

## A Framework for Group Action-Based Multi-Signatures and Applications to LESS, MEDS, and ALTEQ

Edoardo Signorini Joint work with Giuseppe D'Alconzo, Andrea Flamini, and Alessio Meneghetti

May 12, 2025

- New approach for digital signatures among NIST on-ramp candidates based on cryptographic group actions:
  - Code equivalence: LESS, MEDS.
  - Alternating Trilinear Form: ALTEQ.
- Many multi-signatures have been proposed for Schnorr's and lattice-based signatures.
  - Near-optimal schemes like MuSig2<sup>1</sup> and MuSig-L.<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Nick, Ruffing, and Seurin. "MuSig2: Simple Two-Round Schnorr Multi-signatures". CRYPTO 2021, Part I.

<sup>&</sup>lt;sup>2</sup>Boschini, Takahashi, and Tibouchi. "MuSig-L: Lattice-Based Multi-signature with Single-Round Online Phase". CRYPTO 2022, Part II.

- New approach for digital signatures among NIST on-ramp candidates based on cryptographic group actions:
  - Code equivalence: LESS, MEDS.
  - Alternating Trilinear Form: ALTEQ.
- Many multi-signatures have been proposed for Schnorr's and lattice-based signatures.
  - Near-optimal schemes like MuSig2<sup>1</sup> and MuSig-L<sup>2</sup>
- Group action-based signatures share Fiat-Shamir construction but are less structured.

Can we build (interactive) multi-signatures from cryptographic group actions?

<sup>&</sup>lt;sup>1</sup>Nick, Ruffing, and Seurin. "MuSig2: Simple Two-Round Schnorr Multi-signatures". CRYPTO 2021, Part I.

<sup>&</sup>lt;sup>2</sup>Boschini, Takahashi, and Tibouchi. "MuSig-L: Lattice-Based Multi-signature with Single-Round Online Phase". CRYPTO 2022, Part II.

## Cryptographic Group Action (CGA)

Let **G** be a group, **X** be a set and  $\star : \mathbf{G} \times \mathbf{X} \to \mathbf{X}$ .

 $(G, X, \star)$  is a group action if  $\star$  is compatible with the group operation:

- $e \star x = x;$
- $g \star (h \star x) = (gh) \star x;$

for all  $g, h \in G$  and  $x \in X$ .

## Cryptographic Group Action (CGA)

Let **G** be a group, **X** be a set and  $\star : \mathbf{G} \times \mathbf{X} \to \mathbf{X}$ .

 $(G, X, \star)$  is a group action if  $\star$  is compatible with the group operation:

- $e \star x = x;$
- $g \star (h \star x) = (gh) \star x;$

for all  $g, h \in G$  and  $x \in X$ .

Cryptographic group action means that it has interesting properties for cryptographic applications.

#### Effective

Polynomial time algorithms for the following:

- Operations on **G**.
- Computing **\*** on almost all **G**, **X**.
- Uniformly sampling from **G** and **X**

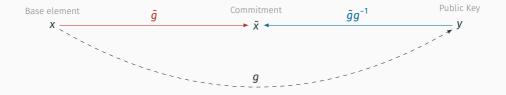
#### One-way (GAIP)

Given  $x, y \in X$ , find, if exists,  $g \in G$  such that  $y = g \star x$ .

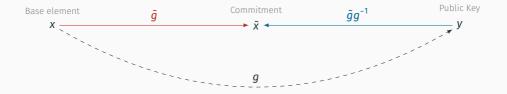




• The commitment is  $\tilde{g} \star x$ , where  $\tilde{g} \leftarrow s G$ .



- The commitment is  $\tilde{g} \star x$ , where  $\tilde{g} \leftarrow s G$ .
- If ch = 0, reveal rsp =  $\tilde{g}$ .
- If ch = 1, reveal rsp =  $\tilde{g}g^{-1}$ .



- The commitment is *g̃* ★ *x*, where *g̃* ← \$ *G*.
- If ch = 0, reveal rsp =  $\tilde{g}$ .
- If ch = 1, reveal rsp =  $\tilde{g}g^{-1}$ .

The  $\Sigma$ -protocol is correct, 2-special sound and HVZK if (*G*, *X*,  $\star$ ) is a one-way CGA.

#### **Digital Signature**

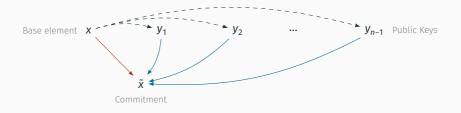
Apply Fiat-Shamir and send 🔛 = (ch, rsp).

Requires  $\lambda$  parallel repetitions before applying Fiat-Shamir.

