
A Framework for Group Action-Based Multi-Signatures and
Applications to LESS, MEDS, and ALTEQ

Edoardo Signorini
Joint work with Giuseppe D’Alconzo, Andrea Flamini, and Alessio Meneghetti

May 12, 2025



Background

• New approach for digital signatures among NIST on-ramp candidates based on
cryptographic group actions:

∘ Code equivalence: LESS, MEDS.
∘ Alternating Trilinear Form: ALTEQ.

• Many multi-signatures have been proposed for Schnorr’s and lattice-based signatures.
∘ Near-optimal schemes like MuSig21 and MuSig-L.2

• Group action-based signatures share Fiat-Shamir construction but are less structured.

Can we build (interactive) multi-signatures from cryptographic group actions?

1Nick, Ruffing, and Seurin. “MuSig2: Simple Two-Round Schnorr Multi-signatures”. CRYPTO 2021, Part I.
2Boschini, Takahashi, and Tibouchi. “MuSig-L: Lattice-Based Multi-signature with Single-Round Online Phase”. CRYPTO 2022, Part II.

1



Background

• New approach for digital signatures among NIST on-ramp candidates based on
cryptographic group actions:

∘ Code equivalence: LESS, MEDS.
∘ Alternating Trilinear Form: ALTEQ.

• Many multi-signatures have been proposed for Schnorr’s and lattice-based signatures.
∘ Near-optimal schemes like MuSig21 and MuSig-L.2

• Group action-based signatures share Fiat-Shamir construction but are less structured.

Can we build (interactive) multi-signatures from cryptographic group actions?

1Nick, Ruffing, and Seurin. “MuSig2: Simple Two-Round Schnorr Multi-signatures”. CRYPTO 2021, Part I.
2Boschini, Takahashi, and Tibouchi. “MuSig-L: Lattice-Based Multi-signature with Single-Round Online Phase”. CRYPTO 2022, Part II.

1



Cryptographic Group Action (CGA)

Let 𝐺 be a group, 𝑋 be a set and ⋆ ∶ 𝐺 × 𝑋 → 𝑋 .

(𝐺, 𝑋, ⋆) is a group action if ⋆ is compatible with the group operation:
• 𝑒 ⋆ 𝑥 = 𝑥;
• 𝑔 ⋆ (ℎ ⋆ 𝑥) = (𝑔ℎ) ⋆ 𝑥;

for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 .

Cryptographic group action means that it has interesting properties for cryptographic
applications.

Effective

Polynomial time algorithms for the
following:

• Operations on 𝐺.

• Computing ⋆ on almost all 𝐺, 𝑋 .
• Uniformly sampling from 𝐺 and 𝑋

One-way (GAIP)

Given 𝑥, 𝑦 ∈ 𝑋 , find, if exists, 𝑔 ∈ 𝐺 such
that 𝑦 = 𝑔 ⋆ 𝑥.

𝑥 𝑦
�𝑔

2



Cryptographic Group Action (CGA)

Let 𝐺 be a group, 𝑋 be a set and ⋆ ∶ 𝐺 × 𝑋 → 𝑋 .

(𝐺, 𝑋, ⋆) is a group action if ⋆ is compatible with the group operation:
• 𝑒 ⋆ 𝑥 = 𝑥;
• 𝑔 ⋆ (ℎ ⋆ 𝑥) = (𝑔ℎ) ⋆ 𝑥;

for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 .

Cryptographic group action means that it has interesting properties for cryptographic
applications.

Effective

Polynomial time algorithms for the
following:

• Operations on 𝐺.

• Computing ⋆ on almost all 𝐺, 𝑋 .
• Uniformly sampling from 𝐺 and 𝑋

One-way (GAIP)

Given 𝑥, 𝑦 ∈ 𝑋 , find, if exists, 𝑔 ∈ 𝐺 such
that 𝑦 = 𝑔 ⋆ 𝑥.

𝑥 𝑦
�𝑔

2



Sigma Protocol for Group Actions

Consider a cryptographic group action (𝐺, 𝑋, ⋆) and 𝑥 ∈ 𝑋 . Let 𝑔 ∈ 𝐺 be the witness for the
statement 𝑦 with 𝑦 = 𝑔 ⋆ 𝑥.

𝑥 𝑥̃ 𝑦

𝑔

𝑔̃ 𝑔̃𝑔−1Base element Public Key

• The commitment is 𝑔̃ ⋆ 𝑥, where
𝑔̃ ←$ 𝐺.

