Mind the Gap!
Secure File Sharing, from Theory to Practice

Matilda Backendal, David Balbas, Nicola Dardanis, Miro Haller, Matteo Scarlata

Sofia, 28 March 2025

ETHziirich 1. 0€a ucsanDiego

E2EE Cloud Storage Providers

"WITH MEGA, YOU “ "
CONTROL THE ENCRYPTION" 300 MLLION USERS UU”@ E SECURITY
L
© meca 0
[BHP23] Nextcloud
[AHMP23] [ABCP23]

"EACEPTIONALLY PRIVATE CLOUD" "EUROPE'S MOST SECURE CLOUD STORAGE"

&psynccom

pcloud Jonas Hofmann & "FREE, ENCRYPTED, AND SECURE CLOUD STORAGE.
AR Vel Ll YOUR PRIVACY, SECURED BY MATH"

7 icedrive Seafile Ll M Protondive
"THE STRONGEST ENCRYPTED "SUPPORTS CLIENT-SIDE
CLOUD STORAGE IN THE WORLD' END-TO-END ENCRYPTION' NO ND-CCA SECURITY

Léa Micheloud [thesis]

March 28, 2025. Matilda Backendal & Miro Haller Provably Secure E2EE Cloud Storage

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

e Uploader shares files pairwise

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

e Uploader shares files pairwise
e MEGA: shared static folder key ' {1 ‘ Epoch 1

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

e Uploader shares files pairwise
e MEGA: shared static folder key ' {1 ‘ Epoch 1

Y Dynamic members: access rights
change!

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

e Uploader shares files pairwise
e MEGA: shared static folder key ’ - ‘ Epoch 2

Y Dynamic members: access rights
change!

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

e Uploader shares files pairwise
e MEGA: shared static folder key ’ - ‘ Epoch 2

Y Dynamic members: access rights
change!

X State exposure

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

e Uploader shares files pairwise
e MEGA: shared static folder key ’ - ‘ Epoch 2

Y Dynamic members: access rights
change!

X State exposure
Build SSF based on group keys:

e Strong security
e Efficiency
e Real-world usability

Strong Security for Shared Folders

What epoch keys can we protect?

ko — k1 — ko — ks — ky — ks —> kg —> -+~

Strong Security for Shared Folders

What epoch keys can we protect?

ko — k1 — ko — ks — ky — ks —> kg —> -+~

@ (o

Strong Security for Shared Folders

What epoch keys can we protect?

Known by C

ko ki — ko — kg — ky — ksp— k¢ —> - -

Interval Security

Strong Security for Shared Folders

What epoch keys can we protect?

Known by C

Interval Security

Hk6H

Strong Security for Shared Folders

What epoch keys can we protect?

Known by Adv Known by C

Interval Security

Persistency: leakage of i, k; unavoidable

Strong Security for Shared Folders

What epoch keys can we protect?

Known by Adv Known by C

Post Compromise
Security (PCS)

Persistency: leakage of i, k; unavoidable

Interval Security

Agreeing on Keys for Persistent Data

Natural attempt:

e Run group key agreement (e.g. CGKA as in MLS)

Agreeing on Keys for Persistent Data

Natural attempt:

e Run group key agreement (e.g. CGKA as in MLS)
e Derive fresh k; per epoch

Agreeing on Keys for Persistent Data

Natural attempt:

e Run group key agreement (e.g. CGKA as in MLS)
e Derive fresh k; per epoch

e Store all keys

Agreeing on Keys for Persistent Data

Natural attempt:

e Run group key agreement (e.g. CGKA as in MLS)
e Derive fresh k; per epoch

e Store all keys

Security (from CGKA) & MLS implementation

Agreeing on Keys for Persistent Data

Natural attempt:

e Run group key agreement (e.g. CGKA as in MLS)
e Derive fresh k; per epoch

e Store all keys
Security (from CGKA) & MLS implementation

X State grows linearly on number of epochs

Agreeing on Keys for Persistent Data

Natural attempt:

e Run group key agreement (e.g. CGKA as in MLS)
e Derive fresh k; per epoch

e Store all keys
Security (from CGKA) & MLS implementation

X State grows linearly on number of epochs

Can we get a good trade-off?

Grappa:
key generation

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

CGKA: Continuous Group Key
Agreement

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

CGKA: Continuous Group Key Interval scheme: compact symmetric-key
Agreement primitive to produce interval keys

@ — |k, ... Ky

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

CGKA: Continuous Group Key Interval scheme: compact symmetric-key
Agreement primitive to produce interval keys

@ — |k, ... Ky

CGKA keys encrypt interval scheme states — CGKA as transport layer

Grappa Insights

e Grappa: strong security for persistent data in group settings

Grappa Insights

e Grappa: strong security for persistent data in group settings
e Provable security, compact state

Grappa Insights

e Grappa: strong security for persistent data in group settings
e Provable security, compact state
e Novel use-case for CGKA beyond messaging

Grappa Insights

e Grappa: strong security for persistent data in group settings
e Provable security, compact state
e Novel use-case for CGKA beyond messaging

What are the challenges of building a secure shared folder system using CGKA?

