Universally Composable NIZK from Sigma **Protocols via a New Straight-line Compiler**

Pousali Dey

Indian Statistical Institute, Kolkata

Joint work with Megan Chen, Chaya Ganesh, Pratyay Mukherjee, Pratik Sarkar, Swagata Sasmal

Roadmap of today's talk

Motivation for our work

NIZK for algebraic relations are used in the applications such as-Multi-party threshold signature protocols [Lin22, KG20], protocols based on PKI, and Distributed Verifiable Random function [GLOW21], [KMMM23].

Popular way to achieve NIZK is-Fiat-Shamir Compiled Sigma protocols.

Applications crucially need-**UC Security**

Issue-

Fiat-Shamir compiled Sigma protocols are not UC secure.

Sigma Protocol

Prover

Wants to prove the knowledge of the witness **w** for **x** to the verifier.

Challenge

Response

**This talk will particularly focus on Schnorr Protocol

Accept/Reject

Schnorr Protocol

Example of Sigma Protocol for proving the knowledge of Discrete Logarithm of x where $x=g^w$

g be a generator of a group G of order q

Prover

$$r \leftarrow Z_q \quad a = g^r$$

A

C

 \boldsymbol{Z}

z = r + c. wmod q

Verifier

-0

 $C \stackrel{s}{\leftarrow} Z_q$

Checks if $g^z \stackrel{?}{=} a. x^c$ Accept/Reject

Sigma protocols satisfy 3 properties:

Completeness: Honest Prover P convinces the Verifier V of a true statement x .

> Knowledge Soundness: An efficient knowledge extractor \mathcal{E} with oracle access to P^* can extract a valid witness w for a statement x accepted by the verifier.

3

2

Honest Verifier Zero Knowledge: Prover P convinces correctness of a statement x to the Verifier V without revealing any other information beyond that fact.

Knowledge Extraction

Extraction requires rewinding the prover

Knowledge Extractor

 $c \stackrel{\$}{\leftarrow} Z_q$

 $c' \stackrel{\$}{\leftarrow} Z_q$ where $c \neq c'$ $g^{z-z^\prime}=x^{c-c^\prime}=g^{w(c-c^\prime)}$ $=>z-z'=w\left(c-c'
ight) \ =>w=rac{z-z'}{c-c'}$

Roadmap of today's talk

UC: Guarantees that a protocol remains secure even if it is composed with arbitrarily many instances of the same protocol or other protocols which run concurrently.

Rewinding the prover is not UC-compatible.

- In UC framework, there is an environment Z, which is an interactive distinguisher between the real protocol and the ideal protocol.
- A simulator **Sim** in ideal protocol cannot rewind Z.
- Z can distinguish the real protocol and ideal protocol.

Roadmap of today's talk

Verifier

 $C \leftarrow Z_a$ Checks if $c \stackrel{?}{=} H(x,a) \ g^z \stackrel{?}{=} a.x^c$ Accept/Reject

Fiat-Shamir compiled NIZKs from Sigma Protocols are not UC compatible, as they require rewinding the prover like in the interactive version.

• Examples of other compilers which are **straight line extractable** UC compatible NIZK in ROM:

Pass Compiler(Crypto'03), Fischlin Compiler(Crypto'05).

Pass compiler requires repetition of the underlying Sigma protocol for security parameter (k) where k is as large as 128.

128 times overhead over FS compiled NIZK.

01

Fischlin's compiler requires a proof-of-work from Prover's side. It also requires repetition of underlying Sigma protocol.

> **15 times overhead over FS compiled NIZK** when applied to Schnorr protocol [Chen, Lindell CiC 2024]

Roadmap of today's talk

Additively Homomorphic Encryption Scheme(AHE)

An AHE =(KGen, Enc, Dec) satisfies:

Additive Homomorphism: Define $c^{\times} = c_1 + sc_2$ for $c_1, c_2 \in C$ and for scalar s, if $c_{1} = Enc(m_{1}), c_{2} = Enc(m_{2}), \text{then } c^{\times} = Enc(m_{1} + sm_{2})$.

Additionally, we need two other properties from the AHE

Homomorphic Well formedness: Let $c_1, c_2 \in C$ and $c^{\times} = c_1 + sc_2$ for scalar s, if $m^{ imes} = Dec\left(c^{ imes}
ight)$, then $m^{ imes} = m_{1} + sm_{2}$.

