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Conclusion

Sig Rejection
𝝈𝑴 𝝈𝑴𝑴 Sig Rejection

𝝈𝑴 𝝈𝑴𝑴

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We 

show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an 

hour on a computer. 

Dilithium Dilithium
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Sig Rejection
𝝈𝑴 𝝈𝑴𝑴 Sig

𝝈𝑴 𝝈𝑴𝑴

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We 

show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an 

hour on a computer. 

Security With rejection Without rejection

Dilithium-II 𝟐𝟏𝟐𝟖 𝟐𝟐𝟎

Dilithium-III 𝟐𝟏𝟗𝟐 𝟐𝟐𝟏

Dilithium-V 𝟐𝟐𝟓𝟔 𝟐𝟐𝟐

Dilithium Dilithium

Rejection
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Conclusion

Sig Rejection
𝝈𝑴 𝝈𝑴𝑴 Sig

𝝈𝑴 𝝈𝑴𝑴

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We 

show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an 

hour on a computer. 

From our paper: the tests must be protected and not just the values manipulated during the test.

Dilithium Dilithium

Rejection

Security With rejection Without rejection

Dilithium-II 𝟐𝟏𝟐𝟖 𝟐𝟐𝟎

Dilithium-III 𝟐𝟏𝟗𝟐 𝟐𝟐𝟏

Dilithium-V 𝟐𝟐𝟓𝟔 𝟐𝟐𝟐
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Conclusion

Sig Rejection
𝝈𝑴 𝝈𝑴𝑴 Sig

𝝈𝑴 𝝈𝑴𝑴

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. We 

show that an adversary with enough rejected signatures can recover Dilithium’s secret key in less than half an 

hour on a computer. 

The code is publicly available: GitHub - anders1901/Polytope_attack 

Dilithium Dilithium

Rejection

Security With rejection Without rejection

Dilithium-II 𝟐𝟏𝟐𝟖 𝟐𝟐𝟎

Dilithium-III 𝟐𝟏𝟗𝟐 𝟐𝟐𝟏

Dilithium-V 𝟐𝟐𝟓𝟔 𝟐𝟐𝟐

https://github.com/anders1901/Polytope_attack
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Context

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

Dilithium is recommended for computing quantum-secure signatures in most use cases.

it is necessary to investigate the security of embedded implementations. The security of Dilithium against Side-

Channel Attacks (SCA) and Fault Attacks (FA) thus needs to be carefully assessed.

𝒎 → → 𝝈𝒎
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Dilithium in details

Dilithium uses two rings: 

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

with: 𝒏 = 𝟐𝟓𝟔 and 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕
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Dilithium in details

Dilithium uses two rings: 

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

𝜶 an even integer which divides 𝒒 − 𝟏 and:

𝒓 = 𝒓𝟏𝜶 + 𝒓𝟎 𝒘𝒊𝒕𝒉 𝒓𝟎 = 𝒓𝒎𝒐𝒅± 𝜶 𝒂𝒏𝒅 𝒓𝟏 =
𝒓 − 𝒓𝟎
𝜶

Possible values of 𝒓𝟎:  −
𝜶

𝟐
+ 𝟏,… , 𝟎,… ,

𝜶

𝟐

Possible values of 𝒓𝟏𝜶:  𝟎, 𝜶, 𝟐𝜶,… , 𝒒 − 𝟏

One note:

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝒓, 𝜶 = 𝒓𝟏 and 𝑳𝒐𝒘𝑩𝒊𝒕𝒔𝒒 𝒓, 𝜶 = 𝒓𝟎

with: 𝒏 = 𝟐𝟓𝟔 and 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕
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Dilithium in details

Dilithium uses two rings: 

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

𝒓 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝒓, 𝜶 × 𝜶 + 𝑳𝒐𝒘𝑩𝒊𝒕𝒔𝒒(𝒓, 𝜶)
with: 𝒏 = 𝟐𝟓𝟔 and 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕
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Dilithium in details

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))

Alice draws a polynomial vector at random: 

𝒚 ∈𝑹 𝑹𝒍, 𝒚
∞
≤ 𝜸𝟏

She calculates a random challenge that depends on the 

message:
𝒄 = 𝑯(𝑴 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐 )

She provides an response to the challenge:
𝒛 = 𝒚 + 𝒄𝒔𝟏

By definition of 𝒛: 

𝑨𝒛 − 𝒄𝒕 = 𝑨𝒚 − 𝒄𝒔𝟐

The signature will be:

𝝈 = (𝒄, 𝒛)

But..
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Dilithium in details

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))

But..

By definition of 𝒛: 

𝒛 = 𝒚 + 𝒄𝒔𝟏

Two conditions must be fulfilled:

൞
𝒛

∞
< 𝒎𝒂𝒙𝒚 𝒚

∞
−𝒎𝒂𝒙 𝒄,𝒔𝟏 𝒄𝒔𝟏 ∞

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒(𝑨𝒚, 𝟐𝜸𝟐) = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐

The first condition is for security, the second for 

verification and security.