• If ch = 0, reveal rsp = 𝑔̃.

• If ch = 1, reveal rsp = 𝑔̃𝑔−1.

The Σ-protocol is correct, 2-special sound
and HVZK if (𝐺, 𝑋, ⋆) is a one-way CGA.

Digital Signature

Apply Fiat-Shamir and sendFile-signature = (ch, rsp).

Requires 𝜆 parallel repetitions before
applying Fiat-Shamir.

3



Sigma Protocol for Group Actions

Consider a cryptographic group action (𝐺, 𝑋, ⋆) and 𝑥 ∈ 𝑋 . Let 𝑔 ∈ 𝐺 be the witness for the
statement 𝑦 with 𝑦 = 𝑔 ⋆ 𝑥.

𝑥 𝑥̃ 𝑦

𝑔

𝑔̃ 𝑔̃𝑔−1Base element Public KeyCommitment

• The commitment is 𝑔̃ ⋆ 𝑥, where
𝑔̃ ←$ 𝐺.

• If ch = 0, reveal rsp = 𝑔̃.

• If ch = 1, reveal rsp = 𝑔̃𝑔−1.

The Σ-protocol is correct, 2-special sound
and HVZK if (𝐺, 𝑋, ⋆) is a one-way CGA.

Digital Signature

Apply Fiat-Shamir and sendFile-signature = (ch, rsp).

Requires 𝜆 parallel repetitions before
applying Fiat-Shamir.

3



Sigma Protocol for Group Actions

Consider a cryptographic group action (𝐺, 𝑋, ⋆) and 𝑥 ∈ 𝑋 . Let 𝑔 ∈ 𝐺 be the witness for the
statement 𝑦 with 𝑦 = 𝑔 ⋆ 𝑥.

𝑥 𝑥̃ 𝑦

𝑔

𝑔̃ 𝑔̃𝑔−1Base element Public KeyCommitment

• The commitment is 𝑔̃ ⋆ 𝑥, where
𝑔̃ ←$ 𝐺.

• If ch = 0, reveal rsp = 𝑔̃.

• If ch = 1, reveal rsp = 𝑔̃𝑔−1.

The Σ-protocol is correct, 2-special sound
and HVZK if (𝐺, 𝑋, ⋆) is a one-way CGA.

Digital Signature

Apply Fiat-Shamir and sendFile-signature = (ch, rsp).

Requires 𝜆 parallel repetitions before
applying Fiat-Shamir.

3



Sigma Protocol for Group Actions

Consider a cryptographic group action (𝐺, 𝑋, ⋆) and 𝑥 ∈ 𝑋 . Let 𝑔 ∈ 𝐺 be the witness for the
statement 𝑦 with 𝑦 = 𝑔 ⋆ 𝑥.

𝑥 𝑥̃ 𝑦

𝑔

𝑔̃ 𝑔̃𝑔−1Base element Public KeyCommitment

• The commitment is 𝑔̃ ⋆ 𝑥, where
𝑔̃ ←$ 𝐺.

• If ch = 0, reveal rsp = 𝑔̃.

• If ch = 1, reveal rsp = 𝑔̃𝑔−1.

The Σ-protocol is correct, 2-special sound
and HVZK if (𝐺, 𝑋, ⋆) is a one-way CGA.

Digital Signature

Apply Fiat-Shamir and sendFile-signature = (ch, rsp).

Requires 𝜆 parallel repetitions before
applying Fiat-Shamir.

3



A Useful Technique: Multiple Keys Optimization

The Σ-protocol from CGA is 2-special-sound

• Base protocol: the challenge space is {0, 1} ⟹ soundness-error is 1/2

• Multiple public keys: Use multiple public keys 𝑦1, … , 𝑦𝑛−1 and enlarge the challenge space
to {0, … , 𝑛 − 1} ⟹ soundness-error is 1/𝑛

𝑥 𝑦1 𝑦2 … 𝑦𝑛−1

𝑥̃

Base element Public Keys

Commitment

Multi-Signature Idea

Adapt the multi-public keys optimization to an interactive protocol.

4



A Useful Technique: Multiple Keys Optimization

The Σ-protocol from CGA is 2-special-sound

• Base protocol: the challenge space is {0, 1} ⟹ soundness-error is 1/2

• Multiple public keys: Use multiple public keys 𝑦1, … , 𝑦𝑛−1 and enlarge the challenge space
to {0, … , 𝑛 − 1} ⟹ soundness-error is 1/𝑛

𝑥 𝑦1 𝑦2 … 𝑦𝑛−1

𝑥̃

Base element Public Keys

Commitment

Multi-Signature Idea

Adapt the multi-public keys optimization to an interactive protocol.

