
Deploying MPC in Open Finance:
Challenges and Opportunities

Yashvanth KondiNidhish Bhimrajka Daniel Noble Supreeth Varadarajan

In this talk…
• Introduction to the Account Aggregator (AA) ecosystem, a

regulator-driven Open Finance framework in India

• Identify gaps in trust and incentives in present ecosystem

• Propose an MPC-based solution which:
- Mitigates data duplication concerns to reinstate trust
- Facilitates fair compensation to balance incentives

• Discuss our design principle of drop-in replacement, and the
technical challenges posed by integration with AA ecosystem

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

y = f(⃗x)
⃗x = (x0, ⋯, x4)

Secure Multiparty Computation (MPC)

y

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

f

y

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

f

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

y = f(⃗x)
OUTPUT

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

What is Open Finance?
• Open Finance frameworks enable people to securely mobilize

personal financial data in order to avail of financial services
eg. Proving financial health when applying for a loan, apartment
rental, etc.

• Cryptographic protocols for provenance replace unverifiable
physical documents, and heuristics such as screen scraping

• e Account Aggregator (AA) ecosystem in India is one such
Open Finance framework, regulated by the central bank

Account Aggregator (AA)
• Users consolidate their financial information across multiple

regulated Financial Information Providers (FIPs)

• Upon user consent, the AA shares a curated view of finances to
licensed Financial Information Users (FIUs)
— who then provide financial services to the user

• According to Sahamati (regulated authority for AA), the AA
ecosystem as of 2024 has over 80 million users, 155 FIPs, 475 FIUs

• However, issues persist: incentive gaps, and single points of failure

FIP FIU

Financial Information Provider Financial Information User

User / Data Principal

FIP FIUAccount
Aggregator

FIP FIU

APPROVE

Account
Aggregator

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2
Public key 𝗉𝗄

Secret key 𝗌𝗄

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

3
Public key 𝗉𝗄

Secret key 𝗌𝗄

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

3

Encrypted
response

E = 𝖤𝗇𝖼(𝗉𝗄, d)

4

Public key 𝗉𝗄
Secret key 𝗌𝗄

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

3

Encrypted
response

E = 𝖤𝗇𝖼(𝗉𝗄, d)

4 Encrypted
response

E

5

Public key 𝗉𝗄
Secret key 𝗌𝗄

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

3

Encrypted
response

E = 𝖤𝗇𝖼(𝗉𝗄, d)

4 Encrypted
response

E

5

Public key 𝗉𝗄
Secret key 𝗌𝗄

Decrypt and process data

d = 𝖣𝖾𝖼(𝗌𝗄, E)

6

Output f(d)

FIP FIUAccount
Aggregator

Provides

Obtains

Data d Consent to
mobilize d

Pipeline from
consent data→ Services to user

Services
from FIU Fees from FIU Depends on

business model—

User device

FIP FIUAccount
Aggregator

Provides

Obtains

Data d Consent to
mobilize d

Pipeline from
consent data→ Services to user

Services
from FIU Fees from FIU Depends on

business model—

Data d

User device

FIP FIUAccount
Aggregator

Provides

Obtains

Data d Consent to
mobilize d

Pipeline from
consent data→ Services to user

Services
from FIU Fees from FIU Depends on

business model—

Data d

User device

FIP FIUAccount
Aggregator

Provides

Obtains

Data d Consent to
mobilize d

Pipeline from
consent data→ Services to user

Services
from FIU Fees from FIU Depends on

business model—

Data d
Unrestricted reuseLost feesNo consentData the

User device

Implications of Exposing to FIUd
• Data breach or insider aack on FIU puts data in the wrong

hands, affects the whole ecosystem

- Users lose control over their personal financial information

- FIPs affected on a macro level: loss of proprietary data

• Heuristic FIP solution: throle response rate
- Undermines ecosystem, and still leaks data anyway

• A compliance-by-design approach is needed

FIP FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

3

Encrypted
response

E = 𝖤𝗇𝖼(𝗉𝗄, d)

4 Encrypted
response

E

5

Public key 𝗉𝗄
Secret key 𝗌𝗄

Decrypt and process data

d = 𝖣𝖾𝖼(𝗌𝗄, E)

6

Output f(d)

FIU

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

Encrypted
response

E = 𝖤𝗇𝖼(𝗉𝗄, d)

Encrypted
response

E

5

Public key 𝗉𝗄
Secret key 𝗌𝗄

Decrypt and process data

d = 𝖣𝖾𝖼(𝗌𝗄, E)

6

Output f(d)

Single point of failure

APPROVE

Account
Aggregator

Consent to
share data1

Request data2Request data
Public key 𝗉𝗄

Encrypted
response

E = 𝖤𝗇𝖼(𝗉𝗄, d)

