P = −

b∗
3n/2−1

∥b∗
3n/2−1∥

·P · J ·Q =
b∗

2n−1
∥b∗

2n−1∥
· J ·Q

P =


−In/2

In/2
−In/2

In/2


J is a 2n× 2n reversed identity matrix, Q =

(
−In

In

)

One trace contributes more information (4×) compared with [ZLYW23].

7[GHN06]: Symplectic Lattice Reduction and NTRU. Gama, Howgrave-Graham and Nguyen.
13 / 29



Refining the learning with NTRU symplecticity

Due to NTRU symplecticity [GHN06]7, four rows of Falcon key satisfy:

b∗
0

∥b∗
0∥

=
b∗

n/2
∥b∗

n/2∥
·P = −

b∗
3n/2−1

∥b∗
3n/2−1∥

·P · J ·Q =
b∗

2n−1
∥b∗

2n−1∥
· J ·Q

P =


−In/2

In/2
−In/2

In/2


J is a 2n× 2n reversed identity matrix, Q =

(
−In

In

)

One trace contributes more information (4×) compared with [ZLYW23].

7[GHN06]: Symplectic Lattice Reduction and NTRU. Gama, Howgrave-Graham and Nguyen.
13 / 29



Combining with lattice decoding technique

We correct errors from the approximation by using probability-based
Prest’s decoding technique [Pre23] 8 [LSZ+24] 9.

Half Gaussian leakage Sign leakage Both leakages
[ZLYW23] 220,000 170,000 45,000
This work 27,500 25,000 6,500

Vs. ↓ 88% ↓ 85% ↓ 86%

8[Pre23]: A Key-Recovery Attack against Mitaka in the t-Probing Model. Thomas Prest.
9[LSZ+24]: Cryptanalysis of the Peregrine Lattice-Based Signature Scheme. Lin, Suzuki, Zhang et al.

14 / 29



Complete analysis of half Gaussian and sign leakages

15 / 29



Complete power analysis against two leakages

We identify new sources of two existing power leakages and then give
complete analysis against them.

target: SamplerZ (Falcon reference implementation)
exploit: half Gaussian leakage [GMRR22] and sign leakage [ZLYW23]
approach: template attack
platform: Chipwhisperer-Lite

16 / 29



Complete power analysis for half Gaussian leakage

For half Gaussian leakage:
original sources: [GMRR22]
new sources: this work

SamplerZ
Input: A center c and σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1: r ← c− ⌊c⌋, ccs← σmin/σ′

2: z+ ← BaseSampler()
3: b

$← {0, 1}
4: z ← b + (2b− 1)z+

5: x← (z−r)2

2σ2 − (z+)2

2σ2
max

6: return z + ⌊c⌋ if BerExp(x, ccs) = 1, otherwise restart.

Complete analysis = original sources + new sources

17 / 29



Security evaluations

For half Gaussian leakage, the classification accuracy of single trace
attacks is:

6 8 10 12 14 16
log2(the number of traces using in the profiling phase)

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

Basesampler
z
x
BerExp
return

18 / 29



Complete power analysis for sign leakage

For sign leakage:
original sources: [ZLYW23]
new sources: this work

SamplerZ
Input: A center c and σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1: r ← c− ⌊c⌋, ccs← σmin/σ′

2: z+ ← BaseSampler()
3: b

$← {0, 1}
4: z ← b + (2b− 1)z+

5: x← (z−r)2

2σ2 − (z+)2

2σ2
max

6: return z + ⌊c⌋ if BerExp(x, ccs) = 1, otherwise restart.

Complete analysis = original sources + new sources

19 / 29



Security evaluations

For sign leakage, the classification accuracy of single trace attacks is:

6 8 10 12 14 16
log2(the number of traces using in the profiling phase)

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

b
z
x
BerExp
return

20 / 29



Countermeasures against two leakages

21 / 29



Countermeasures against half Gaussian leakage

Validation for the countermeasures of [GMRR22]:
tricks: {0, 255} ⇒ {0, 1}
platform: Chipwhisperer-Lite
the classification accuracy is still at least 97%

Our countermeasures
1 {0, 255} ⇒ {0, 1} ⇒ {1, 2}
2 multiple sampling
3 the traversal of z+ ∈ {0, · · · , 18}
4 table look-ups with index z+

22 / 29



Countermeasures against half Gaussian leakage

Validation for the countermeasures of [GMRR22]:
tricks: {0, 255} ⇒ {0, 1}
platform: Chipwhisperer-Lite
the classification accuracy is still at least 97%

Our countermeasures
1 {0, 255} ⇒ {0, 1} ⇒ {1, 2}
2 multiple sampling
3 the traversal of z+ ∈ {0, · · · , 18}
4 table look-ups with index z+

22 / 29



Security evaluations

For half Gaussian leakage, the classification accuracy is at most ≈ 58%.

6 8 10 12 14 16
log2(the number of traces using in the profiling phase)

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

protected Basesampler
z
x
protected BerExp
return

When the accuracy is ≤ 65%, the required traces for full key recovery are
much more than 10 million. Impractical!10

10see Figure 5 of [ZLYW23].
23 / 29



Countermeasures against sign leakage

Validation for the countermeasures of [ZLYW23]:
tricks: {0, 1} ⇒ {1, 2}
platform: Chipwhisperer-Lite
the classification accuracy for the computation of x is still 75%

Our countermeasures
1 {0, 1} ⇒ {1, 2}
2 the traversal of b′ ∈ {1, 2}
3 table look-ups with index b′

24 / 29



Countermeasures against sign leakage

Validation for the countermeasures of [ZLYW23]:
tricks: {0, 1} ⇒ {1, 2}
platform: Chipwhisperer-Lite
the classification accuracy for the computation of x is still 75%

Our countermeasures
1 {0, 1} ⇒ {1, 2}
2 the traversal of b′ ∈ {1, 2}
3 table look-ups with index b′

24 / 29



Security evaluations

For sign leakage, the classification accuracy is at most ≈ 62%.

6 8 10 12 14 16
log2(the number of traces using in the profiling phase)

0.48

0.51

0.54

0.57

0.60

0.63

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

b ′

z
x
protected BerExp
return

When the accuracy is ≤ 65%, the required traces for full key recovery are
much more than 10 million. Impractical!11

11see Figure 12 of [ZLYW23].
25 / 29



Performance evaluations
We also report benchmarks for Falcon’s signing (SD: dynamic mode, ST:
tree mode) with countermeasures

based on the reference implementation of Falcon
platform: Intel Core i5-1135G7 CPU
compilation: Clang-10.0.0 with cflags -O0

Claimed Security Falcon-512 Falcon-1024
SD ST SD ST

Unprotected (ms) 6.7 3.1 14.8 6.5
Protected (ms) 24.5 20.5 49.4 41.0

Vs. 3.7× 6.6× 3.3× 6.3×

Unprotected (Mcycles) 16.6 7.3 35.6 15.7
Protected (Mcycles) 58.7 49.9 119.6 99.4

Vs. 3.5× 6.8× 3.4× 6.3×

26 / 29



Conclusion

27 / 29



Conclusion

This work gives complete power analysis for Falcon’s integer Gaussian
sampler from the perspective of attacks and protections.

Our source code is available at

https://github.com/lxhcrypto/FalconAnalysis

With the deployment underway, the side-channel security of post-quantum
schemes requires more investigations.

28 / 29

https://github.com/lxhcrypto/FalconAnalysis


Thank you!

29 / 29


