
Mind the Gap!
Secure File Sharing, from Theory to Practice

1

Matilda Backendal, David Balbás, Nicola Dardanis, Miro Haller, Matteo Scarlata

Sofia, 28 March 2025

2

Secure Shared Folders

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

3

Secure Shared Folders

● Uploader shares files pairwise

3

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

Secure Shared Folders

● Uploader shares files pairwise
● MEGA: shared static folder key

3

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

Epoch 1

Secure Shared Folders

● Uploader shares files pairwise
● MEGA: shared static folder key

3

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

 ❌ Dynamic members: access rights
change!

Epoch 1

Secure Shared Folders

● Uploader shares files pairwise
● MEGA: shared static folder key

 ❌ Dynamic members: access rights
change!

3

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

Epoch 2

Secure Shared Folders

● Uploader shares files pairwise
● MEGA: shared static folder key

 ❌ Dynamic members: access rights
change!

3

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

 ❌ State exposure

Epoch 2

Secure Shared Folders

● Uploader shares files pairwise
● MEGA: shared static folder key

 ❌ Dynamic members: access rights
change!

3

E2EE file sharing and secure shared folders (SSF) are particularly tricky.

 ❌ State exposure

Build SSF based on group keys:

● Strong security
● Efficiency
● Real-world usability

Epoch 2

Strong Security for Shared Folders

4

What epoch keys can we protect?

Strong Security for Shared Folders

4

A,B + C - C

What epoch keys can we protect?

Strong Security for Shared Folders

4

A,B + C - C

What epoch keys can we protect?

Known by C

Interval Security

Strong Security for Shared Folders

4

A,B + C C - C

What epoch keys can we protect?

Interval Security

Known by C

Strong Security for Shared Folders

4

A,B + C C - C

What epoch keys can we protect?

Known by C

Interval Security

Known by Adv

Persistency: leakage of unavoidable

Strong Security for Shared Folders

4

A,B + C C - C

What epoch keys can we protect?

Known by C

Interval Security

Known by Adv

Post Compromise
Security (PCS)

Persistency: leakage of unavoidable

Agreeing on Keys for Persistent Data

5

Natural attempt:

● Run group key agreement (e.g. CGKA as in MLS)

Agreeing on Keys for Persistent Data

5

Natural attempt:

● Run group key agreement (e.g. CGKA as in MLS)
● Derive fresh per epoch

Agreeing on Keys for Persistent Data

5

Natural attempt:

● Run group key agreement (e.g. CGKA as in MLS)
● Derive fresh per epoch
● Store all keys

Agreeing on Keys for Persistent Data

5

Natural attempt:

● Run group key agreement (e.g. CGKA as in MLS)
● Derive fresh per epoch
● Store all keys

✅ Security (from CGKA) & MLS implementation

Agreeing on Keys for Persistent Data

5

Natural attempt:

● Run group key agreement (e.g. CGKA as in MLS)
● Derive fresh per epoch
● Store all keys

✅ Security (from CGKA) & MLS implementation

❌ State grows linearly on number of epochs

Agreeing on Keys for Persistent Data

5

Natural attempt:

● Run group key agreement (e.g. CGKA as in MLS)
● Derive fresh per epoch
● Store all keys

✅ Security (from CGKA) & MLS implementation

❌ State grows linearly on number of epochs

Can we get a good trade-off?

Grappa:
key generation

6

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

7

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

7

CGKA: Continuous Group Key
Agreement

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

7

Interval scheme: compact symmetric-key
primitive to produce interval keys

CGKA: Continuous Group Key
Agreement

st

Grappa: Group Key Progression for Persistent Access

Epoch-based progression of keys for persistent use

7

Interval scheme: compact symmetric-key
primitive to produce interval keys

CGKA: Continuous Group Key
Agreement

st

CGKA keys encrypt interval scheme states – CGKA as transport layer

Grappa Insights

● Grappa: strong security for persistent data in group settings

8

Grappa Insights

● Grappa: strong security for persistent data in group settings
● Provable security, compact state

8

Grappa Insights

● Grappa: strong security for persistent data in group settings
● Provable security, compact state
● Novel use-case for CGKA beyond messaging

8

Grappa Insights

● Grappa: strong security for persistent data in group settings
● Provable security, compact state
● Novel use-case for CGKA beyond messaging

What are the challenges of building a secure shared folder system using CGKA?

8

Grappa Insights

● Grappa: strong security for persistent data in group settings
● Provable security, compact state
● Novel use-case for CGKA beyond messaging

What are the challenges of building a secure shared folder system using CGKA?

8

Implementation in a
real-world setting!

Implementation

32

MODEL REALITY

Engineering Gaps

Reality

1. Unharmonized capabilities / portability

33

Model

1. Abstract client device / capabilities

Engineering Gaps

Reality

1. Unharmonized capabilities / portability
2. Crypto primitives support in the execution

platform / libraries

34

Model

1. Abstract client device / capabilities
2. Crypto primitives as mathematical

objects

Why crypto in Browsers?

