Deploying MPC in Open Finance:
Challenges and Opportunities

Nidhish Bhimrajka Yashvanth Kondi Daniel Noble = Supreeth Varadarajan

S,LENCE.

In this talk...

e Introduction to the Account Aggregator (AA) ecosystem, a
regulator-driven Open Finance framework in India

o Identify gaps in trust and incentives in present ecosystem

e Propose an MPC-based solution which:
- Mitigates data duplication concerns to reinstate trust
- Facilitates fair compensation to balance incentives

e Discuss our design principle of drop-in replacement, and the
technical challenges posed by integration with AA ecosystem

Secure Multiparty Computation (MPC)

Secure Multiparty Computation (MPC)

Secure Multiparty Computation (MPC)

B l ,

y '_
X1 , -

Secure Multiparty Computation (MPC)

A4
— N

X '

ml
l |
| l

N\
B [E
xl f l

Secure Multiparty Computation (MPC)

Secure Multiparty Computation (MPC)

Secure Multiparty Computation (MPC)

What is Open Finance?

e Open Finance frameworks enable people to securely mobilize
personal financial data in order to avail of financial services
eg. Proving financial health when applying for a loan, apartment
rental, etc.

o Cryptographic protocols for provenance replace unverifiable
physical documents, and heuristics such as screen scraping

e The Account Aggregator (AA) ecosystem in India is one such
Open Finance framework, regulated by the central bank

Account Aggregator (AA)

o Users consolidate their financial information across multiple
regulated Financial Information Providers (FIPs)

o Upon user consent, the AA shares a curated view of finances to
licensed Financial Information Users (FIUs)
— who then provide financial services to the user

o According to Sahamati (regulated authority for AA), the AA
ecosystem as of 2024 has over 80 million users, 155 FIPs, 475 FIUs

o However, issues persist: incentive gaps, and single points of failure

User / Data Principal

AR

Financial Information Provider Financial Information User

 {

APPROVE

Consent to
share data

Request data

 {

APPROVE

Request data

Consent to
share data N

 {

APPROVE

Consent to

A share data TN

@ Request data @ Request data

 {

APPROVE

Consent to

share data y N

@ Request data

Aggregator

Encrypted
response

 {

APPROVE

Consent to
share data

Request data

Aggregator

Encrypted Encrypted

Iresponse Iresponsc

 {

APPROVE

Consent to

. share data
Request data @ Request data
Secret key sk
() butiic key
FIP N
Aggregator

Encrypted Encrypted
e) response response)
E = Enc(pk, d) E Decrypt and process data

d = Dec(sk, E)

Output f(d)

User device

Account
Aggregator

. Consentto | Pipeline from : .
Provides Data d ; . ; b - Services to user
- mobilized : consent—data
Obtains - Services Fees from FIU Depends on

B - from FIU - business model

User device

Account
Aggregator

. Consentto | Pipeline from : .
Provides Data d ; . ; b - Services to user
- mobilized : consent—data
Obtains - Services Fees from FIU Depends on

B - from FIU - business model

Data d

User device

Account
Aggregator

. Consentto | Pipeline from : .
Provides Data d ; . ; b - Services to user
- mobilized : consent—data
Obtains - Services Fees from FIU Depends on

B - from FIU - business model

Data d

Provides

Obtains

User device

Account
Aggregator

- Consent to : Pipeline from .
Data d : . : -~ Services to user
g mobilize d g consent—data
_ Services Fees from FIU Dgp ends on
from FIU business model
Data d
Data theftt No consent Lost fees Unrestricted reuse

Implications of Exposing d to FIU

e Data breach or insider attack on FIU puts data in the wrong
hands, affects the whole ecosystem

- Users lose control over their personal financial information
- FIPs aftfected on a macro level: loss of proprietary data

e Heuristic FIP solution: throttle response rate
- Undermines ecosystem, and still leaks data anyway

e A compliance-by-design approach is needed

 {

APPROVE

Consent to

. share data
Request data @ Request data
Secret key sk
() butiic key
FIP N
Aggregator

Encrypted Encrypted
e) response response)
E = Enc(pk, d) E Decrypt and process data

d = Dec(sk, E)

Output f(d)

APPROVE

Consent to Single point of failure
share data

Request data

Account
Aggregator

1 Encrypted
response

2 B

Output f(d)

