| .

i

Finding a polytope: Sty

A practical fault attack =3

against Dilithium

Paco Azevedo-Oliveira 12
Andersson Calle Viera 13
Benoit Cogliati ?

Louvis Goubin 2

1l

uLIlJUUm

1 Thales CDI, France

2 UVSQ, France

3 INRIA, LIP6, France

iy

’ 00.0C

THALES

Building a future we can all trust

/777

Table of contents

01 02 03 04

Conclusion Context Dilithium in detail Attack method

05 06

Practical results Hidden problems

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Conclusion

Dilithium Dilithium

4) 4

M — m Ty Rejection} I _, M — m In Rejection Im_,

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We

show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an
hour on a computer.

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx - date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Conclusion
Dilithium Dilithium
4 N\
M — m Ty Rejec’rion} v,
_ J

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We
show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an

hour on a computer.
With rejection Without rejection

Dilithium-II 2128 220
Dilithium-Ili 2192 221
Dilithium-V 2256 222

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Conclusion
Dilithium Dilithium
4 N\
M — m Ty Rejec’rion} v,
_ J

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We
show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an

hour on a computer.
With rejection Without rejection

Dilithium-II 2128 220
Dilithium-Ili 2192 221
Dilithium-V 2256 222

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Conclusion

Dilithium

4 N\
M — m Ty Rejection} v,

o /

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We

show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an
hour on a computer.

(@) #5454 @) With rejection | Without rejechon

Dilithium-1I Lt
H19¢ W et TR Dil"hium-lll 2192 221
E] i Dilithium-V 2236 2%2
T L TR GitHub - anders1901/Polytope_attack
TH/\LES o

all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserve

https://github.com/anders1901/Polytope_attack

/777

Context
Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

Dilithium is recommended for computing quantum-secure signatures in most use cases.

mos 204 \

Federal Information Processing Standards Publication

Module-Lattice-Based Digital
Signature Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
Mational Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.204

Published August 13, 2024

it is necessary to investigate the security of embedded implementations. The security of Dilithium against Side-
Channel Attacks (SCA) and Fault Attacks (FA) thus needs to be carefully assessed.

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx - date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Dilithium in deftails

Dilithium uses two rings:

R=Zl/(a"+1) Ry=Za/(a" +1)

with: n = 256 and q = 8380417

Algorithm KeyGen
Ensure: (pk, sk)
1: A« RgXl
2: (Sl,Sz) — Sf? X Sf;
3: t:=As; + sy
4: return pk = (A,t), sk = (A, t,s1,82)

N

U@Lt
(A, t,Sl, Sz) (A, t)

n
>

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Dilithium in deftails

Dilithium uses two rings:

R=Zl/(a"+1) Ry=Za/(a" +1)

with: n = 256 and q = 8380417

Algorithm KeyGen a an even integer which divides q — 1 and:

Ensure: (pk, sk)

r—ry

r=ra+1rywithry, =r mod*(a) and r{ =
1A REX 1@+ 1o withto (e) and 1y
l k
2: (S]_,SQ) < S X S a a
Y n Possible values of rg: 1—=+1,...,0, ...,—
3: t:=As; + 89 0 { 2 2}
4

- return pk = (A, t), sk = (A, t,51,87) Possible values of r;a: {0,a,2a,..,q — 1}

One note:
/N

HighBits,(r,a) = ry and LowBits,(r,a) =y

v

U@Lt
(A, t,Sl, Sz) (A, t)

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Dilithium in deftails

Dilithium uses two rings:

R=Zl/(a"+1) Ry=Za/(a" +1)

with: n =256 and q = 8380417 r = HighBits,(r,a) X a + LowBits,(r, a)

Algorithm KeyGen

Ensure: (pk, sk) P e Rg, P = (Pl,PQ, ...,Pl)
1: A(—RSXZ

2: (Sl,Sz) — Sf? X S,’; 7

3: t:=As; + sy Pl :Zp’&x ERQ)

4: return pk = (A,t), sk = (A, t,s1,82)