Encrypted
response

E

5

Public key 𝗉𝗄

FICUFICU FICU

Distributed key generation

𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝟥

Distributed 𝖣𝖾𝖼(𝗌𝗄, E)6

d1 d2 d3

Distributed Function Evaluation Output f(d)

FIU

Financial
Information

Compute Units
(FICUs)

represent
different parties’

interests

Our solution

e FICU Paradigm
• ree FICU nodes, with naturally non-colluding operators:

- FIU, interested in utility of data

- FIP (or proxy), interested in minimizing data exposure

- Infrastructure provider, interested in credibility of the AA ecosystem

• Duplication protection. Data is secret shared, and accessible only via MPC

• Fixes participation incentives.
Value of data ∝ quality and quantity of usage
Fine-grained compensation model for FIPs

Technical Details
• MPC model: 3 parties, no colluding pairs (1 active corruption)

• Ideal functionality to realize:

1. Generate and

2. Obtain from AA

3. Compute

4. Operate on as required

𝗉𝗄 [𝗌𝗄]

𝖼𝗍 = 𝖤𝗇𝖼(𝗉𝗄, d)

[d] = 𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)

[d]

Standard queries

Technical Details
• MPC model: 3 parties, no colluding pairs (1 active corruption)

• Ideal functionality to realize:

1. Generate and

2. Obtain from AA

3. Compute

4. Operate on as required

𝗉𝗄 [𝗌𝗄]

𝖼𝗍 = 𝖤𝗇𝖼(𝗉𝗄, d)

[d] = 𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)

[d]

Standard queries

Technical Details
• MPC model: 3 parties, no colluding pairs (1 active corruption)

• Ideal functionality to realize:

1. Generate and

2. Obtain from AA

3. Compute

4. Operate on as required

𝗉𝗄 [𝗌𝗄]

𝖼𝗍 = 𝖤𝗇𝖼(𝗉𝗄, d)

[d] = 𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)

[d]

reshold decryption

-Well studied problem
-Simple solution: tweak to
directly encrypt secret shares

𝖤𝗇𝖼

Standards set externally;
can’t be changed

Standard queries

Technical Details
• MPC model: 3 parties, no colluding pairs (1 active corruption)

• Ideal functionality to realize:

1. Generate and

2. Obtain from AA

3. Compute

4. Operate on as required

𝗉𝗄 [𝗌𝗄]

𝖼𝗍 = 𝖤𝗇𝖼(𝗉𝗄, d)

[d] = 𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)

[d]

reshold decryption

-Well studied problem
-Simple solution: tweak to
directly encrypt secret shares

𝖤𝗇𝖼

MPC-agnostic Context

 “On the internet, nobody knows you’re a dog”

Peter Steiner,
e New Yorker

July 5, 1993 issue

MPC-agnostic Context

 “On the internet, nobody knows you’re a dog”RUNNING MPC

Peter Steiner,
e New Yorker

July 5, 1993 issue

Our Approach
• Guiding principle: Protocol specs are set agnostic to MPC,

unrealistic to wait for MPC-friendly standards

• We design our solution to be a drop-in replacement for FIU, for
integration with AA ecosystem as it exists today

• Two protocol design challenges:

- is a difficult function to handle in MPC

- FIP (via AA) delivers data as an XML file
 must be parsed before running any queries

𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
d

⇒ [d]

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

Arithmetic
in ℤp

Along the lines of
[Abram Damgård Scholl Trieflinger 21]

[Mohassel Rindal 18]

 in +𝔾 ℤp in +p ℤ2

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

Arithmetic
in ℤp

 in +𝔾 ℤp in +p ℤ2

Along the lines of
[Abram Damgård Scholl Trieflinger 21]

[Mohassel Rindal 18]

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

Arithmetic
in ℤp

 in +𝔾 ℤp in +p ℤ2

Which general Boolean MPC paradigm?
Garbled Circuits

 rounds
100s bits/gate
O(1)

“Secret-sharing”
 rounds

few bits/gate
O(depth)

Along the lines of
[Abram Damgård Scholl Trieflinger 21]

[Mohassel Rindal 18]

AES invocations in parallel

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

Arithmetic
in ℤp

 in +𝔾 ℤp in +p ℤ2

Which general Boolean MPC paradigm?
Garbled Circuits

 rounds
100s bits/gate
O(1)

“Secret-sharing”
 rounds

few bits/gate
O(depth)

𝖼𝗍0 𝖼𝗍1 𝖼𝗍2 𝖼𝗍3

𝖠𝖤𝖲 𝖠𝖤𝖲 𝖠𝖤𝖲 𝖠𝖤𝖲
⊕ ⊕ ⊕ ⊕

. . .

