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In this talk...

e Introduction to the Account Aggregator (AA) ecosystem, a
regulator-driven Open Finance framework in India

o Identify gaps in trust and incentives in present ecosystem

e Propose an MPC-based solution which:
- Mitigates data duplication concerns to reinstate trust
- Facilitates fair compensation to balance incentives

e Discuss our design principle of drop-in replacement, and the
technical challenges posed by integration with AA ecosystem
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What is Open Finance?

e Open Finance frameworks enable people to securely mobilize
personal financial data in order to avail of financial services
eg. Proving financial health when applying for a loan, apartment
rental, etc.

o Cryptographic protocols for provenance replace unverifiable
physical documents, and heuristics such as screen scraping

e The Account Aggregator (AA) ecosystem in India is one such
Open Finance framework, regulated by the central bank



Account Aggregator (AA)

o Users consolidate their financial information across multiple
regulated Financial Information Providers (FIPs)

o Upon user consent, the AA shares a curated view of finances to
licensed Financial Information Users (FIUs)
— who then provide financial services to the user

o According to Sahamati (regulated authority for AA), the AA
ecosystem as of 2024 has over 80 million users, 155 FIPs, 475 FIUs

o However, issues persist: incentive gaps, and single points of failure
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Implications of Exposing d to FIU

e Data breach or insider attack on FIU puts data in the wrong
hands, affects the whole ecosystem

- Users lose control over their personal financial information
- FIPs aftfected on a macro level: loss of proprietary data

e Heuristic FIP solution: throttle response rate
- Undermines ecosystem, and still leaks data anyway

e A compliance-by-design approach is needed
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The FICU Paradigm

e Three FICU nodes, with naturally non-colluding operators:
- FIU, interested in utility of data
- FIP (or proxy), interested in minimizing data exposure

- Infrastructure provider, interested in credibility of the AA ecosystem
e Duplication protection. Data is secret shared, and accessible only via MPC

o Fixes participation incentives.
Value of data o< quality and quantity of usage
Fine-grained compensation model for FIPs



Technical Details

e MPC model: 3 parties, no colluding pairs (1 active corruption)
o Ideal functionality to realize:

1. Generate pk and [sk]

2. Obtain ct = Enc(pk, d) from AA

3. Compute [d] = Dec([sk], ct)

4. Operate on [d] as required
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Technical Details

e MPC model: 3 parties, no colluding pairs (1 active corruption)

o Ideal functionality to realize:

1.

Generate pk and [sk]
Obtain ct = Enc(pk, d) from AA
Compute |d] = Dec([sk], ct)

Operate on [d] as required

Standard queries

Threshold decryption
-Well studied problem

-Simple solution: tweak Enc to
directly encrypt secret shares

Standards set externally;
can't be changed
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Our Approach

e Guiding principle: Protocol specs are set agnostic to MPC,
unrealistic to wait for MPC-friendly standards

e We design our solution to be a drop-in replacement for FIU, for
integration with AA ecosystem as it exists today

e Two protocol design challenges:
- Dec([sk], ct) is a difficult function to handle in MPC

- FIP (via AA) delivers data d as an XML file
= [d] must be parsed before running any queries
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Dec([sk], ct) is a difficult function to handle in MPC

- FIP (via AA) delivers data d as an XML file
= [d] must be parsed before running any queries
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Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

10 chars
<Transaction XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX>
Leakage! / X

Step 1: identity delimiters
amt="54.8" = amt=“104.3"

10 chars 11 chars
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Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id 518 42% Max string length = 40
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Max row length = 10
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Efficiency / Practicalities

e Rough cost profile:

- Per character: constant number of additions, comparisons,
share conversions

- Constant number of shuftles (simple custom protocol)

- Overall round complexity independent of file size

e Currently the most expensive component in our integration with
the AA ecosystem



Efficiency / Practicalities

e End-to-end: Order of minutes to process a small encrypted bank
statement, obtained via actual API

e Plenty of scope to improve the protocol and implementation

e Pilot deployment with partners:

® SahamatiNet @ fold Ej Finfactor

Infrastructure provided Financial Information Technology Service
by Sahamati User (FIU) Provider



Conclusion

Open Finance frameworks are increasingly popular worldwide
- eg. India’s regulator-driven Account Aggregator (AA) ecosystem

We propose an MPC-based solution to close gaps in incentives and trust
- Duplication protection from rogue data fiduciaries (AA: FIUs)
- Fair compensation model for data custodians (AA: FIPs)

Design principle: drop-in replacement for immediate use

Coming soon: full specs on eprint, report on pilot deployment

Thanks!

silencelaboratories.com/open-banking



https://www.silencelaboratories.com/open-banking