Financial

: Information
Compute Units :
5 - (FICUs) |
Request data S : represent
: interests :
sk sk, sk,
— > ! ' !
Encrypted @ Distributed Dec(sk, E)
response
5 ') |
} ' I

Our S()lllti()n Distributed Function Evaluation > Output f(d)

The FICU Paradigm

e Three FICU nodes, with naturally non-colluding operators:
- FIU, interested in utility of data
- FIP (or proxy), interested in minimizing data exposure

- Infrastructure provider, interested in credibility of the AA ecosystem
e Duplication protection. Data is secret shared, and accessible only via MPC

o Fixes participation incentives.
Value of data o< quality and quantity of usage
Fine-grained compensation model for FIPs

Technical Details

e MPC model: 3 parties, no colluding pairs (1 active corruption)
o Ideal functionality to realize:

1. Generate pk and [sk]

2. Obtain ct = Enc(pk, d) from AA

3. Compute [d] = Dec([sk], ct)

4. Operate on [d] as required

Technical Details

e MPC model: 3 parties, no colluding pairs (1 active corruption)
o Ideal functionality to realize:

1. Generate pk and [sk]

2. Obtain ct = Enc(pk, d) from AA

3. Compute [d] = Dec([sk], ct)

4. Operate on [d] as required

Standard queries

Technical Details

e MPC model: 3 parties, no colluding pairs (1 active corruption)
e Ideal functionality to realize:

1. Generate pk and [sk] Threshold decryption
-Well studied problem

-Simple solution: tweak Enc to
directly encrypt secret shares

2. Obtain ct = Enc(pk, d) from AA
3. Compute [d] = Dec([sk], ct)

4. Operate on [d] as required

Standard queries

Technical Details

e MPC model: 3 parties, no colluding pairs (1 active corruption)

o Ideal functionality to realize:

1.

Generate pk and [sk]
Obtain ct = Enc(pk, d) from AA
Compute |d] = Dec([sk], ct)

Operate on [d] as required

Standard queries

Threshold decryption
-Well studied problem

-Simple solution: tweak Enc to
directly encrypt secret shares

Standards set externally;
can't be changed

MPC-agnostic Context

Peter Steiner,

The New Yorker
July 5, 1993 issue

“On the internet, nobody knows you’re a dog”

MPC-agnostic Context

Peter Steiner,

The New Yorker
July 5, 1993 issue

“On the internet, nobody knows you’re RUNNING MPC

Our Approach

e Guiding principle: Protocol specs are set agnostic to MPC,
unrealistic to wait for MPC-friendly standards

e We design our solution to be a drop-in replacement for FIU, for
integration with AA ecosystem as it exists today

e Two protocol design challenges:
- Dec([sk], ct) is a difficult function to handle in MPC

- FIP (via AA) delivers data d as an XML file
= [d] must be parsed before running any queries

Dec([sk], ct) in MPC

Decryption involves two steps:

1.Establish shared key K = SHA(g")

2.Use key K to evaluate AES in GCM mode

Dec([sk], ct) in MPC

Decryption involves two steps:

1.Establish shared key K = SHA(g")

Boolean Elliptic curve
circuit group ops

2.Use key K to evaluate AES in GCM mode

Dec([sk], ct) in MPC

Decryption involves two steps:
Along the lines of

: _ sk-r [Abram Damgard Scholl Trieflinger 21]
1.Establish shared key K = SHA(g>*") Mokassel Rindal 18]

Boolean Arithmetic Elliptic curve
circuit in Z, group Ops
+,1n Z, +gin Z,

2.Use key K to evaluate AES in GCM mode

Dec([sk], ct) in MPC

Decryption involves two steps:
Along the lines of

: _ sk-r [Abram Damgard Scholl Trieflinger 21]
1.Establish shared key K = SHA(g>*") Mokassel Rindal 18]

Boolean Arithmetic Elliptic curve
circuit in Z, group Ops
+,1n Z, +gin Z,

2.Use key K to evaluate AES in GCM mode

Dec([sk], ct) in MPC

Decryption involves two steps:
Along the lines of

: _ sk-r [Abram Damgard Scholl Trieflinger 21]
1.Establish shared key K = SHA(g>*") Mokassel Rindal 18]

Boolean Arithmetic Elliptic curve
circuit in Z, group Ops
+,1n Z, +gin Z,

2.Use key K to evaluate AES in GCM mode
Which general Boolean MPC paradigm?