- HighBits (P;) :=) HighBits,(p;)a’
Q@Qirf
(A,t,51,55) (4,t)

OPEN
we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Dilithium in deftails

Alice draws a polynomial vector at random:

Algorithm Sig Y €r Rl; ||y||00S |41
Require: sk, M

Ellfs:r:ei o=(ex) She calculates a random challenge that depends on the

2: while z =1 do message.
3: Yy — S’fh

¢ =H(M || HighBits,(Ay,2y,))

4: wi := HighBits(Ay, 272)

5. ce By = H(M|w1) She provides an response to the challenge:
6: zZ:=y+cs; z=Yy+csq

7 if ||z||cc > 1 — B or LowBits(Ay — ¢S2,2%2)||ec = 2 — 3 then -

8: z:=1 By definition of z:

9: end if

10: end while [AZ —ct = Ay — cs, 1

11: return o = (¢, z)

The signature will be:

(M, 0 = (c,2)) o) o= (cz)

v

But..
(A, t, 51152) (A; t)
OPEN
T H /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007

Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Dilithium in deftails

But..
Algorithm Sig
Require: sk, M By definition of z:
Ensure: o = (c,z)
cz=1
bz Z=y+cs;

2: while z =1 do

3y« S Two conditions must be fulfilled:

4: wi := HighBits(Ay, 272)

5. ce B, = H(M|lwi) |lz|| < max, (llylloo) _max{c,sl}(“CSl”oo)

6: Z:=y+cs

7 if ||z||cc > 1 — B or LowBits(Ay — ¢S2,2%2)||ec = 2 — 3 then HighBitSq(Ay» 2y2) = HighBitSq(Ay — €S3,2Y2)
8: z:=1

9: end if The first condition is for security, the second for

10: end while

verification and security.
11: return o = (¢, z)

With these conditions:

(M, 0 = (c,2)) o)

V7 4
(A,t,51,55) (4,1t)

v

[HighBits(Az — ct) = HighBits(Ay — cs,) = HighBits(Ay) }

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
3uilding a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Dilithium in deftails

Algorithm Sig By definition of z:
Require: sk, M Az — ct = Ay — ¢sy
Ensure: o = (c,z)
bz=L y is chosen such that:
2: while z =1 do
3y eS8, HighBits,(Ay, 2y,) = HighBits,(Ay — cs,, 2
+ wi i HighBits(Ay,210) g q(4y,2y,) g q(Ay — ¢s2,2y3)
5: c e B, = H(M||w1)
6: z:=y+cs Algorithm Ver
7. if [[zc 2 71 — B or LowBits(Ay — ¢s2,292)/cc = 72 — 5 then 1: w) :=HighBits(Az — ct, 2vs)
B 2=l 2: Accept if ||z]|eo <71 — B and ¢ = H(M||w))
9: end if
10: end while
11: return o = (¢, z) Bob can recalculate wy:
| w; = HighBits,(Ay,2y,)
(M, 0 = (¢, 2)) o) = HighBits,(Ay — cs3,2Y)
> = HighBits,(Az — ct, 2y;)
= W’
) V7 4 !
(A, t, S1, Sz) (A, t)
OPEN
THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777
Dilithium in details
Dilithium's version is simplified. The public key is compressed:

t=1t, x29+t,

The least significant bits of coefficients of t are not given, verification is no longer possible:

Algorithm Ver
1: w} := HighBits(Az — ct, 27,)
2: Accept if ||Z||oo < Y1 — 6 and c = H(MHWII) HighBitSq(AZ —ctq Zd, 2}’2) 5 HighBitSq(AZ —ctq 2d — cty, 2)’2)

Bob can only compute:

OPEN
THALES

REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777
Dilithium in details
Dilithium's version is simplified. The public key is compressed:

t=1t, x29+t,

The least significant bits of coefficients of t are not given, verification is no longer possible:

Algorithm Ver
1: w} := HighBits(Az — ct, 27,)
2: Accept if ||Z||oo < Y1 — 6 and c = H(MHWII) HighBitSq(AZ —ctq Zd, 2}’2) 5 HighBitSq(AZ —ctq Zd — cty, 2}’2)