● Browser: cross platform runtime to access applications in cloud

35

Why crypto in Browsers?

● Browser: cross platform runtime to access applications in cloud
● Standardised Web Crypto API (W3C) for JS Runtimes

36

Web / JS Crypto Ecosystem

37

● Exhibits non-standard behaviours (loose specifications)

MLS implementation relies on public keys computed from private keys

Web / JS Crypto Ecosystem

38

● Exhibits non-standard behaviours (loose specifications)

MLS implementation relies on public keys computed from private keys

Crash! Needs
Workaround

Web / JS Crypto Ecosystem

● Exhibits non-standard behaviours (loose specifications)
● Introduction of new primitives takes very long!

39> 8y, not a standard yet!!

Web / JS Crypto Ecosystem

40

● Exhibits non-standard behaviours (loose specifications)
● Introduction of new primitives takes very long!
● Overprotective, too restrictive to implement advanced crypto

Web / JS Crypto Ecosystem

41

raw key: 01010111…

deriveKey

importKey

CryptoKey
HKDF

01010111…

Uncaught OperationError:
No length was specified for

the HKDF Derive Bits
operation.

CryptoKey
HKDF

11101001…

Web / JS Crypto Ecosystem

42

raw key: 01010111…

deriveKey

importKey

CryptoKey
HKDF

01010111…

Uncaught OperationError:
No length was specified for

the HKDF Derive Bits
operation.

CryptoKey
HMAC

11101001…
exportKey raw key: 11101001…

importKey

CryptoKey
HKDF

11101001…
Break API

abstraction just to
derive a stream

of keys!

CryptoKey
HKDF

11101001…

Engineering Gaps

Reality

1. Unharmonized capabilities / portability
2. Crypto primitives support in the execution

platform / libraries
3. Multiple schemes, non atomic interactions

between components

Model

1. Abstract client device / capabilities
2. Crypto primitives as mathematical

objects
3. Atomic operation of the scheme

43

44

MLS ⇨ Atomic Updates

Delivery Service

MLS:
Commit

Client

45

MLS ⇨ Atomic Updates

Delivery Service

MLS:
Commit

MLS:
Discard

Client

46

MLS ⇨ Atomic Updates

Delivery Service

MLS:
Commit

MLS:
Discard

MLS:
Process Commit

Client

47

Grappa = MLS + Interval Scheme ⇨ Non Atomic Updates

Delivery Service

Interval
Scheme:
Update

MLS:
Commit

Client

48

Grappa = MLS + Interval Scheme ⇨ Non Atomic Updates

Delivery Service

Interval
Scheme:
Update

MLS:
Process
Commit

MLS:
Commit

Client

49

Grappa = MLS + Interval Scheme ⇨ Non Atomic Updates

Delivery Service

Interval
Scheme:
Update

MLS: Encrypt
Interval
Scheme
Update

MLS:
Process
Commit

MLS:
Commit

Client

50

Grappa = MLS + Interval Scheme ⇨ Non Atomic Updates

Delivery Service

Interval
Scheme:
Update

MLS: Encrypt
Interval
Scheme
Update

MLS:
Process
Commit

MLS:
Commit

Client

Interval
Scheme:
Discard

Cannot
Rollback

MLS
Process

51

Grappa = MLS + Interval Scheme ⇨ Non Atomic Updates

Delivery Service

Interval
Scheme:
Update

MLS: Encrypt
Interval
Scheme
Update

MLS:
Process
Commit

MLS:
Commit

Interval
Scheme:
Process
Update

MLS: No
Op

Client

Interval
Scheme:
Discard

Cannot
Rollback

MLS
Process

52

Delivery Service

MLS:
Commit

MLS as a Transport Layer ⇨ Grappa Atomic Updates

Interval
Scheme:
Update

MLS: Commit + Process
(in memory) +

 Encrypt Interval Scheme
Update

Interval
Scheme:
Process
Update

MLS:
Process
(storage)

MLS:
Discard

Interval
Scheme:
Discard

Client

Takeaways

● We introduce Grappa for dynamic groups of users to agree on a key
progression for persistent data:
○ Builds on CGKA and Interval Scheme
○ Advanced security guarantees
○ Secure Shared Folders as a real-world application

● We implement Grappa for browser and desktop:
○ Relied on existing MLS implementation and WebCrypto API standard
○ Cryptography in JS environments is lagging behind

● MLS as transport layer to construct new protocols:
○ Gap between security modeling and functionality

53

54

Web / JS Crypto Ecosystem

55

● exhibits non-standard behaviours (loose specifications)

MLS implementation relies on public keys computed from private keys

Crash! Needs
Workaround

