

Split Prover Zero-Knowledge SNARKs

Sanjam Garg

UC Berkeley

Sina Shiehian

Snap Inc.

PKC 2025, Røros 12 May 2025

Aarushi Goel

Purdue University

Dimitris Kolonelos

UC Berkeley

Rohit Sinha

Swirlds Labs

(Zero-Knowledge) SNARKs [Kil92], [Mic94]

zkSNARKs: <u>zero-knowledge Succinct Non-interactive Arguments of Knowledge</u>

$\pi \leftarrow \operatorname{Prove}(x, w)$

Argument of Knowledge: if Verify $(x, \pi) = 1$ then \mathscr{P} knows a w s.t. R(x, w) = 1Zero-Knowledge: V learns nothing about \clubsuit Non-interactive: \mathscr{P} generates π without any interaction with \mathscr{V} and Time(Verify) $\ll |w|$ ✤ Succinct:

 $\mathscr{L} = \{ (x; w) : R(x, w) = 1 \}, R \text{ an NP-relation} \}$

 $\mathcal{V}(x)$

$Verify(x, \pi) = 1$

 π

Anonymous Payments and Delegation

Zerocash [BSCGGMTV14]: Tx=zkSNARK proof

Spender

$w_1 = sk \parallel price \parallel receiver \parallel \dots$

Blockchain

000

00

Q

 π

Anonymous Payments and Delegation

Zerocash [BSCGGMTV14]: Tx=zkSNARK proof

Spender

 $w_1 = sk || price || ?? || ...$

Blockchain

Anonymous Payments and Delegation

Zerocash [BSCGGMTV14]: Tx=zkSNARK proof

Spender

 $w_1 = sk || price || ?? || ...$

Delegatee should not learn w_1

Blockchain

Our Contributions

New Notion: Split Prover zkSNARKs

Construction: Split Prover for Groth16

Lower Bound: For the (Second) Prover Computation

Split Prover $(\mathcal{P}_1, \mathcal{P}_2)$

$x = x_1 \| x_2 \ w = w_1 \| w_2$

Split Prover $(\mathcal{P}_1, \mathcal{P}_2)$

$x = x_1 \| x_2 \ w = w_1 \| w_2$

$x = x_1 \| x_2 \| w = w_1 \| w_2$

 π

$x = x_1 \| x_2 \| w = w_1 \| w_2$

 π

$Verify(x, \pi) = 1$

An (existing) zkSNARK admits a **Split Prover** if it holds: **Split Correctness Split zk:** aux should leak nothing about w_1

$x = x_1 \| x_2 \| w = w_1 \| w_2$

Recursive zkSNARKs

Split Prover zkSNARKs

P R(x,w)

Recursive zkSNARKs

Non-Black Box
Heurstic Assumption
Verifier Changes

Split Prover zkSNARKs

Goals: * Black Box * Provable Security * Same verification algorithm

R(x,w)

Barriers on Constructions

Fiat-Shamir (RO) based SNARKS (PLONK, Bulletproofs, STARKs, ...)

 $\alpha = f_1(x, w)$

$\beta = f_2(RO(\alpha, x), x, w)$

•

 $\pi = (\alpha, \beta, \ldots)$

Barriers on Constructions

Fiat-Shamir (RO) based SNARKS (PLONK, Bulletproofs, STARKs, ...)

•

 $\alpha = f_1(x, w)$

$\beta = f_2(RO(\alpha, x), x, w)$

 $\pi = (\alpha, \beta, \ldots)$

Observation: Groth16 does not use Fiat-Shamir

Warning: Technical Slides Ahead

R1CS relations:

Hadamard Product

$\begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} \bullet \begin{pmatrix} b_{11} & b_{21} & b_{31} & b_{41} \\ b_{12} & b_{22} & b_{32} & b_{42} \\ b_{13} & b_{23} & b_{33} & b_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} z_1 \\ z$

$R = \{(\mathbf{x}, \mathbf{w}) : \mathbf{A}\mathbf{z} \circ \mathbf{B}\mathbf{z} = \mathbf{C}\mathbf{z} \land \mathbf{z} = \mathbf{x} \| \mathbf{w} \}$

R1CS relations:

$R = \{(\mathbf{x}, \mathbf{w}) : \mathbf{A}\mathbf{z} \circ \mathbf{B}\mathbf{z} = \mathbf{C}\mathbf{z} \land \mathbf{z} = \mathbf{x} \| \mathbf{w} \}$