Bob can only compute:

/Lemma 1 [LDK™ 22] Let q and o be two positive integers such that g > 2, q ;
1 mod («) and « even. Let r and z be two vectors of Ry such that ||z]|. < a/2

and let h,h' be bit vectors. So the algorithms HighBits, , MakeHint,, UseHint,
satisfy the properties:

K UseHint,(MakeHint,(z,r,), r,a) = HighBits (r + z,«). /
OPEN
T H A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

The real Dilithium

Lemma 1 [LDK" 22 Let q and o be two positive integers such that ¢ > 2a, q =
1 mod (o) and @ even. Let r and z be two vectors of R, such that ||z||~ < a/2
and let h,h’ be bit vectors. So the algorithms HighBits, , MakeHint,, UseHint,
satisfy the properties:

UseHint,(MakeHint,(z,r,), r,a) = HighBits (r + z,«).

Algorithm KeyGen

Ensure: (pk,sk)

(00, 1) € (0,11 x 0,117 x {0, 1} := H()
A € RE*! .= ExpandA(p)

(s1, s2) € S, x Sk := ExpandS(p’)

t:=As; + s

(t1, to) := Power2Round,(t, d)

tr € {0,1}%°° := H(p|| t1)

return pk = (p, t1), sk = (p, K, tr,s1,s2, to)

Algorithm KeyGen
Ensure: (pk, sk)

1: A« RI(;XZ i
2: (Sl,Sg) < S7l7 X Sﬁ

3: t:= Asy+s9

4: return pk = (A,t), sk = (A, t,s1,82)

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

The real Dilithium

Algorithm Sig

Require: sk, M
Ensure: o = (¢,z,h)
1: A € Ri*' := ExpandA(p)

2: € {0,1}°12 .= H(tr || M)
3: k:=0, (zg,h) =1L

Algorithm Sig 4: p' € {0,1}°12 := H(K || p)

Require: sk, M 5: while (z,h) =1 do

Ensure: o = (¢, z) 6: y € S, := ExpandMask(p’, k)
Lz=1 7 w:=Ay
2: while z =1 do 8: w1 = HighBits (w, 272)
3y« S, 9: € {0,1}%°% ;= H(p|| w1)

4: w1 := HighBits(Ay, 27v2) i 10: ¢ € B, := SampleInBall(c)

5: ¢ € By := H(M||w) 11: z:=y+cs;

6: Z:=y+csy 12: ro := LowBits, (W — ¢s2, 272)

T if ||z]|cc > 71 — B or LowBits(Ay — ¢s2,272)||ec > 72 — 3 then 13: if ||z]|oc > v1 — B or ||rol|ec = 72 — 8 then
8: z:=1 14: (z,h) ;=1

9: end if 15: else
10: end while 16: h := MakeHint,(—cto, w — ¢s2 + cto, 272)
11: return o = (c,z) 17: if ||cto[lcc > 72 or |h|n,=1 > w then

18: (z,h) =1

19: k:i=r+I1
20: return/ o = (¢,z, h)

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

The real Dilithium

Lemma 1 [LDK' 22 Let q and o be two positive integers such that ¢ > 2a, q =
1 mod (&) and o even. Let r and z be two vectors of R, such that ||z]|o < /2
and let h,h' be bit vectors. So the algorithms HighBits , MakeHint,, UseHint,
satisfy the properties:

UseHint,(MakeHint,(z,r,), r,a) = HighBits (r + z,«).