Garbled Circuits “Secret-sharing”

O(1) rounds O(depth) rounds
100s bits/gate few bits/gate

Dec([sk], ct) in MPC

Decryption involves two steps:
Along the lines of

: _ sk-r [Abram Damgard Scholl Trieflinger 21]
1.Establish shared key K = SHA(g>*") Mokassel Rindal 18]

Boolean Arithmetic Elliptic curve
circuit in Z, group Ops
+,1n Z, +gin Z,

2.Use key K to evaluate AES in GCM mode AES invocations in parallel

Which general Boolean MPC paradigm? cty cty ct, cts
Garbled Circuits “Secret-sharing” b— b b
O(1) rounds O(depth) rounds AES| | AES /A;EZS /AzES

100s bits/gate few bits/gate

Dec([sk], ct) in MPC

Decryption involves two steps:
Along the lines of

: _ sk-r [Abram Damgard Scholl Trieflinger 21]
1.Establish shared key K = SHA(g>*") Mokassel Rindal 18]

Boolean Arithmetic Elliptic curve
circuit in Z, group Ops
+,1n Z, +gin Z,

2.Use key K to evaluate AES in GCM mode AES invocations in parallel

Which general Boolean MPC paradigm? cty ct; cty ct;

Garbled Circuits “Secret-sharing” b— b b
O(1) rounds O(depth) rounds AES A;ES A;IEZS A;ES

100s bits/gate few bits/gate ' " ' '

Circuit depth independent of |ct|

Dec([sk], ct) in MPC

Decryption involves two steps:
Along the lines of

: _ sk-r [Abram Damgard Scholl Trieflinger 21]
1.Establish shared key K = SHA(g>*") Mokassel Rindal 18]

Boolean Arithmetic Elliptic curve
circuit in Z, group Ops
+,1n Z, +gin Z,

2.Use key K to evaluate AES in GCM mode AES invocations in parallel

Which general Boolean MPC paradigm? cty cty ct, cts
Garbled Circuits “Secret-sharing” Wine f b— b b
O(1) rounds O(depth) rounds S o AES | AES | AES | AES
. : ‘ ct ‘ > few KB oy il ctr+2 | ctre3 |
100s bits/gate few bits/gate

Circuit depth independent of |ct|

Our Approach

Dec([sk], ct) is a difficult function to handle in MPC

- FIP (via AA) delivers data d as an XML file
= [d] must be parsed before running any queries

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

<Transactions>
<Transaction id="S1842” amt="54.2” nar="UPI/ZMTOQO” ts="13:22" >

</Transactions>

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

<Tra,nsaction‘ id=“51842" ‘a,mt=“54.2” ‘nar=“UPI/ZMTO” £5=13:22" >

transaction_struct tr = {string id, int amt, string nar, time_t ts}

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

),9,9,9,9.9,9,9.9,9,9,9,9,.9:9,9,9,9,9.9,9,9.9,9,9.9,9,9.9,9.9.9,9.9,9,9.9,9,9.9,9,9.9,9.9,9,9.9,9,9.9,9,9.9,9,9,9,

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

),9,9,9,9.9,9,9.9,9,9,9,9,.9:9,9,9,9,9.9,9,9.9,9,9.9,9,9.9,9.9.9,9.9,9,9.9,9,9.9,9,9.9,9.9,9,9.9,9,9.9,9,9.9,9,9,9,

Step 1: identity delimiters

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

<Transaction XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX>

Step 1: identity delimiters

Why is Parsing Challenging?
e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

<Transaction XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX>

|
Step 1: identity delimiters Leakage!

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

10 chars
<Transaction XXXXXXXX XXXXXXXXXX XXXXXXXXXXEXXX XXXXXXXXXX>

|
Step 1: identity delimiters Leakage!

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

10 chars
<Transaction XXXXXXXX XXXXXXXXXX XXXXXXXXXXEXXX XXXXXXXXXX>

|
Step 1: identity delimiters Leakage!

amt=“54.2” - amt=104.3"
10 chars 11 chars

Why is Parsing Challenging?

e Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

e Plaintext parsing: identify delimiters, cast into structure

« What about parsing in secret shared form?