Hadamard Product

$\begin{array}{c} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{array} \begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} \bullet \begin{pmatrix} b_{11} & b_{21} & b_{31} & b_{41} \\ b_{12} & b_{22} & b_{32} & b_{42} \\ b_{13} & b_{23} & b_{33} & b_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} z_{1} & z_{2} & c_{31} & c_{41} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} z_{1} & z_{2} & z_{3} & c_{43} \\ z_{1} & z_{2} & c_{43} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} & z_{2} & z_{1} \\ z_{2} & z_{2} & c_{1} & z_{1} & z_{2} & z_{1} & z_{2} & z_{1} & z_{1} & z_{2} & z_{2} & z_{1} & z_{2} & z_{2} & z_{1} & z_{2} & z_{1} & z_{2} & z_{1} & z_{2} & z_{1} & z_{1} & z_{2} & z_{1} & z_{2} & z_{2} & z_{1} & z_{2} & z_{1}$

$R = \{(\mathbf{x}, \mathbf{w}) : \mathbf{A}\mathbf{z} \circ \mathbf{B}\mathbf{z} = \mathbf{C}\mathbf{z} \land \mathbf{z} = \mathbf{x} \| \mathbf{w} \}$

$R = \{(\mathbf{x}, \mathbf{w}) : \mathbf{A}\mathbf{z} \circ \mathbf{B}\mathbf{z} = \mathbf{C}\mathbf{z} \land \mathbf{z} = \mathbf{x}\}$

R1CS satisfiability:

Vanishing Polynomial V(X)

$\sum_{i=1}^{j} z_{i}a_{i}(X) \int \left(\sum_{i=1}^{j} z_{i}b_{i}(X)\right) - \left(\sum_{i=1}^{j} z_{i}c_{i}(X)\right) = q(X)\prod_{i=1}^{j} (X - x_{i})$

 $\left(\sum_{i=1}^{m} z_i a_i(X)\right) \cdot \left(\sum_{i=1}^{m} z_i b_i(X)\right) - \left(\sum_{i=1}^{m} z_i c_i(X)\right) = q(X)V(X)$

Cryptographic realization (with pairings):

Cryptographic realization (with pairings): $\pi_1 = [\alpha]_1 + \sum_{i=1}^m z_i \cdot [a_i(x)]_1 + r \cdot [\delta]_1 \qquad \pi_2 = [\beta]_2 + \sum_{i=1}^m z_i \cdot [b_i(x)]_2 + s \cdot [\delta]_2$

Cryptographic realization (with pairings): $\pi_1 = [\alpha]_1 + \sum_{i=1}^m z_i \cdot [a_i(x)]_1 + r \cdot [\delta]_1 \qquad \pi_2 = [\beta]_2 + \sum_{i=1}^m z_i \cdot [b_i(x)]_2 + s \cdot [\delta]_2$ $\pi_{3} = \sum_{i=1}^{m} z_{i} \cdot \left[\frac{\beta a_{i}(x) + \alpha b_{i}(x) + c_{i}(x)}{\delta}\right]_{1} + s \sum_{i=1}^{m} z_{i} \cdot [a_{i}(x)]_{1} + r \sum_{i=1}^{m} z_{i} \cdot [b_{i}(x)]_{1}$ $+\sum_{i=0}^{n-2} \widetilde{q}_i \cdot \left[\frac{V(x)x^i}{\delta}\right]_1 + s \cdot [\alpha]_1 + r \cdot [\beta]_1 + rs \cdot [\delta]_1$

Cryptographic realization (with pairings): $\pi_1 = [\alpha]_1 + \sum_{i=1}^m z_i \cdot [a_i(x)]_1 + r \cdot [\delta]_1 \qquad \pi_2 = [\beta]_2 + \sum_{i=1}^m z_i \cdot [b_i(x)]_2 + s \cdot [\delta]_2$ $\pi_{3} = \sum_{i=1}^{m} z_{i} \cdot \left[\frac{\beta a_{i}(x) + \alpha b_{i}(x) + c_{i}(x)}{\delta} \right]_{1} + s \sum_{i=1}^{m} z_{i} \cdot \left[a_{i}(x) \right]_{1} + r \sum_{i=1}^{m} z_{i} \cdot \left[b_{i}(x) \right]_{1}$ $+\sum_{i=0}^{n-2} \widetilde{q}_i \cdot \begin{bmatrix} V(x)x^i \\ \delta \end{bmatrix}_1$ + $s \cdot [\alpha]_1$ + $r \cdot [\beta]_1$ + $rs \cdot [\delta]_1$

Cryptographic realization (with pairings): $\pi_{3} = \sum_{i=1}^{m} z_{i} \cdot \left[\frac{\beta a_{i}(x) + \alpha b_{i}(x) + c_{i}(x)}{\delta} \right]_{1} + s \sum_{i=1}^{m} z_{i} \cdot [a_{i}(x)]_{1} + r \sum_{i=1}^{m} z_{i} \cdot [b_{i}(x)]_{1}$

i=0

 $[x]_i := g_i^x \in \mathbb{G}_i$

Cryptographic realization (with pairings): $\pi_{3} = \sum_{i=1}^{m} z_{i} \cdot \left[\frac{\beta a_{i}(x) + \alpha b_{i}(x) + c_{i}(x)}{\delta} \right]_{1} + s \sum_{i=1}^{m} z_{i} \cdot [a_{i}(x)]_{1} + r \sum_{i=1}^{m} z_{i} \cdot [b_{i}(x)]_{1}$

i=0

 $[x]_i := g_i^x \in \mathbb{G}_i$

Split Prover for Groth16(1) Split R1CS

Let $\mathbf{z} = \mathbf{z}_I \| \mathbf{z}_{II}$ then:

$\begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} \bullet \begin{pmatrix} b_{11} & b_{21} & b_{31} & b_{41} \\ b_{12} & b_{22} & b_{32} & b_{42} \\ b_{13} & b_{23} & b_{33} & b_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix}$

Split Prover for Groth16(1) Split R1CS

Let $\mathbf{z} = \mathbf{z}_I \| \mathbf{z}_{II}$ then:

(a ₁₁	a_{21}	a_{31}	a_{41}	$\left \begin{array}{c} z_1 \\ z \end{array} \right $	(<i>b</i> ₁₁	b_{21}
<i>a</i> ₁₂	a ₂₂	<i>a</i> ₃₂	a ₄₂	~2 72	<i>b</i> ₁₂	b_{22}
<i>a</i> ₁₃	<i>a</i> ₂₃	<i>a</i> ₃₃	a_{43}	\sim_3	b_{13}	b_{23}

 $(\mathbf{A}_{I} \ \mathbf{A}_{II}) \begin{pmatrix} \mathbf{Z}_{I} \\ \mathbf{Z}_{II} \end{pmatrix} \bullet (\mathbf{B}_{I} \ \mathbf{B}_{II}) \begin{pmatrix} \mathbf{Z}_{I} \\ \mathbf{Z}_{II} \end{pmatrix} = (\mathbf{C}_{I} \ \mathbf{C}_{II}) \begin{pmatrix} \mathbf{Z}_{I} \\ \mathbf{Z}_{II} \end{pmatrix}$

Split Prover for Groth16(1) Split R1CS

Let $\mathbf{z} = \mathbf{z}_I \| \mathbf{z}_{II}$ then:

(a ₁₁	a_{21}	<i>a</i> ₃₁	a_{41}	$\left(\begin{array}{c} z_1 \\ z \end{array} \right)$	(b_{11})	b_{21}
<i>a</i> ₁₂	a ₂₂	<i>a</i> ₃₂	a ₄₂	~2 Z2	<i>b</i> ₁₂	b_{22}
(<i>a</i> ₁₃	<i>a</i> ₂₃	<i>a</i> ₃₃	a_{43}	\sim_3 Z_4	<i>b</i> ₁₃	b_{23}

$\Rightarrow (\mathbf{A}_{I}\mathbf{z}_{I} \bullet \mathbf{B}_{I}\mathbf{z}_{I}) + (\mathbf{A}_{I}\mathbf{z}_{I} \bullet \mathbf{B}_{II}\mathbf{z}_{II}) + (\mathbf{A}_{II}\mathbf{z}_{II} \bullet \mathbf{B}_{1}\mathbf{z}_{1}) + (\mathbf{A}_{II}\mathbf{z}_{II} \bullet \mathbf{B}_{II}\mathbf{z}_{II}) = (\mathbf{C}_{I}\mathbf{z}_{I}) + (\mathbf{C}_{II}\mathbf{z}_{II})$

$\begin{pmatrix} z_{1} & b_{31} & b_{41} \\ z_{2} & b_{32} & b_{42} \\ z_{3} & b_{33} & b_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$

$(\mathbf{A}_{I} \ \mathbf{A}_{II}) \begin{pmatrix} \mathbf{Z}_{I} \\ \mathbf{Z}_{II} \end{pmatrix} \bullet (\mathbf{B}_{I} \ \mathbf{B}_{II}) \begin{pmatrix} \mathbf{Z}_{I} \\ \mathbf{Z}_{II} \end{pmatrix} = (\mathbf{C}_{I} \ \mathbf{C}_{II}) \begin{pmatrix} \mathbf{Z}_{I} \\ \mathbf{Z}_{II} \end{pmatrix}$

 $\pi_1 = [\alpha]_1 + \sum z_i \cdot [a_i(x)]_1 + \sum z_i \cdot [a_i(x)]_1 + r \cdot [\delta]_1$ $i \in I$ i∈II

$\pi_2 = [\beta]_2 + \sum z_i \cdot [b_i(x)]_2 + \sum z_i \cdot [b_i(x)]_2 + s \cdot [\delta]_2$ $i \in I$ i∈II