Algorithm 4 Ver
Require: pk,o
Algorithm 1 Ver 1: A € RF*! := ExpandA(p)

1: wj := HighBits(Az — ct, 2vs) i p € {0,137 == H(H(p || t1) || M)

2: Accept if ||z||oc <1 — B and ¢ = H(M]||w}) ¢ := SampleInBall(c)
w) := UseHint,(h, Az — ct; - 2%, 272)

return [||z||oc <71 —] and [é = H(u[|w1)] and [hfn;=1 < «]

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

THALES

Attack method

www.thalesgroup.com

/777

Attack method: First step

Algorithm F-Sig

Require: sk, M
Ensure: o = (¢, z,h)
1: Ae ’Rf,“ := ExpandA(p)

2: e {0,132 .= H(tr || M)
3: k:=0,(z,h):=1

L g€ {0,115 = H(K ||)
5: while (z,h) =1 do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

y € 5!, := ExpandMask(p/, k)
w:= Ay

Wi = HighBitsq(w, 272)

¢ € {0,117 = Hiu|| w)

¢ € B; := SampleInBall(c)
Z:=y—+cs

ro := LowBits,(w — cs2, 272)

if ||z|]|cc > 71 — 8 then

(z,h) :=1
else
h := MakeHint,(—cto, w — cs2 + cto, 272)
if |[cto|[sc = 72 or |h|n;=1 > w then
(z,h) :=1
k:=kx+I1

20: return o = (¢,z,h)

THALES

we can all trust

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

OPEN

Algorithm Ver

Require: pk,o

1:

A ¢ RE*! .= ExpandA(p)

pe {01371 = H(H(p || t1) [| M)

¢ := SampleInBall(¢)

w) := UseHint,(h, Az — ct; - 2%, 279)

return [||z||cc <1 — B] and [¢ = H(x || w})] and [|hln;=1 < W]

?
HighBits,(Ay,2y,) = HighBits,(Ay — cs3,2y3)
\] l

| 1
W1 W,1

/777

Attack method: First step

Algorithm F-Sig

Require: sk, M
Ensure: o = (¢, z,h)

1: Ae 'Rf,” := ExpandA(p)
2: e {0,132 .= H(tr || M)
3: k:=0,(z,h):=1

L g € {0,172 = H(K ||)
5: while (z,h) =1 do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

y € 5!, := ExpandMask(p/, k)
w:=Ay

Wi = HighBitsq(w, 272)

¢ € {0,117 = Hiu|| w)

¢ € B; := SampleInBall(c)
Z:=y—+cs

ro := LowBits,(w — cs2, 272)

if ||z]|cc > 71 — 3 then

(z,h) :=1

else

h := MakeHint,(—cto, w — cs2 + cto, 272)
if ||cto|lec = 72 or |h|n,=1 > w then

(z,h) :=1
K:i=k-+1

20: return o = (¢, z, h)

Algorithm Ver

Require: pk,o
1:

A ¢ RE*! .= ExpandA(p)

€ {0,1)%12 = H(H(p|| 1) || M)

¢ := SampleInBall(¢)

w) := UseHint,(h, Az — ct; - 2%, 279)

return [||z||cc <1 — B] and [¢ = H(x || w})] and [|hln;=1 < W]

THALES

we can all trust

OPEN

REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

?
HighBits,(Ay,2y,) = HighBits,(Ay — cs3,2y3)
\] l

| 1
W1 W,1

Assumption 1: With overwhelming probability, for a
signature of F-Sig the polynomial vector w; — w,’ has at
most one non-zero coefficient.

Proposition: Under Assumption 1, it is possible to recover
w, from the knowledge of w,'.

/777

Attack method: First step

Algorithm F-Sig

Require: sk, M
Ensure: o = (¢, z,h)

1: Ae 'Rf,“ := ExpandA(p)

2: e {0,132 .= H(tr || M)

3: k:=0,(z,h):=1

L g€ {0,115 = H(K ||)

5: while (z,h) =1 do
y € S'_E“ := ExpandMask(p’,)
w:=Ay
Wi = HighBitsq(w, 272)
£ € {0,115 = H(u || wr)
10: ¢ € B; := SampleInBall(c)
11: Z:=y+cs:

12: ro := LowBits,(w — cs2, 272)

13: if ||z||« > 71 — 8 then

14: (z,h) :=1

15: else

16: h := MakeHint,(—cto, w — cs2 + cto, 272)
17: if ||cto|lec = 72 or |h|n,=1 > w then
18: (z,h) :=1

19: K:=kK+1
20: return o = (¢, z, h)

Algorithm Ver

Require: pk,o
1:

A € Ry .= ExpandA(p)

€ {0, 11312 = H(H(p|| 02) || M)

¢ := SampleInBall(¢)

w) := UseHint,(h, Az — ct; - 2%, 279)

return [||z||cc <71 — B] and [¢ = H(x || w})] and [|hln,=1 < W]

THALES

OPEN

REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Assumption 1: With overwhelming probability, for a
signature of F-Sig the polynomial vector w; — w;’ has at
most one non-zero coefficient.