Oblivious Sampleability of pk: There exists a poly time hash function H_{pk} such that public key pk can be sampled obliviously as $pk = H_{pk}\left(1^k, x\right)$ on an uniform random input x and the following distributions are computationally indistingushable.

 $\{pk:(sk,pk) \leftarrow KGen\}$ and $\{pk \leftarrow H_{pk}(1^k,)\}$

g be a generator of a group G of order q $crs=\{pk\}, td=\{sk\}$

knows
$$x, w, pk$$

Prover

• $s \leftarrow Z_q$, $S = g^s$, $r_s; r_w \leftarrow Z_q$, are encryption randomnesses, $C_s = Enc(pk, s, r_s), C_w = Enc(pk, w, r_w),$ • $a = (S, C_s, C_w),$

 u	
С	
z, r_z	

 $\boldsymbol{\cap}$

• $z = s + c. w \mod q$ $r_z = r_s + c. r_w \mod q$

Verifier

$$C \stackrel{\$}{\leftarrow} Z_q$$

- $q^z \stackrel{?}{=} S. x^c$
- check if C_s, C_w are valid ciphertexts.
- $Enc(pk, z, r_z) \stackrel{?}{=} C_s + c. C_w$ Accept/Reject

Straight line extractability of our protocol

knows

17

Knowledge Extractor

Parse a as $(S, C_s, C_w).$ Decrypt C_w with skand receive w.

Transforming our protocol to NIZK in ROM

Prover

- Parse RO as H_{pk}, H .
- Compute $pk = H_{pk}\left(1^k,x
 ight).$
- Compute $a = (S, C_s, C_w)$, as earlier.
- c = H(x, a)
- ullet Compute z, r_z as earlier.

Verifier

- Parse RO as H_{pk}, H
- Compute $pk=H_{pk}\left(1^k,x
 ight)$
- Check $c\stackrel{?}{=}H(x,a)$
- Check $g^z \stackrel{?}{=} S.\,x^c$
- Check if C_s, C_w are valid ciphertexts.
- $Enc(pk, z, r_z) \stackrel{?}{=} C_s + c. C_w$ Accept/Reject

Protocols	Straight-line extractable
Basic Sigma Protocol	No
Pass 03	Yes
Fischlin 05	Yes
Our work with any AHE	Yes
Our work with class group based AHE	Yes

Comparing our protocol with other compilers in terms of Straight line extractability and Setup.

Transparent Setup
Yes
Yes
Yes
No
Yes

Roadmap of today's talk

Concrete Instantiation

Concrete instantiation of AHE using Class Groups

We show that Class Group based instantiation satisfies:

Additive Homomorphism.

Homomorphic Well-formedness.

Oblivious Sampleability of public key.

AHE	Oblivious Sampleability of pk	Hor
Paillier	No	
Regev	Yes	
Class Group	Yes	

Popular instantiations of AHE and their support for the two desired properties

omomorphic well-formedness		
Yes		
Yes		
Yes		

Roadmap of today's talk

Simulation Extractability of FS compiled NIZK

Simulation Extractability: With access to the Simulation oracle, whenever adversary P* outputs a valid statement-proof pair (x, π) , it is possible to extract a valid witness $m{w}$ from that pair .

Standard technique to show Simulation Extractability is: **Unique Response Property.**

2

Unique Response Property: Adversary P* with access to the Simulation oracle, can't find two accepting transcripts (a, c, z) and (a, c, z') such that $z \neq z'$.

Our compiled protocol satisfies Unique Response Property.

Our compiled protocol satisfies Straight line and Simulation Extractability.

Straight line and Simulation Extractability together gives us UC Security.

Applications

Our compiler is convenient to compile a sigma protocol for an algebraic relation with m algebraic statements and n witnesses where m > n. Example: Chaum-Pedersen Protocol.

All applications of Schnorr and Chaum-Pedersen such as **multi-party** threshold signature protocols, protocols based on PKI, and Distributed Verifiable Random function achieve UC security without repetition of the underlying sigma protocol.

Unlike prior works, our compiler requires no repetitions of the underlying Sigma protocol.

Thank you!

https://eprint.iacr.org/2024/1713