#### A Useful Technique: Multiple Keys Optimization

#### The $\Sigma\text{-}\text{protocol}$ from CGA is 2-special-sound

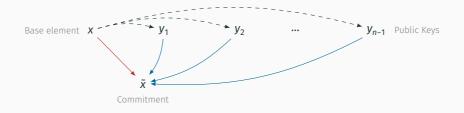
- **Base protocol**: the challenge space is  $\{0, 1\} \implies$  soundness-error is 1/2
- **Multiple public keys**: Use multiple public keys  $y_1, \dots, y_{n-1}$  and enlarge the challenge space to  $\{0, \dots, n-1\} \implies$  soundness-error is 1/n



#### A Useful Technique: Multiple Keys Optimization

#### The $\Sigma\text{-}\text{protocol}$ from CGA is 2-special-sound

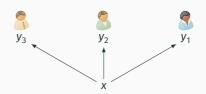
- **Base protocol**: the challenge space is  $\{0, 1\} \implies$  soundness-error is 1/2
- **Multiple public keys**: Use multiple public keys  $y_1, ..., y_{n-1}$  and enlarge the challenge space to  $\{0, ..., n-1\} \implies$  soundness-error is 1/n



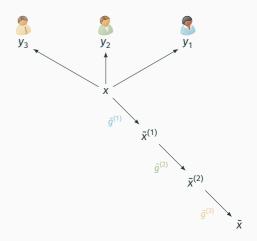
#### **Multi-Signature Idea**

Adapt the multi-public keys optimization to an interactive protocol.

• Each party  $P_i$  holds a public key  $y_i = g_i \star x$ .

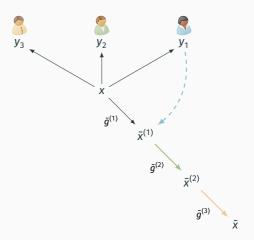


- Each party  $P_i$  holds a public key  $y_i = g_i \star x$ .
- Parties collaborate in a round-robin protocol to generate a common commitment x.
- Parties commit to a random salt to generate shared randomness.



- Each party  $P_i$  holds a public key  $y_i = g_i \star x$ .
- Parties collaborate in a round-robin protocol to generate a common commitment x.
- Parties commit to a random salt to generate shared randomness.
- On challenge ch = i, each party  $P_k$ ,  $k \neq i$ reveals its ephemeral group element  $\tilde{g}^{(k)}$ , while  $P_i$  reveals the map from  $y_i$  to  $\tilde{x}^{(i)}$ .
- P<sub>i</sub> computes the response as

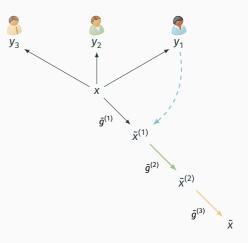
$$\operatorname{rsp} = \left(\prod_{k=0}^{n-1} \tilde{g}^{n-k}\right) g_i^{-1}.$$



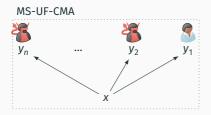
- Each party  $P_i$  holds a public key  $y_i = g_i \star x$ .
- Parties collaborate in a round-robin protocol to generate a common commitment x.
- Parties commit to a random salt to generate shared randomness.
- On challenge **ch** = *i*, each party  $P_k$ ,  $k \neq i$ reveals its ephemeral group element  $\tilde{g}^{(k)}$ , while  $P_i$  reveals the map from  $y_i$  to  $\tilde{x}^{(i)}$ .
- P<sub>i</sub> computes the response as

$$\operatorname{rsp} = \left(\prod_{k=0}^{n-1} \tilde{g}^{n-k}\right) g_i^{-1}.$$

• Signature **\*** = (ch, rsp) verification is identical to the underlying scheme (with different parameters).



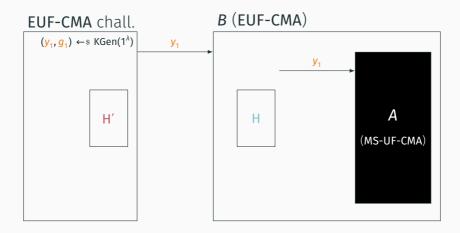
The adversary must forge a multi-signature involving a target user, with all other users potentially corrupted (MS-UF-CMA). The adversary can execute concurrent signing sessions.

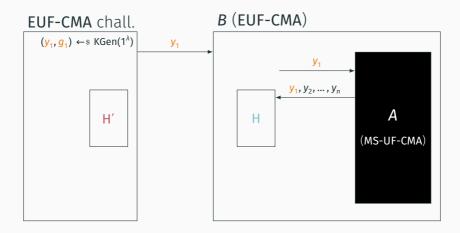


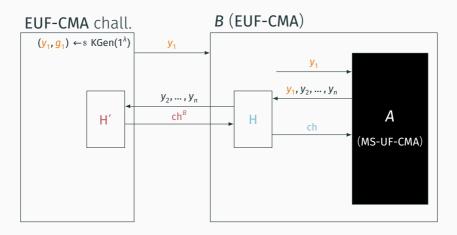
The adversary must forge a multi-signature involving a target user, with all other users potentially corrupted (MS-UF-CMA). The adversary can execute concurrent signing sessions.