$\pi_{1} = [\alpha]_{1} + \sum_{i \in I} z_{i} \cdot [a_{i}(x)]_{1} + \sum_{i \in II} z_{i} \cdot [a_{i}(x)]_{1} + r \cdot [\delta]_{1}$ $\pi_{2} = [\beta]_{2} + \sum_{i \in I} z_{i} \cdot [b_{i}(x)]_{2} + \sum_{i \in II} z_{i} \cdot [b_{i}(x)]_{2} + s \cdot [\delta]_{2}$

$+s\left(\sum_{i\in I} z_{i} \cdot [a_{i}(x)]_{1} + \sum_{i\in II} z_{i} \cdot [a_{i}(x)]_{1}\right) + r\left(\sum_{i\in I} z_{i} \cdot [b_{i}(x)]_{1} + \sum_{i\in II} z_{i} \cdot [b_{i}(x)]_{1}\right)$

V(X)

 $q(X) = \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in I} z_i b_i(X)\right)}{V(X)} + \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in II} z_i b_i(X)\right)}{V(X)} + \frac{V(X)}{V(X)}$ $\frac{\left(\sum_{i\in II} z_i a_i(X)\right)\left(\sum_{i\in I} z_i b_i(X)\right)}{+ \left(\sum_{i\in II} z_i a_i(X)\right)\left(\sum_{i\in II} z_i b_i(X)\right)}$ V(X)

V(X)

 $q(X) = \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in I} z_i b_i(X)\right)}{V(X)} + \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in II} z_i b_i(X)\right)}{V(X)} + \frac{V(X)}{V(X)}$ $\left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in I} z_i b_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i b_i(X)\right)$

V(X)

 $q(X) = \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in I} z_i b_i(X)\right)}{V(X)} + \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in II} z_i b_i(X)\right)}{V(X)} + \frac{V(X)}{V(X)}$ $\left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in I} z_i b_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i b_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i b_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i a_i(X)\right) + \left(\sum_{i$ $q_2(X) = \frac{\left\langle \vec{z}_I, \vec{a}_I(X) \right\rangle \cdot \left\langle \vec{z}_{II}, \vec{a}_{II}(X) \right\rangle}{V(X)} = \left\langle \vec{z}_{II}, \frac{\left\langle \vec{z}_I, \vec{a}_I(X) \right\rangle \cdot \vec{b}_{II}(X)}{V(X)} \right\rangle$

V(X)

 $q(X) = \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in I} z_i b_i(X)\right)}{V(X)} + \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in II} z_i b_i(X)\right)}{V(X)} + \frac{V(X)}{V(X)} + \frac{V(X)}{V($ $\left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in I} z_i b_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i b_i(X)\right)$ $q_{2}(X) = \frac{\left\langle \vec{z}_{I}, \vec{a}_{I}(X) \right\rangle \cdot \left\langle \vec{z}_{II}, \vec{a}_{II}(X) \right\rangle}{V(X)} = \left\langle \vec{z}_{II}, \frac{\left\langle \vec{z}_{I}, \vec{a}_{I}(X) \right\rangle \cdot \vec{b}_{II}(X)}{V(X)} \right\rangle$

V(X)

Similarly for $q_3(X)$...

 $q(X) = \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in I} z_i b_i(X)\right)}{V(X)} + \frac{\left(\sum_{i \in I} z_i a_i(X)\right) \left(\sum_{i \in II} z_i b_i(X)\right)}{V(X)} + \frac{V(X)}{V(X)} + \frac{V(X)}{V($ $\left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in I} z_i b_i(X)\right) + \left(\sum_{i\in II} z_i a_i(X)\right) \left(\sum_{i\in II} z_i b_i(X)\right)$ $q_{2}(X) = \frac{\left\langle \vec{z}_{I}, \vec{a}_{I}(X) \right\rangle \cdot \left\langle \vec{z}_{II}, \vec{a}_{II}(X) \right\rangle}{V(X)} = \left\langle \vec{z}_{II}, \frac{\left\langle \vec{z}_{I}, \vec{a}_{I}(X) \right\rangle \cdot \vec{b}_{II}(X)}{V(X)} \right\rangle$

More in the paper

Split zk: aux should be randomized Common trick (e.g. see Ligero [AHIV17]): Add 3 dummy artificial constraints and choose the corresponding z_1, z_2, z_3 at random to 'blind' aux.

• Impossibility Result: For any Split Prover realization for Groth 16, \mathcal{P}_{II} must perform at least $\Omega(Min\{n-1, rank(A_{II}) \cdot rank(B_{II})\})$ group operations. \rightarrow Our \mathscr{P}_{II} Split Prover is tight.

Conclusions

Recap:

Split Prover zkSNARKs as an alternative to IVC Split Prover for Groth16 Proof of tightness of prover's computation

Future Directions:

n-prover Split Prover zkSNARKs Sublinear second prover Applications (Anonymous payment delegation, Anonyous credentials)

Thank you!