4



Multi-Signature from Cryptographic Group Action

• Each party 𝑃𝑖 holds a public key 𝑦𝑖 = 𝑔𝑖 ⋆ 𝑥.

• Parties collaborate in a round-robin
protocol to generate a common
commitment 𝑥̃.

• Parties commit to a random salt to
generate shared randomness.

• On challenge ch = 𝑖, each party 𝑃𝑘, 𝑘 ≠ 𝑖
reveals its ephemeral group element 𝑔̃(𝑘),
while 𝑃𝑖 reveals the map from 𝑦𝑖 to 𝑥̃

(𝑖).

• 𝑃𝑖 computes the response as

rsp = (
𝑛−1

∏
𝑘=0

𝑔̃𝑛−𝑘) 𝑔−1𝑖 .

• SignatureFile-signature = (ch, rsp) verification is
identical to the underlying scheme (with
different parameters).

𝑥

𝑦1𝑦3 𝑦2

𝑥̃(1)

𝑥̃(2)

𝑥̃

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

5



Multi-Signature from Cryptographic Group Action

• Each party 𝑃𝑖 holds a public key 𝑦𝑖 = 𝑔𝑖 ⋆ 𝑥.
• Parties collaborate in a round-robin
protocol to generate a common
commitment 𝑥̃.

• Parties commit to a random salt to
generate shared randomness.

• On challenge ch = 𝑖, each party 𝑃𝑘, 𝑘 ≠ 𝑖
reveals its ephemeral group element 𝑔̃(𝑘),
while 𝑃𝑖 reveals the map from 𝑦𝑖 to 𝑥̃

(𝑖).

• 𝑃𝑖 computes the response as

rsp = (
𝑛−1

∏
𝑘=0

𝑔̃𝑛−𝑘) 𝑔−1𝑖 .

• SignatureFile-signature = (ch, rsp) verification is
identical to the underlying scheme (with
different parameters).

𝑥

𝑦1𝑦3 𝑦2

𝑥̃(1)

𝑥̃(2)

𝑥̃

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

5



Multi-Signature from Cryptographic Group Action

• Each party 𝑃𝑖 holds a public key 𝑦𝑖 = 𝑔𝑖 ⋆ 𝑥.
• Parties collaborate in a round-robin
protocol to generate a common
commitment 𝑥̃.

• Parties commit to a random salt to
generate shared randomness.

• On challenge ch = 𝑖, each party 𝑃𝑘, 𝑘 ≠ 𝑖
reveals its ephemeral group element 𝑔̃(𝑘),
while 𝑃𝑖 reveals the map from 𝑦𝑖 to 𝑥̃

(𝑖).

• 𝑃𝑖 computes the response as

rsp = (
𝑛−1

∏
𝑘=0

𝑔̃𝑛−𝑘) 𝑔−1𝑖 .

• SignatureFile-signature = (ch, rsp) verification is
identical to the underlying scheme (with
different parameters).

𝑥

𝑦1𝑦3 𝑦2

𝑥̃(1)

𝑥̃(2)

𝑥̃

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

5



Multi-Signature from Cryptographic Group Action

• Each party 𝑃𝑖 holds a public key 𝑦𝑖 = 𝑔𝑖 ⋆ 𝑥.
• Parties collaborate in a round-robin
protocol to generate a common
commitment 𝑥̃.

• Parties commit to a random salt to
generate shared randomness.

• On challenge ch = 𝑖, each party 𝑃𝑘, 𝑘 ≠ 𝑖
reveals its ephemeral group element 𝑔̃(𝑘),
while 𝑃𝑖 reveals the map from 𝑦𝑖 to 𝑥̃

(𝑖).

• 𝑃𝑖 computes the response as

rsp = (
𝑛−1

∏
𝑘=0

𝑔̃𝑛−𝑘) 𝑔−1𝑖 .

• SignatureFile-signature = (ch, rsp) verification is
identical to the underlying scheme (with
different parameters).

𝑥

𝑦1𝑦3 𝑦2

𝑥̃(1)

𝑥̃(2)

𝑥̃

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

𝑔̃(1)

𝑔̃(2)

𝑔̃(3)

5



Security Proof

The adversary must forge a multi-signature involving a target user, with all other users
potentially corrupted (MS-UF-CMA). The adversary can execute concurrent signing sessions.