. . .
ctr ctr+1 ctr+2 ctr+3

Along the lines of
[Abram Damgård Scholl Trieflinger 21]

[Mohassel Rindal 18]

AES invocations in parallel

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

Arithmetic
in ℤp

 in +𝔾 ℤp in +p ℤ2

Which general Boolean MPC paradigm?
Garbled Circuits

 rounds
100s bits/gate
O(1)

“Secret-sharing”
 rounds

few bits/gate
O(depth)

𝖼𝗍0 𝖼𝗍1 𝖼𝗍2 𝖼𝗍3

𝖠𝖤𝖲 𝖠𝖤𝖲 𝖠𝖤𝖲 𝖠𝖤𝖲
⊕ ⊕ ⊕ ⊕

. . .

. . .
ctr ctr+1 ctr+2 ctr+3

Circuit depth independent of |𝖼𝗍 |

Along the lines of
[Abram Damgård Scholl Trieflinger 21]

[Mohassel Rindal 18]

Wins for
> few KB|𝖼𝗍 |

AES invocations in parallel

 in MPC𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
Decryption involves two steps:

1.Establish shared key

2.Use key to evaluate AES in GCM mode

K = 𝖲𝖧𝖠(g𝗌𝗄⋅r)

K

Elliptic curve
group ops

Boolean
circuit

Arithmetic
in ℤp

 in +𝔾 ℤp in +p ℤ2

Which general Boolean MPC paradigm?
Garbled Circuits

 rounds
100s bits/gate
O(1)

“Secret-sharing”
 rounds

few bits/gate
O(depth)

𝖼𝗍0 𝖼𝗍1 𝖼𝗍2 𝖼𝗍3

𝖠𝖤𝖲 𝖠𝖤𝖲 𝖠𝖤𝖲 𝖠𝖤𝖲
⊕ ⊕ ⊕ ⊕

. . .

. . .
ctr ctr+1 ctr+2 ctr+3

Circuit depth independent of |𝖼𝗍 |

Along the lines of
[Abram Damgård Scholl Trieflinger 21]

[Mohassel Rindal 18]

Our Approach
• Guiding principle: Protocol specs are set agnostic to MPC,

unrealistic to wait for MPC-friendly standards

• We design our solution to be a drop-in replacement for FIU, for
integration with AA ecosystem as it exists today

• Two protocol design challenges:

- is a difficult function to handle in MPC

- FIP (via AA) delivers data as an XML file
 must be parsed before running any queries

𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
d

⇒ [d]

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

<Transactions>

</Transactions>

⋮

⋮
<Transaction ts=“13:22” >nar=“UPI/ZMTO”amt=“54.2”id=“S1842”

Why is Parsing Challenging?

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

<Transaction ts=“13:22” >nar=“UPI/ZMTO”amt=“54.2”id=“S1842”

• Plaintext parsing: identify delimiters, cast into structure

transaction_struct tr = {string id, int amt, string nar, time_t ts}

Why is Parsing Challenging?

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Why is Parsing Challenging?

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Step 1: identify delimiters

Why is Parsing Challenging?

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Step 1: identify delimiters

<Transaction >

Why is Parsing Challenging?

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Step 1: identify delimiters

<Transaction >

Leakage!

Why is Parsing Challenging?

10 chars

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Step 1: identify delimiters

<Transaction >

Leakage!

Why is Parsing Challenging?

10 chars

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Step 1: identify delimiters

<Transaction >

Leakage!

amt=“54.2”
10 chars

amt=“104.3”
11 chars

vs.

Why is Parsing Challenging?

10 chars

• Plaintext is a bank statement that consists of a list of transactions,
provided in XML format

• Plaintext parsing: identify delimiters, cast into structure

• What about parsing in secret shared form?

XXX

Step 1: identify delimiters

<Transaction >

Leakage!

amt=“54.2”
10 chars

amt=“104.3”
11 chars

vs.

✓ ✗

Why is Parsing Challenging?

