
PKC 2025,Røros
12 May 2025

Split Prover Zero-Knowledge SNARKs

1/14

Aarushi Goel

Purdue University

Rohit Sinha

Swirlds Labs

Dimitris Kolonelos

UC Berkeley

Sanjam Garg

UC Berkeley

Sina Shiehian

Snap Inc.

zkSNARKs: zero-knowledge Succinct Non-interactive Arguments of Knowledge

𝒫(x, w) 𝒱(x)

, an NP-relationℒ = {(x; w) : R(x, w) = 1} R

❖ Argument of Knowledge: if then knows a s.t.
❖ Zero-Knowledge: learns nothing about
❖ Non-interactive: generates without any interaction with
❖ Succinct: and

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w R(x, w) = 1
𝒱 w

𝒫 π 𝒱
∥π∥ ≪ ∥w∥ Time(𝖵𝖾𝗋𝗂𝖿𝗒) ≪ ∥w∥

π ← 𝖯𝗋𝗈𝗏𝖾(x, w)

π

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1

(Zero-Knowledge) SNARKs [Kil92], [Mic94]

2/14

3/14

Anonymous Payments and Delegation

Blockchain

Zerocash [BSCGGMTV14]: Tx=zkSNARK proof

Spender

=sk || price || receiver || …w1

π

3/14

Anonymous Payments and Delegation

Blockchain

Zerocash [BSCGGMTV14]: Tx=zkSNARK proof

Spender Delegatee

=sk || price || ?? || …w1 =receiverw2

π

3/14

Anonymous Payments and Delegation

Blockchain

Zerocash [BSCGGMTV14]: Tx=zkSNARK proof

Spender Delegatee

=sk || price || ?? || …w1 =receiverw2

π

Delegatee should
not learn w1

4/14

Our Contributions

★ New Notion: Split Prover zkSNARKs

★ Construction: Split Prover for Groth16

★ Lower Bound: For the (Second) Prover Computation

5/14

Split Prover zkSNARKs
 x = x1∥x2 w = w1∥w2

𝒱(x)𝒫1(x1, w1) 𝒫2(x2, w2)

Split Prover (𝒫1, 𝒫2)

5/14

Split Prover zkSNARKs
 x = x1∥x2 w = w1∥w2

𝒱(x)𝒫1(x1, w1)

𝖺𝗎𝗑 ← 𝖯𝗋𝗈𝗏𝖾1(x1, w1)

𝒫2(x2, w2)

𝖺𝗎𝗑

Split Prover (𝒫1, 𝒫2)

5/14

Split Prover zkSNARKs
 x = x1∥x2 w = w1∥w2

𝒱(x)

π

𝒫1(x1, w1)

𝖺𝗎𝗑 ← 𝖯𝗋𝗈𝗏𝖾1(x1, w1)

𝒫2(x2, w2)

π ← 𝖯𝗋𝗈𝗏𝖾2(x2, w2, 𝖺𝗎𝗑)

𝖺𝗎𝗑

Split Prover (𝒫1, 𝒫2)

5/14

Split Prover zkSNARKs
 x = x1∥x2 w = w1∥w2

𝒱(x)

π

𝒫1(x1, w1)

𝖺𝗎𝗑 ← 𝖯𝗋𝗈𝗏𝖾1(x1, w1) 𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1

𝒫2(x2, w2)

π ← 𝖯𝗋𝗈𝗏𝖾2(x2, w2, 𝖺𝗎𝗑)

𝖺𝗎𝗑

Split Prover (𝒫1, 𝒫2)

5/14

Split Prover zkSNARKs
 x = x1∥x2 w = w1∥w2

𝒱(x)

π

𝒫1(x1, w1)

𝖺𝗎𝗑 ← 𝖯𝗋𝗈𝗏𝖾1(x1, w1) 𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1

𝒫2(x2, w2)

π ← 𝖯𝗋𝗈𝗏𝖾2(x2, w2, 𝖺𝗎𝗑)

𝖺𝗎𝗑

Split Prover (𝒫1, 𝒫2)

An (existing) zkSNARK admits a Split Prover if it holds:
❖ Split Correctness
❖ Split zk: should leak nothing about 𝖺𝗎𝗑 w1

6/14

But isn’t this IVC?

Recursive zkSNARKs Split Prover zkSNARKs

π2
𝒫1(w1) 𝒫2(w2)π1

R1(x1, w1) R1(x2, w2) ∧ 𝖵𝖾𝗋𝗂𝖿𝗒(π𝟣)

π𝒫1(w1) 𝒫2(w2)𝖺𝗎𝗑
R(x, w)

6/14

But isn’t this IVC?