10 chars
<Transaction XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX>
Leakage! / X

Step 1: identity delimiters
amt="54.8" = amt=“104.3"

10 chars 11 chars

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

<Tra,nsa,ction‘ id=“51842” ‘a,mt=“54.2” ‘nar=“UPI/ZMTO” £5=13:22" >

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id=51842 amt=54.2 nar=UPI/ZMTO ts=13:22

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id=S1842
amt=54.2

nar=UPI/ZMTO
ts= 13:22

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id=S1842
amt=54.2

nar=UPI/ZMTO
ts= 13:22

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id S 1 8 4 2
amt 5 4 . 2

nar U PI / ZMT O
ts 1 & : &8 R

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id [S|1 18 |4 |2
amt 5|4 |. |&

nar (UP|I |/ |Z2 M|T |O
ts |1l |8]: ||

Max row length = 10

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id [S|1 18 |4 |2
amt 5|4 |. |&

nar (UP|I |/ |Z2 M|T |O
ts |1l |8]: ||

Max row length = 10

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id |5 |18 |4|& Max string length = 40
amt 6 (4. |& Actual string length = 22
ts |18 |: |R |

Max row length = 10

Secure Parsing

o Ideal situation: each entry is "padded” to a fixed max length

e Our approach is to securely derive this padding

id 518 42% Max string length = 40
amt 6 4 . & Actual string length = 22

tse 1 & : 2 &

Max row length = 10

Secure Parsing

181842 ab54. 23 nUPI / ZMTO t138 : & &

Secret shared

1

S

1

S

4

O

Secure Parsing

O .

Q

Il

U

P

I

/

Z

M

Secret shared

1

S

1

3

4

isDelimiter?

O

O

O

O

O

O

Secure Parsing

O

Q

Il

U

P

Z

M

Secret shared

1

S

1

3

4

isDelimiter?

O

O

O

O

O

O

O

O

O

O

O

O

Q

O

Il

O

U

O

P

O

relative_index (distance from last delimiter-1)

O

1

Q

S

4

O

-1

O

1

Q

S

4

-1

O

1

Q

Z

Secure Parsing

M

Secret shared

1

S

1

3

4

Q

a

O

Secure Parsing

O

Q

Il

U

P

relative_index (distance from last delimiter-1)

O

1

Q

S

4

O

-1

O

1

Q

S

4

-1

O

1

Q

Z

M

Secret shared

1

S

1

3

4

Q

a

Secure Parsing

O

O

Q

Il

U

P

relative_index (distance from last delimiter-1)

O

1

Q

S

4

O

-1

O

1

Q

S

4

-1

O

1

Q

S

4

Z

O

M

6

¢

S

-1

O

Q

S

4

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

O

1

Q

S

4

O

- |10

11

12

13

14

- |0

1

Q&

RS

4

5

Q0

Q7

_8| -

30

31

3L

515!

54

35

Secret shared

1

S

1

S

4

Q

a

Secure Parsing

O

O

Q

Il

U

P

I

/

Z

M

T

O

t

1

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

O

1

Q

S

4

O

- | 10

11

12

13

14

- |0

1l

R&

QRS

4

1)

Q0

Q7

_8| -

30

31

3&

515!

54

35

Secret shared

115/1/84

Q

a

Secure Parsing

O

O

Q

Il

U

P

I

/

Z

M

T

O

t

1

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

O|1 | |3 | 4

Public Pad array

O

- | 10

id

amt

Nnar

ts

11

12

13

14

- |0

1l

R&

RS

4

1)

R0

Q7

H | H | H | FH

H | H | H | FH

| F | H | F

H | H | H | FH

H | H | H | FH

H | H | H | FH

H | F | H | F

H | H | H | FH

H | H | H | FH

| F | H | F

_8| -

30

31

3&

515!

54

35

Secret shared

115/1|/8 4. a,

Secure Parsing

O

O

Q

Il

U

P

I

/

Z

M

T

O

G

1

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

O 128|145 | - 10
Public Pad array id
amdb
Actual
requirement nar
(secret)

s

11/12|13|14| - |20|21 |22 23|24 25|26 |7
H|#
H|#
H|#
H\H | H | H#H | #

_8| -

30

31

3&

515!