Grappa Insights

e Grappa: strong security for persistent data in group settings
e Provable security, compact state
e Novel use-case for CGKA beyond messaging

What are the challenges of building a secure shared folder system using CGKA?

N

Implementation in a
real-world setting!

Implementation

REALITY

Engineering Gaps

Model

1. Abstract client device / capabilities

Reality

1. Unharmonized capabilities / portability

P
l'l
ansx01d
- >

33

Engineering Gaps

Model

1. Abstract client device / capabilities
2. Crypto primitives as mathematical
objects

|skl.pk,| |sk2.pk2| Iskypkﬂl |sk,.pk,] lsks.pksl Iskﬁ.pkul IskT.kal

Reality

1.
2.

Unharmonized capabilities / portability

Crypto primitives support in the execution

platform / libraries

List of existing MLS implementations

e MLSpp (C++) https://github.com/cisco/mispp (Status: RFC)

« OpenMLS (Rust) https://github.com/openmls/openmls (Status: RFC)

« mis-kotlin (Kotlin) https://github.com/Traderjoe95/mis-kotlin (Status: RFC)

o mls-rs (Rust) [https://github.com/awslabs/mls-rs] (Status: RFC)

« RingCentral proprietary implementation (C++) (Status: draft-11; RFC in progress)

e MLSk (F*) (Status: RFC in progress)
« BouncyCastle (Java) https://github.com/bcgit/bc-java (Status: RFC)
« go-mls (Go) (Status: RFC in progress)

34

Why crypto in Browsers?

e Browser: cross platform runtime to access applications in cloud

35

Why crypto in Browsers?

e Browser: cross platform runtime to access applications in cloud
e Standardised Web Crypto API (W3C) for JS Runtimes

\

Web Cryptography API

W3C Recommendation 26 January 2017

This Version:
https:/www.w3.0rg/TR/2017/REC-WebCryptoAPI-20170126/

Latest Published Version:
https:/Awww.w3.org/TR/WebCryptoAPI/

Latest editor's draft:
https://w3c.github.io/webcrypto/Overview.html

Previous Version:
https://www.w3.0rg/TR/2016/PR-WebCryptoAPI-20161215/

Editor:
Mark Watson, Netflix <watsonm@netflix.com>

Errata for this document will be gathered from issues.

See also translations.

Participate:
We are on GitHub.

Send feedback to public-web-security@w3.org (archives).
File a bug (see existing bugs).

Copyright © 2012-2017 W;iC® MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use rules apply.

36

Web / JS Crypto Ecosystem

e Exhibits non-standard behaviours (loose specifications)

MLS implementation relies on public keys computed from private keys

o publicKey contains the elliptic curve public key associated with
the private key in question. The format of the public key is
specified in Section 2.2 of [RFC5480]. Though the ASN.1 indicates
publicKey 1s OPTIONAL, implementations that conform to this
document SHOULD alwavs include the publicKey field. The puldlicKey
field can be omitted when the public key has been distributed via
another mechanism, which is beyond the scope of this document.
Given the private key and the parameters, the public key can
always be recomputed; this field exists as a convenience to the
consumer.

37

Web / JS Crypto Ecosystem

e Exhibits non-standard behaviours (loose specifications)

MLS implementation relies on public keys computed from private keys

® nedeo

38

Web / JS Crypto Ecosystem

e Exhibits non-standard behaviours (loose specifications)
e Introduction of new primitives takes very long!

:rnet Research Task Force (IRTF) A. Langley

Secure Curves in the Web Cryptography APl cst for comments: 7748 Google
Draft Community Group Report 21 October 2024 goxy: Informational M. Hamburg
-1721 Rambus Cryptography Research

S. Turner

<n3rd

Status of This Document

This specification was published by the Web Platform Incubator Community Group. It is not a W3C Standard nor

is it on the W3C Standards Track. Please note that under the W3C Community Contributor License Agreement . curves for Security
(CLA) there is a limited opt-out and other conditions apply. Learn more about W3C Community and Business

Groups.

.iptic curves over prime fields that offer
gt mmrem et pmm— e —em security in cryptographic applications,
1nclud1ng Transport Layer Security (TLS). These curves are intended
to operate at the ~128-bit and ~224-bit security level, respectively,
and are generated deterministically based on a list of required
properties.

This is an unofficial proposal.