Recursive zkSNARKs Split Prover zkSNARKs

❖ Non-Black Box

❖ Heurstic Assumption

❖ Verifier Changes

Goals:

❖ Black Box

❖ Provable Security

❖ Same verification algorithm

π2
𝒫1(w1) 𝒫2(w2)π1

R1(x1, w1) R1(x2, w2) ∧ 𝖵𝖾𝗋𝗂𝖿𝗒(π𝟣)

π𝒫1(w1) 𝒫2(w2)𝖺𝗎𝗑
R(x, w)

7/14

Barriers on Constructions

Fiat-Shamir (RO) based SNARKS (PLONK, Bulletproofs, STARKs, …)

α = f1(x, w)

β = f2(RO(α, x), x, w)

⋮

π = (α, β, …)

7/14

Barriers on Constructions

Observation: Groth16 does not use Fiat-Shamir

Fiat-Shamir (RO) based SNARKS (PLONK, Bulletproofs, STARKs, …)

α = f1(x, w)

β = f2(RO(α, x), x, w)

⋮

π = (α, β, …)

Our Solution

Warning: Technical Slides Ahead

8/14

Groth16 in a nutshell

R1CS relations:

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

R = {(x, w) : Az ∘ Bz = Cz ∧ z = x∥w}

Hadamard Product

8/14

Groth16 in a nutshell

R1CS relations:

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

R = {(x, w) : Az ∘ Bz = Cz ∧ z = x∥w}

Hadamard Product

x1

x2

x3

8/14

Groth16 in a nutshell

R1CS relations:

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

R = {(x, w) : Az ∘ Bz = Cz ∧ z = x∥w}

Hadamard Product

x1

x2

x3

a1(X) a2(X) a3(X) a4(X) b1(X) b2(X) b3(X) b4(X) c1(X) c2(X) c3(X) c4(X)

8/14

Groth16 in a nutshell

R1CS relations:

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

R = {(x, w) : Az ∘ Bz = Cz ∧ z = x∥w}

Hadamard Product

R1CS satisfiability:

(
4

∑
i=1

ziai(X)) (
4

∑
i=1

zibi(X)) − (
4

∑
i=1

zici(X)) = q(X)
3

∏
i=1

(X − xi)

x1

x2

x3

a1(X) a2(X) a3(X) a4(X) b1(X) b2(X) b3(X) b4(X) c1(X) c2(X) c3(X) c4(X)

Vanishing Polynomial
V(X)

9/14

Groth16 in a nutshell
R1CS satisfiability:

(
m

∑
i=1

ziai(X)) ⋅ (
m

∑
i=1

zibi(X)) − (
m

∑
i=1

zici(X)) = q(X)V(X)

Cryptographic realization (with pairings):

[x]i := gx
i ∈ 𝔾i

9/14

Groth16 in a nutshell
R1CS satisfiability:

(
m

∑
i=1

ziai(X)) ⋅ (
m

∑
i=1

zibi(X)) − (
m

∑
i=1

zici(X)) = q(X)V(X)

Cryptographic realization (with pairings):

π1 = [α]1 +
m

∑
i=1

zi ⋅ [ai(x)]1 + r ⋅ [δ]1 π2 = [β]2 +
m

∑
i=1

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

[x]i := gx
i ∈ 𝔾i

9/14

Groth16 in a nutshell
R1CS satisfiability:

(
m

∑
i=1

ziai(X)) ⋅ (
m

∑
i=1

zibi(X)) − (
m

∑
i=1

zici(X)) = q(X)V(X)

Cryptographic realization (with pairings):

π1 = [α]1 +
m

∑
i=1

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π3 =
m

∑
i=1

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+s

m

∑
i=1

zi ⋅ [ai(x)]1 + r
m

∑
i=1

zi ⋅ [bi(x)]1

+
n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

π2 = [β]2 +
m

∑
i=1

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

[x]i := gx
i ∈ 𝔾i

9/14

Groth16 in a nutshell
R1CS satisfiability:

(
m

∑
i=1

ziai(X)) ⋅ (
m

∑
i=1

zibi(X)) − (
m

∑
i=1

zici(X)) = q(X)V(X)

Cryptographic realization (with pairings):