Proposition: Under Assumption 1, it is possible to recover
w; from the knowledge of w,’.

Proof: If the signature is rejected, one can carry an
exhaustive research, knowing the relation:

¢ = H(p||wq)

/777

Attack method: First step

THA

Algorithm F-Sig

Require: sk, M
Ensure: o = (¢, z,h)
1: Ae 'Rf,” := ExpandA(p)
2: e {0,132 .= H(tr || M)
3: k:=0,(z,h):=1
P e {0,172 = H(K | o)
while (z,h) =1 do
y € S'.E“ := ExpandMask(p’,)
w:=Ay
Wi = HighBitsq(w, 272)
¢ € {0,117 = Hiu|| w)
10: ¢ € B; := SampleInBall(c)
11: Z:=y+cs:

© 2T

12: ro := LowBits,(w — cs2, 272)

13: if ||z||« > 71 — 8 then

14: (z,h) :=1

15: else

16: h := MakeHint,(—cto, w — cs2 + cto, 272)
17: if ||cto|lec = 72 or |h|n,=1 > w then
18: (z,h) :=1

19: K:=kK+1
20: return o = (¢, z, h)

Algorithm Ver

Require: pk,o
1:

A € RE*! .= ExpandA(p)

€ {0, 11312 = H(H(p|| 02) || M)

¢ := SampleInBall(¢)

w) := UseHint,(h, Az — ct; - 2%, 279)

return [||z||cc <71 — B] and [¢ = H(x || w})] and [|hln,=1 < W]

LES

OPEN

REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
jture we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Assumption 1: With overwhelming probability, for a
signature of F-Sig the polynomial vector w; — w;' has at
most one non-zero coefficient.

Proposition: Under Assumption 1, it is possible to recover
w; from the knowledge of w,’.

/777

Attack method: First step

Algorithm F-Sig

Require: sk, M
Ensure: o = (¢, z,h)

1: Ae 'Rf,“ := ExpandA(p)

2: e {0,132 .= H(tr || M)

3: k:=0,(z,h):=1

L g€ {0,115 = H(K ||)

5: while (z,h) =1 do
y € S'_E“ := ExpandMask(p’,)
w:=Ay
Wi = HighBitsq(w, 272)
£ € {0,115 = H(u || wr)
10: ¢ € B; := SampleInBall(c)
11: Z:=y+cs:

12: ro := LowBits,(w — cs2, 272)

13: if ||z||« > 71 — 8 then

14: (z,h) :=1

15: else

16: h := MakeHint,(—cto, w — cs2 + cto, 272)
17: if ||cto|lec = 72 or |h|n,=1 > w then
18: (z,h) :=1

19: K:=kK+1
20: return o = (¢, z, h)

Algorithm Ver

Require: pk,o
1:

A € Ry .= ExpandA(p)

€ {0, 11312 = H(H(p|| 02) || M)

¢ := SampleInBall(¢)

w) := UseHint,(h, Az — ct; - 2%, 279)

return [||z||cc <71 — B] and [¢ = H(x || w})] and [|hln,=1 < W]

THALES

OPEN

REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Assumption 1: With overwhelming probability, for a
signature of F-Sig the polynomial vector w; — w;’ has at
most one non-zero coefficient.

Proposition: Under Assumption 1, it is possible to recover
w; from the knowledge of w,’.