Web / JS Crypto Ecosystem

e Exhibits non-standard behaviours (loose specifications)
e Introduction of new primitives takes very long!
e OQverprotective, too restrictive to implement advanced crypto

40

Web / JS Crypto Ecosystem

CryptoKey
HKDF

01010111...

importKey

T

raw key: 01010111...

Uncaught OperationError:
No length was specified for
the HKDF Derive Bits
operation.

CryptoKey
HK

0

deriveKey

41

Web / JS Crypto Ecosystem

CryptoKey
HKDF

01010111...

importKey

T

raw key: 01010111...

Uncaught OperationError:
No length was specified for
the HKDF Derive Bits
operation.

deriveKey

i

CryptoKey
HMAC

11101001...

CryptoKey
HK

0

CryptoKey
HKDF

11101001...

!

importKey

exportKey

—

N

raw key: 11101001...

42

Engineering Gaps

Model

1.
2.

Abstract client device / capabilities
Crypto primitives as mathematical
objects

Atomic operation of the scheme

Reality

1.
2.

Unharmonized capabilities / portability
Crypto primitives support in the execution
platform / libraries

Multiple schemes, non atomic interactions
between components

43

MLS = Atomic Updates

oo

Client

Delivery Service

44

MLS = Atomic Updates

Client

Delivery Service

45

MLS = Atomic Updates

v

ki

MLS:
Process Commit

Client

Delivery Service

46

Grappa = MLS + Interval Scheme = Non Atomic Updates

Client

a)

Delivery Service

47

Grappa = MLS + Interval Scheme = Non Atomic Updates

Client

ko K

MLS:
Process
Commit

: O

Delivery Service

48

Grappa = MLS + Interval Scheme = Non Atomic Updates

Ko

Client

ko K

MLS:
Process
Commit

MLS: Encrypt
Interval
Scheme
Update

a N

Delivery Service

49

Grappa = MLS + Interval Scheme = Non Atomic Updates

ko K

MLS:
Process
Commit

Ko

Client

MLS: Encrypt
Interval
Scheme
Update

a N

Delivery Service

50

Grappa = MLS + Interval Scheme = Non Atomic Updates

ko K

MLS:
Process
Commit

Ko

X

Interval

V]C MLS: No Scheme:
1 Op Process
Update

Client

MLS: Encrypt
Interval
Scheme
Update

a N

Delivery Service

51

MLS as a Transport Layer @ Grappa Atomic Updates

MLS: Intervall
Scheme:
v k 1 Process P
(storage) rocess
Update

Client

Ko

Encrypt Interval Scheme
Update

k1

Delivery Service

52

Takeaways

e \We introduce Grappa for dynamic groups of users to agree on a key

progression for persistent data:
o Builds on CGKA and Interval Scheme
o Advanced security guarantees
o Secure Shared Folders as a real-world application
e We implement Grappa for browser and desktop:
o Relied on existing MLS implementation and WebCrypto API standard
o Cryptography in JS environments is lagging behind
e MLS as transport layer to construct new protocols:
o Gap between security modeling and functionality

53

Client: Interval
scheme

Client: MLS

_E Advance State

Interval State Message
+ membership operation

On Failure: Rollback

Finalise State Update

On Success: Finalise Update

\ 4

:Delivery Service

Advance Key Schedule:
Propose + Commit

Encrypt Interval State Message:
Application Message

Send Propose + Commit + Application Message

Success / Failure

[mmmmmm e ST

On Success: Finalise Update
On Failure: Rollback

If Client in sync: Success
Otherwise: Failure

A 4

54

578 + #[cfg(not(feature = "node"))]

58 + dasync ThImport_witn_pubtic_info(&self, crypto: &SubtleCrypto, key: &Uint8Array, params: &EcKeyImportParams, key_usages: &Array) —> Result<Promise, JsValue> {
59 + crypto.import_key with_object(self.format(), &key, ¶ms, true, &key_usages)

60 + }

61 +

628 + #[cfg(feature = "node")]

63 + async tn import_with_public_info(&self, crypto: &SubtleCrypto, bytes: &Uint8Array, params: &EcKeyImportParams, key_usages: &Array) —> Result<Promise, JsValue> {
64 + let crypto_key_promise = crypto.import_key with_object(self.format(), bytes, params, true, key_usages)?;

658 + Latetroynto kov = JcEuturas. fromlcrynta kov nramicel await2 dotol).

66 + // Export the key to jwk to force the generation of the public key.

67 + let jwk_promise = crypto.export_key(&"jwk™, &crypto_key)?;

68 + let jwk = JsFuture::from(iwk promise).await?;

69 + // Re-import into the original requested format with the same usages from jwk.

70 + CTypulo. ImpoTT_KEY_WITN_OU0JECTU JWK ™, &JWK. INCOU), pdrams, C(ru€, &Key_usSdges)

71 + }

72 +

Needs
Workaround