π1 = [α]1 +
m

∑
i=1

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π3 =
m

∑
i=1

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+s

m

∑
i=1

zi ⋅ [ai(x)]1 + r
m

∑
i=1

zi ⋅ [bi(x)]1

+
n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

π2 = [β]2 +
m

∑
i=1

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

[x]i := gx
i ∈ 𝔾i

CRS

9/14

Groth16 in a nutshell
R1CS satisfiability:

(
m

∑
i=1

ziai(X)) ⋅ (
m

∑
i=1

zibi(X)) − (
m

∑
i=1

zici(X)) = q(X)V(X)

Cryptographic realization (with pairings):

π1 = [α]1 +
m

∑
i=1

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π3 =
m

∑
i=1

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+s

m

∑
i=1

zi ⋅ [ai(x)]1 + r
m

∑
i=1

zi ⋅ [bi(x)]1

+
n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

π2 = [β]2 +
m

∑
i=1

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

[x]i := gx
i ∈ 𝔾i

CRSWitness

9/14

Groth16 in a nutshell
R1CS satisfiability:

(
m

∑
i=1

ziai(X)) ⋅ (
m

∑
i=1

zibi(X)) − (
m

∑
i=1

zici(X)) = q(X)V(X)

Cryptographic realization (with pairings):

π1 = [α]1 +
m

∑
i=1

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π3 =
m

∑
i=1

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+s

m

∑
i=1

zi ⋅ [ai(x)]1 + r
m

∑
i=1

zi ⋅ [bi(x)]1

+
n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

π2 = [β]2 +
m

∑
i=1

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

[x]i := gx
i ∈ 𝔾i

CRSWitness

Randomness
(for zk)

10/14

Split Prover for Groth16 (1)

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

Let then:z = zI∥zII

Split R1CS

10/14

Split Prover for Groth16 (1)

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

Let then:z = zI∥zII

● = (AI AII)(zI
zII) (BI BII)(zI

zII) (CI CII)(zI
zII)

Split R1CS

10/14

Split Prover for Groth16 (1)

 ● =
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43

z1
z2
z3
z4

b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

z1
z2
z3
z4

c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43

z1
z2
z3
z4

Let then:z = zI∥zII

● = (AI AII)(zI
zII) (BI BII)(zI

zII) (CI CII)(zI
zII)

 (●) + (●) + (●) + (●) = () + ()⇒ AIzI BIzI AIzI BIIzII AIIzII B1z1 AIIzII BIIzII CIzI CIIzII

Split R1CS

11/14

Split Prover Groth16 (2)

π1 = [α]1 + ∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π2 = [β]2 + ∑
i∈I

zi ⋅ [bi(x)]2 + ∑
i∈II

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

11/14

Split Prover Groth16 (2)

π1 = [α]1 + ∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π2 = [β]2 + ∑
i∈I

zi ⋅ [bi(x)]2 + ∑
i∈II

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

11/14

Split Prover Groth16 (2)

π1 = [α]1 + ∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π2 = [β]2 + ∑
i∈I

zi ⋅ [bi(x)]2 + ∑
i∈II

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

11/14

Split Prover Groth16 (2)

π1 = [α]1 + ∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π2 = [β]2 + ∑
i∈I

zi ⋅ [bi(x)]2 + ∑
i∈II

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

π3 = ∑
i∈I

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+ ∑

i∈II

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1

+s (∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1)+r (∑
i∈I

zi ⋅ [bi(x)]1 + ∑
i∈II

zi ⋅ [bi(x)]1)
+

n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

11/14

Split Prover Groth16 (2)

π1 = [α]1 + ∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π2 = [β]2 + ∑
i∈I

zi ⋅ [bi(x)]2 + ∑
i∈II

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

π3 = ∑
i∈I

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+ ∑

i∈II

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1

+s (∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1)+r (∑
i∈I

zi ⋅ [bi(x)]1 + ∑
i∈II

zi ⋅ [bi(x)]1)
+

n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

11/14

Split Prover Groth16 (2)

π1 = [α]1 + ∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1 + r ⋅ [δ]1

π2 = [β]2 + ∑
i∈I

zi ⋅ [bi(x)]2 + ∑
i∈II

zi ⋅ [bi(x)]2 + s ⋅ [δ]2

π3 = ∑
i∈I

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1
+ ∑

i∈II

zi ⋅ [βai(x) + αbi(x) + ci(x)
δ]