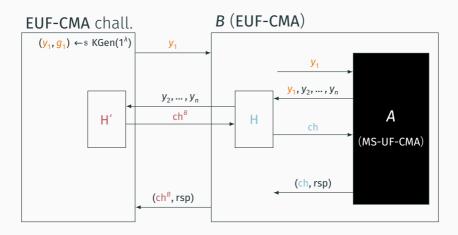
- 1. **MS-UF-CMA** tightly reduces to **EUF-CMA** for a variant of the centralized signature scheme in the ROM.
- 2. The  $\Sigma\text{-}\text{protocol}\ \Pi'$  underlying the signature variant is a proof of knowledge.
- 3. The Fiat-Shamir transform can be applied to  $\Pi'$ .







**B** can program the random oracle H so that a valid response to **ch** can be adapted to produce a forgery for the signature with ephemeral keys.



**B** can program the random oracle H so that a valid response to **ch** can be adapted to produce a forgery for the signature with ephemeral keys.

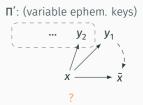
## $\Sigma\text{-}\text{Protocol}$ Variant with Ephemeral Keys

- We show that the  $\Sigma\text{-}\mathsf{protocol}\ \Pi'$  is a proof of knowledge.
- Correctness and HVZK are easy, we focus on knowledge soundness.

**Π**: (base protocol)

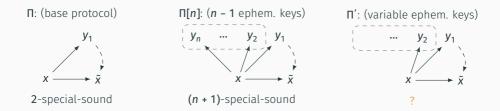


2-special-sound



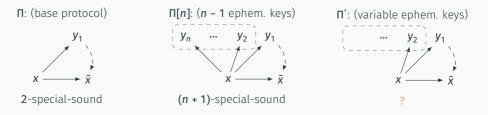
## **Σ-Protocol Variant with Ephemeral Keys**

- We show that the  $\Sigma\text{-}\mathsf{protocol}\ \Pi'$  is a proof of knowledge.
- Correctness and HVZK are easy, we focus on knowledge soundness.



## **Σ-Protocol Variant with Ephemeral Keys**

- We show that the  $\Sigma\text{-}\text{protocol}\ \Pi'$  is a proof of knowledge.
- Correctness and HVZK are easy, we focus on knowledge soundness.

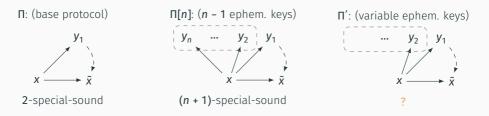


#### **Custom Extractor**

- Each dishonest (deterministic) prover P<sup>\*</sup> attacking Π' can be used to build a (probabilistic) prover P<sub>n</sub> against Π[n].
- The success probability of  $P_n$  is the same as for  $P^*$ .
- Use the extractor for  $\Pi[n]$  to extract a witness from  $P_n$ .

## **Σ-Protocol Variant with Ephemeral Keys**

- We show that the  $\Sigma\text{-}\text{protocol}\ \Pi'$  is a proof of knowledge.
- Correctness and HVZK are easy, we focus on knowledge soundness.



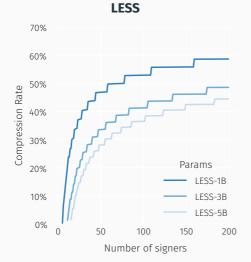
#### **Custom Extractor**

- Each dishonest (deterministic) prover P<sup>\*</sup> attacking Π' can be used to build a (probabilistic) prover P<sub>n</sub> against Π[n].
- The success probability of *P<sub>n</sub>* is the same as for *P*<sup>\*</sup>.
- Use the extractor for  $\Pi[n]$  to extract a witness from  $P_n$ .

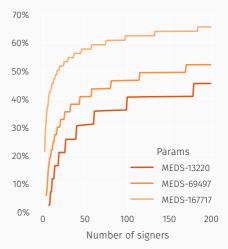
Fiat-Shamir can be applied by employing multiple random oracles via Random Oracle Cloning.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>Bellare, Davis, and Günther. "Separate Your Domains: NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability". EUROCRYPT 2020, Part II.

Applicable to group action-based signature schemes (e.g., LESS, MEDS, ALTEQ)



MEDS



Feasibility of multi-signature scheme for unstructured group-action signatures.

- Three round complexity (two round-robin and one broadcast).
- Secure in the plain public-key model (no custom key generation required).
- Reduce to the Group Action Inverse Problem in the classical ROM.

Open Questions:

- Reduce round complexity by removing the initial commitment round.
- Key Aggregation and constant size signature.
- Proof in the QROM.

# **Thank You!**