𝑥

𝑦1𝑦𝑛 𝑦2…

MS-UF-CMA

𝑥

𝑦1𝑦𝑛 𝑦2…

EUF-CMA
Ephemeral keys

≈

1. MS-UF-CMA tightly reduces to EUF-CMA for a variant of the centralized signature scheme in
the ROM.

2. The Σ-protocol Π′ underlying the signature variant is a proof of knowledge.

3. The Fiat-Shamir transform can be applied to Π′.

6



Security Proof

The adversary must forge a multi-signature involving a target user, with all other users
potentially corrupted (MS-UF-CMA). The adversary can execute concurrent signing sessions.

𝑥

𝑦1𝑦𝑛 𝑦2…

MS-UF-CMA

𝑥

𝑦1𝑦𝑛 𝑦2…

EUF-CMA
Ephemeral keys

≈

1. MS-UF-CMA tightly reduces to EUF-CMA for a variant of the centralized signature scheme in
the ROM.

2. The Σ-protocol Π′ underlying the signature variant is a proof of knowledge.

3. The Fiat-Shamir transform can be applied to Π′.

6



Reduction Sketch

The EUF-CMA adversary 𝐵 is given pk = 𝑦1 with oracle access to H
′ and OSign. Then, 𝐵 forwards

𝑦1 to the MS-UF-CMA adversary 𝐴 and simulates H and OMuSign.

𝐵 (EUF-CMA)EUF-CMA chall.
(𝑦1, 𝑔1) ←$ KGen(1𝜆) 𝑦1

𝐴
(MS-UF-CMA)

𝑦1

HH′

𝑦1, 𝑦2, … , 𝑦𝑛𝑦2, … , 𝑦𝑛

ch𝐵
ch

(ch, rsp)
(ch𝐵 , rsp)

𝐵 can program the random oracle H so that a valid response to ch can be adapted to produce a
forgery for the signature with ephemeral keys.

7



Reduction Sketch

The EUF-CMA adversary 𝐵 is given pk = 𝑦1 with oracle access to H
′ and OSign. Then, 𝐵 forwards

𝑦1 to the MS-UF-CMA adversary 𝐴 and simulates H and OMuSign.

𝐵 (EUF-CMA)EUF-CMA chall.
(𝑦1, 𝑔1) ←$ KGen(1𝜆) 𝑦1

𝐴
(MS-UF-CMA)

𝑦1

HH′

𝑦1, 𝑦2, … , 𝑦𝑛𝑦2, … , 𝑦𝑛

ch𝐵
ch

(ch, rsp)
(ch𝐵 , rsp)

𝐵 can program the random oracle H so that a valid response to ch can be adapted to produce a
forgery for the signature with ephemeral keys.

7



Reduction Sketch

The EUF-CMA adversary 𝐵 is given pk = 𝑦1 with oracle access to H
′ and OSign. Then, 𝐵 forwards

𝑦1 to the MS-UF-CMA adversary 𝐴 and simulates H and OMuSign.

𝐵 (EUF-CMA)EUF-CMA chall.
(𝑦1, 𝑔1) ←$ KGen(1𝜆) 𝑦1

𝐴
(MS-UF-CMA)

𝑦1

HH′

𝑦1, 𝑦2, … , 𝑦𝑛𝑦2, … , 𝑦𝑛

ch𝐵
ch

(ch, rsp)
(ch𝐵 , rsp)

𝐵 can program the random oracle H so that a valid response to ch can be adapted to produce a
forgery for the signature with ephemeral keys.

7



Reduction Sketch

The EUF-CMA adversary 𝐵 is given pk = 𝑦1 with oracle access to H
′ and OSign. Then, 𝐵 forwards

𝑦1 to the MS-UF-CMA adversary 𝐴 and simulates H and OMuSign.

𝐵 (EUF-CMA)EUF-CMA chall.
(𝑦1, 𝑔1) ←$ KGen(1𝜆) 𝑦1

𝐴
(MS-UF-CMA)

𝑦1

HH′

𝑦1, 𝑦2, … , 𝑦𝑛𝑦2, … , 𝑦𝑛

ch𝐵
ch

(ch, rsp)
(ch𝐵 , rsp)

𝐵 can program the random oracle H so that a valid response to ch can be adapted to produce a
forgery for the signature with ephemeral keys.

7



Σ-Protocol Variant with Ephemeral Keys

• We show that the Σ-protocol Π′ is a proof of knowledge.