1

+s (∑
i∈I

zi ⋅ [ai(x)]1 + ∑
i∈II

zi ⋅ [ai(x)]1)+r (∑
i∈I

zi ⋅ [bi(x)]1 + ∑
i∈II

zi ⋅ [bi(x)]1)
+

n−2

∑
i=0

q̃i ⋅ [V(x)xi

δ]
1

+ s ⋅ [α]1 + r ⋅ [β]1 + rs ⋅ [δ]1

12/14

Split Prover Groth16 (3)

 + +

 +

q(X) =
(∑i∈I ziai(X)) (∑i∈I zibi(X))

V(X)
(∑i∈I ziai(X)) (∑i∈II zibi(X))

V(X)

(∑i∈II ziai(X)) (∑i∈I zibi(X))
V(X)

(∑i∈II ziai(X)) (∑i∈II zibi(X))
V(X)

Observation: The quotient can also be split

12/14

Split Prover Groth16 (3)

 + +

 +

q(X) =
(∑i∈I ziai(X)) (∑i∈I zibi(X))

V(X)
(∑i∈I ziai(X)) (∑i∈II zibi(X))

V(X)

(∑i∈II ziai(X)) (∑i∈I zibi(X))
V(X)

(∑i∈II ziai(X)) (∑i∈II zibi(X))
V(X)

Observation: The quotient can also be split

12/14

Split Prover Groth16 (3)

 + +

 +

q(X) =
(∑i∈I ziai(X)) (∑i∈I zibi(X))

V(X)
(∑i∈I ziai(X)) (∑i∈II zibi(X))

V(X)

(∑i∈II ziai(X)) (∑i∈I zibi(X))
V(X)

(∑i∈II ziai(X)) (∑i∈II zibi(X))
V(X)

 = q2(X) = ⟨ ⃗zI, ⃗aI(X)⟩ ⋅ ⟨ ⃗zII, ⃗aII(X)⟩
V(X) ⟨ ⃗zII , ⟨ ⃗zI, ⃗aI(X)⟩ ⋅ b⃗II(X)

V(X) ⟩

Observation: The quotient can also be split

12/14

Split Prover Groth16 (3)

 + +

 +

q(X) =
(∑i∈I ziai(X)) (∑i∈I zibi(X))

V(X)
(∑i∈I ziai(X)) (∑i∈II zibi(X))

V(X)

(∑i∈II ziai(X)) (∑i∈I zibi(X))
V(X)

(∑i∈II ziai(X)) (∑i∈II zibi(X))
V(X)

 = q2(X) = ⟨ ⃗zI, ⃗aI(X)⟩ ⋅ ⟨ ⃗zII, ⃗aII(X)⟩
V(X) ⟨ ⃗zII , ⟨ ⃗zI, ⃗aI(X)⟩ ⋅ b⃗II(X)

V(X) ⟩

Observation: The quotient can also be split

12/14

Split Prover Groth16 (3)

 + +

 +

q(X) =
(∑i∈I ziai(X)) (∑i∈I zibi(X))

V(X)
(∑i∈I ziai(X)) (∑i∈II zibi(X))

V(X)

(∑i∈II ziai(X)) (∑i∈I zibi(X))
V(X)

(∑i∈II ziai(X)) (∑i∈II zibi(X))
V(X)

 = q2(X) = ⟨ ⃗zI, ⃗aI(X)⟩ ⋅ ⟨ ⃗zII, ⃗aII(X)⟩
V(X) ⟨ ⃗zII , ⟨ ⃗zI, ⃗aI(X)⟩ ⋅ b⃗II(X)

V(X) ⟩

Observation: The quotient can also be split

Similarly for …q3(X)

13/14

More in the paper

‣ Split zk: should be randomized
➡ Common trick (e.g. see Ligero [AHIV17]): Add 3 dummy artificial
constraints and choose the corresponding at random to ‘blind’
aux.

‣ Impossibility Result: For any Split Prover realization for Groth16, must
perform at least group operations.
➡ Our Split Prover is tight.

𝖺𝗎𝗑

z1, z2, z3

𝒫II
Ω(𝖬𝗂𝗇{n − 1, 𝗋𝖺𝗇𝗄(AII) ⋅ 𝗋𝖺𝗇𝗄(BII)})

𝒫II

14/14

Thank you!

Recap:
❖ Split Prover zkSNARKs as an alternative to IVC
❖ Split Prover for Groth16
❖ Proof of tightness of prover’s computation

Future Directions:
❖ n-prover Split Prover zkSNARKs
❖ Sublinear second prover
❖ Applications (Anonymous payment delegation, Anonyous credentials)

Conclusions