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

<Transaction ts=“13:22” >nar=“UPI/ZMTO”amt=“54.2”id=“S1842”

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id S1842= amt 54.2= nar UPI /ZMTO= ts 13:22=

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id S1842=

amt 54.2=

nar UPI /ZMTO=
ts 13:22=

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id S1842=

amt 54.2=

nar UPI /ZMTO=
ts 13:22=

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id

amt

nar
ts

U P I / Z M T O
1 3 : 2 2

5 4 . 2

S 1 8 4 2

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id

amt

nar
ts

U P I / Z M T O
1 3 : 2 2

5 4 . 2

S 1 8 4 2

Max row length = 10

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id

amt

nar
ts

U P I / Z M T O
1 3 : 2 2

5 4 . 2

S 1 8 4 2 # # #

#

#

#

#

#

#

#

Max row length = 10

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id

amt

nar
ts

U P I / Z M T O
1 3 : 2 2

5 4 . 2

S 1 8 4 2 # # #

#

#

#

#

#

#

#

Max row length = 10

Max string length = 40

Padding chars = 18
Actual string length = 22

Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length

• Our approach is to securely derive this padding

id

amt

nar
ts

U P I / Z M T O
1 3 : 2 2

5 4 . 2

S 1 8 4 2 # # #

#

#

#

#

#

#

#

Max row length = 10

Max string length = 40

Padding chars = 18
Actual string length = 22

Secure Parsing
i a n tS 1 8 4 2 5 4 . 2 U P I / Z M T O 1 3 : 2 2

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

0 1 2 3 4 5 -1 0 1 2 3 4 -1 0 1 2 3 4 5 6 7 8 -1 0 1 2 3 4 5

 (distance from last delimiter-1)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

0 1 2 3 4 5 -1 0 1 2 3 4 -1 0 1 2 3 4 5 6 7 8 -1 0 1 2 3 4 5

 (distance from last delimiter-1)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

0 1 2 3 4 5 -1 0 1 2 3 4 -1 0 1 2 3 4 5 6 7 8 -1 0 1 2 3 4 5

 (distance from last delimiter-1)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑
0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

#id

amt

nar
ts

#

#

#

Public Pad array

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

#id

amt

nar
ts

#

#

#

Public Pad array

Actual
requirement

(secret)

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

1 1 1 1 1id

amt

nar
ts

1 1 1 1 1 1

1 1

1 1 1 1 1

Public Pad array

Actual
requirement

(secret)

isPadRequired?

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

id

amt

nar
ts

15 16 17 18 19 20

Public Pad array

Actual
requirement

(secret)

 of required pads𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑

6 7 8 9 10

29 30

36 37 38 39 40

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

15 16 17 18 19 20

Public Pad array

 of required pads𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑

29 30

#

6 7 8 9 10 36 37 38 39 40

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

Two arrays with secret
shared absolute indices of
values within target array

Secure merge yields the
desired final result

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2 a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding, = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

15 16 17 18 19 20

Public Pad array

 of required pads𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑

29 306 7 8 9 10 36 37 38 39 40

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

Two arrays with secret
shared absolute indices of
values within target array

Secure merge yields the
desired final result

5 5 . 2 U P I / Z M T O 1 3 : 2 2S 1 8 4 2

1 2 3 4 5 11 12 13 14 21 22 23 24 25 26 27 28 31 32 33 34 35

#

Secure Parsing
6 7 8 9 10

S 1 8 4 2

1 2 3 4 5

#

15 16 17 18 19 20

5 5 . 2

11 12 13 14

#

29 30

U P I / Z M T O

21 22 23 24 25 26 27 28

#

1 3 : 2 2

31 32 33 34 35 36 37 38 39 40

#

id

amt

nar

ts
Secure merge yields the

desired final result

Secure Parsing
6 7 8 9 10

S 1 8 4 2

1 2 3 4 5

#

15 16 17 18 19 20

5 5 . 2

11 12 13 14

#

29 30

U P I / Z M T O

21 22 23 24 25 26 27 28

#

1 3 : 2 2

31 32 33 34 35 36 37 38 39 40

#

id

amt

nar

ts
Secure merge yields the

desired final result

Efficiency / Practicalities

• Rough cost profile:

- Per character: constant number of additions, comparisons,
share conversions

- Constant number of shuffles (simple custom protocol)

- Overall round complexity independent of file size

• Currently the most expensive component in our integration with
the AA ecosystem

• End-to-end: Order of minutes to process a small encrypted bank
statement, obtained via actual API

• Plenty of scope to improve the protocol and implementation

• Pilot deployment with partners:

Efficiency / Practicalities

fold
Infrastructure provided

by Sahamati
Financial Information

User (FIU)
Technology Service

Provider

Conclusion
• Open Finance frameworks are increasingly popular worldwide

- eg. India’s regulator-driven Account Aggregator (AA) ecosystem

• We propose an MPC-based solution to close gaps in incentives and trust
- Duplication protection from rogue data fiduciaries (AA: FIUs)
- Fair compensation model for data custodians (AA: FIPs)

• Design principle: drop-in replacement for immediate use

• Coming soon: full specs on eprint, report on pilot deployment

anks!
silencelaboratories.com/open-banking

https://www.silencelaboratories.com/open-banking