• Correctness and HVZK are easy, we focus on knowledge soundness.

Π: (base protocol)

𝑥

𝑦1

𝑥̃

2-special-sound

Π[𝑛]: (𝑛 − 1 ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

(𝑛 + 1)-special-sound

Π′: (variable ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

?

Custom Extractor

• Each dishonest (deterministic) prover 𝑃∗ attacking Π′ can be used to build a (probabilistic)
prover 𝑃𝑛 against Π[𝑛].

• The success probability of 𝑃𝑛 is the same as for 𝑃
∗.

• Use the extractor for Π[𝑛] to extract a witness from 𝑃𝑛 .

Fiat-Shamir can be applied by employing multiple random oracles via Random Oracle Cloning.

8



Σ-Protocol Variant with Ephemeral Keys

• We show that the Σ-protocol Π′ is a proof of knowledge.

• Correctness and HVZK are easy, we focus on knowledge soundness.

Π: (base protocol)

𝑥

𝑦1

𝑥̃

2-special-sound

Π[𝑛]: (𝑛 − 1 ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

(𝑛 + 1)-special-sound

Π′: (variable ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

?

Custom Extractor

• Each dishonest (deterministic) prover 𝑃∗ attacking Π′ can be used to build a (probabilistic)
prover 𝑃𝑛 against Π[𝑛].

• The success probability of 𝑃𝑛 is the same as for 𝑃
∗.

• Use the extractor for Π[𝑛] to extract a witness from 𝑃𝑛 .

Fiat-Shamir can be applied by employing multiple random oracles via Random Oracle Cloning.

8



Σ-Protocol Variant with Ephemeral Keys

• We show that the Σ-protocol Π′ is a proof of knowledge.

• Correctness and HVZK are easy, we focus on knowledge soundness.

Π: (base protocol)

𝑥

𝑦1

𝑥̃

2-special-sound

Π[𝑛]: (𝑛 − 1 ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

(𝑛 + 1)-special-sound

Π′: (variable ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

?

Custom Extractor

• Each dishonest (deterministic) prover 𝑃∗ attacking Π′ can be used to build a (probabilistic)
prover 𝑃𝑛 against Π[𝑛].

• The success probability of 𝑃𝑛 is the same as for 𝑃
∗.

• Use the extractor for Π[𝑛] to extract a witness from 𝑃𝑛 .

Fiat-Shamir can be applied by employing multiple random oracles via Random Oracle Cloning.

8



Σ-Protocol Variant with Ephemeral Keys

• We show that the Σ-protocol Π′ is a proof of knowledge.

• Correctness and HVZK are easy, we focus on knowledge soundness.

Π: (base protocol)

𝑥

𝑦1

𝑥̃

2-special-sound

Π[𝑛]: (𝑛 − 1 ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

(𝑛 + 1)-special-sound

Π′: (variable ephem. keys)

𝑥

𝑦1𝑦𝑛 𝑦2…

𝑥̃

?

Custom Extractor

• Each dishonest (deterministic) prover 𝑃∗ attacking Π′ can be used to build a (probabilistic)
prover 𝑃𝑛 against Π[𝑛].

• The success probability of 𝑃𝑛 is the same as for 𝑃
∗.

• Use the extractor for Π[𝑛] to extract a witness from 𝑃𝑛 .

Fiat-Shamir can be applied by employing multiple random oracles via Random Oracle Cloning.3

3Bellare, Davis, and Günther. “Separate Your Domains: NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability”. EUROCRYPT 2020, Part II.
8



Benchmarking

Applicable to group action-based signature schemes (e.g., LESS, MEDS, ALTEQ)

LESS

0 50 100 150 200

Number of signers

0%

10%

20%

30%

40%

50%

60%

70%

Co
m
pr
es
si
on

Ra
te

Params
LESS-1B
LESS-3B
LESS-5B

MEDS

0 50 100 150 200

Number of signers

0%

10%

20%

30%

40%

50%

60%

70%

Params
MEDS-13220
MEDS-69497
MEDS-167717

9



Conclusions

Feasibility of multi-signature scheme for unstructured group-action signatures.

• Three round complexity (two round-robin and one broadcast).

• Secure in the plain public-key model (no custom key generation required).

• Reduce to the Group Action Inverse Problem in the classical ROM.

Open Questions:

• Reduce round complexity by removing the initial commitment round.

• Key Aggregation and constant size signature.

• Proof in the QROM.

10



Thank You!

10