Remark: If the hypothesis is not verified, simply ignore the
signature

Attack method: Second step

Algorithm F-Sig

Require: sk, M
Ensure: o = (¢, z,h)

1: Ae 'Rf,” := ExpandA(p)

2: e {0,132 .= H(tr || M)

3: k:=0,(z,h):=1

L g€ {0,115 = H(K ||)

5: while (z,h) =1 do
y € S'.E“ := ExpandMask(p’,)
w:=Ay
Wi = HighBitsq(w, 272)
¢ € {0,117 = Hiu|| w)
10: ¢ € B; := SampleInBall(c)
11: Z:=y+cs:

12: ro := LowBits,(w — cs2, 272)

13: if ||z||« > 71 — 8 then

14: (z,h) :=1

15: else

16: h := MakeHint,(—cto, w — cs2 + cto, 272)
17: if ||cto|lec = 72 or |h|n,=1 > w then
18: (z,h) :=1

19: K:=kK+1
20: return o = (¢, z, h)

Each signature not accepted by the verification
algorithm provide an inequality:

Proposition For any o = (¢,2z,h) signature of F-Sig that is not accepted
by the verification algorithm, there exists a unique j € {1,...,k} and a unique
i € {0,...,255} such that:

— if (wy —w'l)gj] =1:

(cs2)! > 72 — 1y > 0,
— if (wy —wh)P = —1:

(CS2)£j] = —— I‘([)j,]i =9

Proof (sketch):

Y2 — B
-« »
——————— N——————
| VLIS A | >
[/N 77777 T [

(Ay = es2)? (Ay)"
HighBits,((Ay — cs2) 295) x 27

K2

HighBitsy((Ay)Y', 275) x 2y,

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
lin jture we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Attack method: Second step

Example for n=3 :

Let's assume that all the key coefficients are known, apart from (s,),, (s2)1, (s2),. The unknowns are the
coordinates of a pointin [-2,2]3n Z

For example for s, = (2,0,1,...) : signing several times with the same key will produce inequalities.

Solution of inequalities : Solution of inequalities:
x<0 x<0
y=1 y=1
y—z=>-3

THALES

REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Attack method: Second step

We use linear programming (LP) methods.

Upper bound the number of solutions of is a (LP)
problem:

minimize x; maximize x;

If inequalities are collected so that s, is the only
solution, it suffices to maximize any function:

maximize 0
subject to Ayx > by

subject to Az < b subject to Az <b e
n n - S 0-—
reR relR "
z € [-n,7]
T H /-\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Building a future we can all trust

THALES

Practical

resulis

www.thalesgroup.com

/777

Practical results

The number of inequalities required can be estimated using statistics:

Unknown coefficients| 32 64 128 256
Nb tests 100 | 100 | 100 -
Inequalities 323 |1306| 3917 10445 (predicted)

Polytopes dimensions| 0 0 0 -
Attack time 1.36 s|17.4s|227.3s -

We collect enough signatures so that the polytope defined by the inequalities contains only s,

Signatures|Average inequalities|Success probability|Average time|Median Time
1250000 11085 0.99 277.53s 180.00s

Conclusion : The attack illustrates the power of LP methods: we search for a point in [—2,2]%°¢ is found under
one hour:

Tests must be protected against faults.

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx - date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Hidden

problems

www.thalesgroup.com

/777

Hidden problems: VS

Algorithm Sig

Require: sk, M HighBitSq(?“, @) : LowBitsg(r, a) :
Ensure: ¢ = (¢,z,h)

1: (r1,70) = Decompose_(r, « 1: (r1,70) = Decompose (7,
I A e Rgﬂ = ExpandA(p) 2: I('e]::usgl 71 ’ Q() 2: E‘eturl)l 70 Q()
2: p € {0,112 := H(tr || M)
3: k:=0, (z,h) =1
4: p' € {0, 1" == H(K ||)
5: while (z,h) =1 do
6: y € S}, := ExpandMask(p/, k)
7 w:=Ay
8: [w1 = HighBits, (w, 272)]
9: e {0, 11°°° = H(p||w1) The “specification” version calls the decompose
10: ¢ € B; := SampleInBall(c) function tWice, which is COS"Y.