54

35

Secret shared

115/1/84

Q

a

Secure Parsing

O

O

Q

Il

U

P

I

/

Z

M

T

O

G

1

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

O|1 | |3 | 4

Public Pad array

Actual
requirement
(secret)

O

- | 10

id

amst

Nnar

s

1112|1314 | - |R0|21 |22 2324 |25 |26 |17
isPadRequired?
11111
1 (11111
1|1
1(1|1]|1]1

_8| -

30

31

3&

515!

54

35

Secret shared

115/1|/8 4. a

Secure Parsing

O

O

Q

Il

U

P

/

Z

M

T

O

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

Ol 1| &2&|38 | 4|65 10
Public Pad array id
amb
Actual
requirement nar
(secret)

s

1112|138 | 14 R0 Rl |[RR |3 |:R4 |25 |0 |7
absolute_index of required pads
6|7 8]9]10
15|16 |17 | 18| 19|20
29 | 30
36 |37 |38 |39 |40

8

30

31

3&

515!

54

35

Secret shared

1

S

1

S

4

Q

d

Secure Parsing

O

O

Q

Il

U

P

/

Z

M

T

O

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

Ol 1| & |3&|4 |5 10111 12|15 | 14 R0 |RL |[RR |3 |:R4 |25 |0 |27 |38
absolute_index of required pads

6|7 (8|9|10|15(16|17|18|19|20|29|30|36 |37 |38 |39 |40
Public Pad array

Two arrays with secret
shared absolute indices of
values within target array

Secure merge yields the
desired final result

30

31

3&

515!

54

35

Secret shared

1

S

1

3

4

Q

a

Secure Parsing

O

O

Q

Il

U

P

/

Z

M

T

O

1

S

Q

Post padding, absolute_index = (max_row_len X last_delim_index) + relative_index

Ol | |&|4 |5 10111 (12|13 |14 R0 |Rl RS |:k4 |25 |06 |7 |8
absolute_index of required pads

6|7 (8|9|10|15(16|17|18|19|20|29|30|36 |37 |38 |39 |40
Public Pad array

Two arrays with secret
shared absolute indices of
values within target array

Secure merge yields the
desired final result

30

Sl

3L

35

34

390

S

O

6

¢

3

O

Secure Parsing

10

id | S

3

Q

11

12

15

14

15

16

17

18

19

<0

amt |5

1l

R&

RS

4

D

Q0

Q7

8

<9

30

Ilar

31

3L

335

54

35

360

37

38

39

40

ts|1

Secure merge yields the
desired final result

Secure Parsing

112|814 (866|789 |10
id [s]1]8]afz|w]e]e]v]4]

11 |12(13(14 (15|16 (17 (18|19 (L0

amt |8[8]. | R] ¢ [#]w]#[#]"

Rl |RR|RS|24 |5 |R0 |27 |8 |9 |80
nar [U|P|1]/]z[m|T]o]#]+

3l |32 |33|34|35|36|37|38|39 |40 .
Secure merge yields the

ts[1]3]: [2[R]w[e]afefn] debedindren

Efficiency / Practicalities

e Rough cost profile:

- Per character: constant number of additions, comparisons,
share conversions

- Constant number of shuftles (simple custom protocol)

- Overall round complexity independent of file size

e Currently the most expensive component in our integration with
the AA ecosystem

Efficiency / Practicalities

e End-to-end: Order of minutes to process a small encrypted bank
statement, obtained via actual API

e Plenty of scope to improve the protocol and implementation

e Pilot deployment with partners:

® SahamatiNet @ fold Ej Finfactor

Infrastructure provided Financial Information Technology Service
by Sahamati User (FIU) Provider

Conclusion

Open Finance frameworks are increasingly popular worldwide
- eg. India’s regulator-driven Account Aggregator (AA) ecosystem

We propose an MPC-based solution to close gaps in incentives and trust
- Duplication protection from rogue data fiduciaries (AA: FIUs)
- Fair compensation model for data custodians (AA: FIPs)

Design principle: drop-in replacement for immediate use

Coming soon: full specs on eprint, report on pilot deployment

Thanks!

silencelaboratories.com/open-banking

https://www.silencelaboratories.com/open-banking