With these conditions:

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔 𝑨𝒛 − 𝒄𝒕 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔 𝑨𝒚 − 𝒄𝒔𝟐 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔(𝑨𝒚)
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Dilithium in details

By definition of z: 

𝑨𝒛 − 𝒄𝒕 = 𝑨𝒚 − 𝒄𝒔𝟐

𝒚 is chosen such that: 

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒(𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐)

Bob can recalculate 𝒘𝟏:

𝐰𝟏 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐
= 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐
= 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕, 𝟐𝜸𝟐
= 𝒘𝟏

′

Rejection

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))
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Dilithium in details

Dilithium's version is simplified. The public key is compressed:

𝒕 = 𝒕𝟏 × 𝟐
𝒅 + 𝒕𝟎

The least significant bits of coefficients of 𝒕 are not given, verification is no longer possible:

Bob can only compute: 

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕𝟏 𝟐
𝒅, 𝟐𝜸𝟐 ≠ 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕𝟏 𝟐

𝒅 − 𝒄𝒕𝟎, 𝟐𝜸𝟐
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Dilithium in details

Dilithium's version is simplified. The public key is compressed:

𝒕 = 𝒕𝟏 × 𝟐
𝒅 + 𝒕𝟎

The least significant bits of coefficients of 𝒕 are not given, verification is no longer possible:

Bob can only compute: 

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕𝟏 𝟐
𝒅, 𝟐𝜸𝟐 ≠ 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕𝟏 𝟐

𝒅 − 𝒄𝒕𝟎, 𝟐𝜸𝟐
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The real Dilithium
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The real Dilithium
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The real Dilithium
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Attack method: First step

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒(𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐)
?

𝒘𝟏 𝒘′𝟏
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Attack method: First step

Assumption 1: With overwhelming probability, for a 
signature of F-Sig the polynomial vector 𝒘𝟏 −𝒘𝟏′ has at 

most one non-zero coefficient. 

Proposition: Under Assumption 1, it is possible to recover
𝒘𝟏 from the knowledge of 𝒘𝟏′.

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒(𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐)
?

𝒘𝟏 𝒘′𝟏
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Attack method: First step

Assumption 1: With overwhelming probability, for a 
signature of F-Sig the polynomial vector 𝒘𝟏 −𝒘𝟏′ has at 

most one non-zero coefficient. 

Proposition: Under Assumption 1, it is possible to recover
𝒘𝟏 from the knowledge of 𝒘𝟏′.

Proof: If the signature is rejected, one can carry an 

exhaustive research, knowing the relation:

𝒄 = 𝑯(𝝁||𝒘𝟏)
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Attack method: First step

Assumption 1: With overwhelming probability, for a 
signature of F-Sig the polynomial vector 𝒘𝟏 −𝒘𝟏′ has at 

most one non-zero coefficient. 

Proposition: Under Assumption 1, it is possible to recover
𝒘𝟏 from the knowledge of 𝒘𝟏′.
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Attack method: First step

Assumption 1: With overwhelming probability, for a 
signature of F-Sig the polynomial vector 𝒘𝟏 −𝒘𝟏′ has at 

most one non-zero coefficient. 

Proposition: Under Assumption 1, it is possible to recover
𝒘𝟏 from the knowledge of 𝒘𝟏′.

Remark: If the hypothesis is not verified, simply ignore the 

signature
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Attack method: Second step

Proof (sketch):

Each signature not accepted by the verification 

algorithm provide an inequality:
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Example for n=3 : 

Let's assume that all the key coefficients are known, apart from 𝒔𝟐 𝟎, 𝒔𝟐 𝟏, 𝒔𝟐 𝟐. The unknowns are the 

coordinates of a point in −𝟐, 𝟐 𝟑 ∩ 𝒁

For example for 𝒔𝟐 = (2,0,1,…) : signing several times with the same key will produce inequalities.

Solution of inequalities :

𝒙 ≤ 𝟎
𝒚 ≥ 𝟏

Solution of inequalities:
𝒙 ≤ 𝟎
𝒚 ≥ 𝟏

𝒚 − 𝒛 ≥ −𝟑

Attack method: Second step
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We use linear programming (LP) methods. 

Attack method: Second step

Upper bound the number of solutions of is a (LP) 

problem:

If inequalities are collected so that 𝒔𝟐 is the only 

solution, it suffices to maximize any function:



www.thalesgroup.com

Practical
results
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Practical results

The number of inequalities required can be estimated using statistics:

We collect enough signatures so that the polytope defined by the inequalities contains only 𝒔𝟐

Conclusion : The attack illustrates the power of LP methods: we search for a point in −𝟐, 𝟐 𝟐𝟓𝟔 is found under

one hour:

Tests must be protected against faults.



www.thalesgroup.com

Hidden
problems
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Hidden problems: Implementation VS Specification

The “specification” version calls the decompose 

function twice, which is costly.

This can be avoided by making an equivalent and 

less costly test, which uses a little more memory.
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Hidden problems: Implementation VS Specification

The test is equivalent and saves a call to the 
decompose function, with the cost of storing 𝒘𝟎 in 

memory.
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Hidden problems: Implementation VS Specification

The test is equivalent and saves a call to the 
decompose function, with the cost of storing 𝒘𝟎 in 

memory.

These versions are no longer equivalent without the 

second test!
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Hidden problems: Implementation VS Specification

For Specification:

Assumption 1: With overwhelming probability, for a 
signature of 𝑭 − 𝑺𝒊𝒈 the polynomial vector 𝒘𝟏 −𝒘𝟏′ has 

at most one non-zero coefficient. 
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Hidden problems: Implementation VS Specification

For Specification:

Assumption 1: With overwhelming probability, for a 
signature of 𝑭 − 𝑺𝒊𝒈 the polynomial vector 𝒘𝟏 −𝒘𝟏′ has 

at most one non-zero coefficient. 

For Implementation:

Assumption 2: The signature made by 𝑭 − 𝑺𝒊𝒈𝑹𝑬𝑭 will

always be accepted by the verification algorithm.
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Hidden problems: Second conclusion

֞
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Hidden problems: Second conclusion

֞
In a fault framework: Verification in the implementation is weaker than when 𝒕𝟎 is known.

Incorrect Dilithium signatures, which provide information about the secret key, are considered valid by the 

Dilithium reference verification.
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