11: zZ:=y+cs:

12: [ro := LowBits,(w — cs2, 2*}/2)]
13: if [|zflc 2 71 — B or [[rolec 2 72 — B then This can be avoided by making an equivalent and

14 (z,h) =1 less costly test, which uses a little more memory.
15: else

16: h := MakeHint,(—cto, w — cs2 + cto, 272)

17 if |[|cto|[sc > 72 or |h|n,=1 > w then

18: (z,h) :=1

19: Ki=K+1
20: return o = (¢,z,h)

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Hidden problems: VS

Algorithm Sigges

Require: sk, M HighBitSq(’r, @) : LowBitsy(r, a) :
Ensure: o = (¢,z,h)

1: A € R .~ ExpandA(p) 1: (r1,70) = Decompose, (7, a) 1: (r1,70) = Decompose, (r, a)
1 2: return 2: return 7o

2: u€{0,1}°2 = H(tr || M)

3: k:=0, (z,h) =1

4: p' € {0,172 :=H(K || p)

5: while (z,h) =1 do

6: y €S, = ExpandMask(p’, x) The test is equivalent and saves a call to the

T owi=Ay decompose function, with the cost of storing wy in

8: [(wl,w[)) = Decompose, (W, 272)] memory.

9 Ge {0.1)70 = H(u|)

10: ¢ € B; := SampleInBall(c)
11: Z:=Yy+cs

12: [f‘o = Wy — CS2]
13: if [|z]ec > 71 — B or [[Toll > 72 — § then

14: (z,h) :=1

15: else

16: h := MakeHint_ref (w1, wo — cs2 + cto, 272)
17 if [|ctolloc > 72 or |h|n,;=1 > w then

18: (z,h) =L

19: ki=x+1
20: return o = (¢,z, h)

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Hidden problems: VS

Algorithm Sigges

Require: sk, M HighBits (r,) : LowBitsy(r, a) :
TN Eapananty L (r1,70) = Dacompose, i) 1t (11, ro) = Daconpose,(r,0)
2: return 2: return rg

2: u€{0,1}°2 = H(tr || M)

3: k:=0, (z,h) =1

4 p' €{0,1}** .= H(K || p)

5: while (z,h) =1 do

6: y €S, = ExpandMask(p’, x) The test is equivalent and saves a call to the

T owi=Ay decompose function, with the cost of storing w, in
8: [(wl, wo) = Decompose, (W, 272)] memory.

0: ce (0,1} = H(n||w1)

10: ¢ € B; := SampleInBall(c)

11: Z:=Yy+cs

12: [f‘o = Wy — CS2]

13: if [|z]lcc > 71 — B or ||Fo)lcc > 72 — 3 then

14: (z,h) :=1

15: else These versions are no longer equivalent without the
16: h := MakeHint_ref (w1, wo — cs2 + cto, 272) second test!

17 if [|ctolloc > 72 or |h|n,;=1 > w then

18: (z,h) =L

19: ki=x+1

20: return o = (¢,z, h)

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Hidden problems: Implementation VS Specification

For Specification:

Assumption 1: With overwhelming probability, for a
signature of F — Sig the polynomial vector w; — w;’ has
at most one non-zero coefficient.

Proposition For any o = (¢,z,h) signature of F-Sig that is not accepted

by the verification algorithm, there exists a unique j € {1,...,k} and a unique
i €{0,...,255} such that:

— if (wy —W’I)Ej] =1 . .
(es2)P) > 3o — ¥ >0,

i

— if (wy — w'l)gj] = —1:

(ch)Ej] & ~Yo— r{ﬁ- =40

Signatures|Average inequalities|Success probability | Average time|Median Time
1250000 11085 0.99 277.53s 180.00s
OPEN
T H /-\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Building a future we can all trust

/777

Hidden problems: Implementation VS Specification

For Specification: For Implementation:

Assumption 2: The signature made by F — Sigpgr will

Assumption 1: With overwhelming probability, for a
always be accepted by the verification algorithm.

signature of F — Sig the polynomial vector w; — w;’ has
at most one non-zero coefficient.

Proposition For any o = (¢,z,h) signature of F-Sig that is not accepted Proposition Under Assumption 2, let 0 = (¢, 2z, h) be a signature of F-Sigg.;,
then either wi = HighBits (Az — ct,2v2) or there exisls at least one j €

by the verification algorithm, there exists a unique j € {1,...,k} and a unique
i €{0,...,255} such that: {1,....,k} and at least one i € {0, ...,255} such that:
— if (wy — w’l)gj] =1z — if (W} —HighBits (Az — ct, 272))?} is positive:

(cs2)?! > 45 — ¥l > 0, A .
. ’ (cs2)f 272 — il > 0,

— if (wy — W’I)EJJ = —1:
— if (W] —HighBits (Az — ct, 272))?} is negative:

(cs2)?! < —yq — rg]l < 0.
(es2)) < —72 — 1} < 0.

Signatures|Average inequalities|Success probability | Average time|Median Time Signatures|Average inequalities|Sucess probability | Average time|Median time
1250000 11085 0.99 277.53s 180.00s 1250000 11083 0.98 261.79s 148.79s
OPEN
T H /-\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

Building a future we can all trust

/777

Hidden problems:

Algorithm Ver
Require: pk, o
1: A € RE*! .= ExpandA(p)

p e {0,137 .= H(H(p || t1) | M)

¢ := SampleInBall(¢)

w) := UseHintg(h, Az — ct1 - 2%, 272)

return [|[7]|o < 1 — 5] and [¢ = H(u || w})] and [[hln, -1 <]

Algorithm Ver
1: Wf_l = HighBits(Az — ct, 2’}/2) @
2: Accept if ||z||c <71 — B and ¢ = H(M||w))

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Hidden problems:

Algorithm Ver

Require: pk, o
1: A € RE*! := ExpandA(p)

2 pe {0,137 == H(H(p|| t1) [| M)

3: ¢ := SampleInBall(c)

4: [W'l := UseHinty(h, Az — ctq - 2%, 272)]

5: return [||z|| < v1 — f] and [¢ = H(u || w1)] and [|h|n;=1 < «]

Algorithm Ver
1{ W) := HighBits(Az — ct, 2v,)|
2: Accept if ||z||cc <71 — S and ¢ = H(M||w)

In a fault framework: Verification in the implementation is weaker than when ¢, is known.

Incorrect Dilithium signatures, which provide information about the secret key, are considered valid by the
Dilithium reference verification.

OPEN

T H /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007

Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

THALES
Building a future we can all trust

Thank you

&

https://www.thalesgroup.com/

	Slide 1: Finding a polytope: A practical fault attack against Dilithium
	Slide 2: Table of contents
	Slide 3: Conclusion
	Slide 4: Conclusion
	Slide 5: Conclusion
	Slide 6: Conclusion
	Slide 7: Context
	Slide 8: Dilithium in details
	Slide 9: Dilithium in details
	Slide 10: Dilithium in details
	Slide 11: Dilithium in details
	Slide 12: Dilithium in details
	Slide 13: Dilithium in details
	Slide 14: Dilithium in details
	Slide 15: Dilithium in details
	Slide 16: The real Dilithium
	Slide 17: The real Dilithium
	Slide 18: The real Dilithium
	Slide 19: Attack method
	Slide 20: Attack method: First step
	Slide 21: Attack method: First step
	Slide 22: Attack method: First step
	Slide 23: Attack method: First step
	Slide 24: Attack method: First step
	Slide 25: Attack method: Second step
	Slide 26: Attack method: Second step
	Slide 27: Attack method: Second step
	Slide 28: Practical results
	Slide 29
	Slide 30: Hidden problems
	Slide 31: Hidden problems: Implementation VS Specification
	Slide 32: Hidden problems: Implementation VS Specification
	Slide 33: Hidden problems: Implementation VS Specification
	Slide 34: Hidden problems: Implementation VS Specification
	Slide 35: Hidden problems: Implementation VS Specification
	Slide 36: Hidden problems: Second conclusion
	Slide 37: Hidden problems: Second conclusion
	Slide 38

