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In this talk…
• Introduction to the Account Aggregator (AA) ecosystem, a 

regulator-driven Open Finance framework in India 

• Identify gaps in trust and incentives in present ecosystem 

• Propose an MPC-based solution which: 
- Mitigates data duplication concerns to reinstate trust 
- Facilitates fair compensation to balance incentives 

• Discuss our design principle of drop-in replacement, and the 
technical challenges posed by integration with AA ecosystem
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What is Open Finance?
• Open Finance frameworks enable people to securely mobilize 

personal financial data in order to avail of financial services 
eg. Proving financial health when applying for a loan, apartment 
rental, etc. 

• Cryptographic protocols for provenance replace unverifiable 
physical documents, and heuristics such as screen scraping 

• e Account Aggregator (AA) ecosystem in India is one such 
Open Finance framework, regulated by the central bank



Account Aggregator (AA)
• Users consolidate their financial information across multiple 

regulated Financial Information Providers (FIPs) 

• Upon user consent, the AA shares a curated view of finances to 
licensed Financial Information Users (FIUs) 
— who then provide financial services to the user 

• According to Sahamati (regulated authority for AA), the AA 
ecosystem as of 2024 has over 80 million users, 155 FIPs, 475 FIUs 

• However, issues persist: incentive gaps, and single points of failure
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Implications of Exposing  to FIUd
• Data breach or insider aack on FIU puts data in the wrong 

hands, affects the whole ecosystem 

- Users lose control over their personal financial information 

- FIPs affected on a macro level: loss of proprietary data 

• Heuristic FIP solution: throle response rate 
- Undermines ecosystem, and still leaks data anyway 

• A compliance-by-design approach is needed
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e FICU Paradigm
• ree FICU nodes, with naturally non-colluding operators: 

- FIU, interested in utility of data 

- FIP (or proxy), interested in minimizing data exposure 

- Infrastructure provider, interested in credibility of the AA ecosystem 

• Duplication protection. Data is secret shared, and accessible only via MPC 

• Fixes participation incentives. 
Value of data ∝ quality and quantity of usage 
Fine-grained compensation model for FIPs



Technical Details
• MPC model: 3 parties, no colluding pairs (1 active corruption) 

• Ideal functionality to realize: 
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Our Approach
• Guiding principle: Protocol specs are set agnostic to MPC, 

unrealistic to wait for MPC-friendly standards  

• We design our solution to be a drop-in replacement for FIU, for 
integration with AA ecosystem as it exists today 

• Two protocol design challenges:  

-  is a difficult function to handle in MPC  

- FIP (via AA) delivers data  as an XML file 
  must be parsed before running any queries

𝖣𝖾𝖼([𝗌𝗄], 𝖼𝗍)
d

⇒ [d]
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Our Approach
• Guiding principle: Protocol specs are set agnostic to MPC, 
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Secure Parsing
• Ideal situation: each entry is “padded” to a fixed max length 

• Our approach is to securely derive this padding
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i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

0 1 2 3 4 5 -1 0 1 2 3 4 -1 0 1 2 3 4 5 6 7 8 -1 0 1 2 3 4 5

 (distance from last delimiter-1)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑
0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

# # # # # # # # # #id

amt

nar
ts

# # # # # # # # # #

# # # # # # # # # #

# # # # # # # # # #

Public Pad array

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

# # # # #id

amt

nar
ts

# # # # # #

# #

# # # # #

Public Pad array

Actual 
requirement 

(secret)

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

1 1 1 1 1id

amt

nar
ts

1 1 1 1 1 1

1 1

1 1 1 1 1

Public Pad array

Actual 
requirement 

(secret)

isPadRequired?

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

id

amt

nar
ts

15 16 17 18 19 20

Public Pad array

Actual 
requirement 

(secret)

 of required pads𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑

6 7 8 9 10

29 30

36 37 38 39 40

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

15 16 17 18 19 20

Public Pad array

 of required pads𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑

29 30

# # # # # # # # # # # # # # # # # #

6 7 8 9 10 36 37 38 39 40

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

Two arrays with secret 
shared absolute indices of 
values within target array

Secure merge yields the 
desired final result



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

isDelimiter?

Secure Parsing
i S 1 8 4 2  a 5 5 . 2 n U P I / Z M T O t 1 3 : 2 2

Secret shared

1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 (distance from last delimiter)𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑Post padding,  = 𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑 (𝗆𝖺𝗑_𝗋𝗈𝗐_𝗅𝖾𝗇 × 𝗅𝖺𝗌𝗍_𝖽𝖾𝗅𝗂𝗆_𝗂𝗇𝖽𝖾𝗑) + 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾_𝗂𝗇𝖽𝖾𝗑

15 16 17 18 19 20

Public Pad array

 of required pads𝖺𝖻𝗌𝗈𝗅𝗎𝗍𝖾_𝗂𝗇𝖽𝖾𝗑

29 306 7 8 9 10 36 37 38 39 40

0 1 2 3 4 5 - 10 11 12 13 14 - 20 21 22 23 24 25 26 27 28 - 30 31 32 33 34 35

Two arrays with secret 
shared absolute indices of 
values within target array

Secure merge yields the 
desired final result

5 5 . 2 U P I / Z M T O 1 3 : 2 2S 1 8 4 2

1 2 3 4 5 11 12 13 14 21 22 23 24 25 26 27 28 31 32 33 34 35

# # # # # # # # # # # # # # # # # #



Secure Parsing
6 7 8 9 10

S 1 8 4 2

1 2 3 4 5

# # # # #

15 16 17 18 19 20

5 5 . 2

11 12 13 14

# # # # # #

29 30

U P I / Z M T O

21 22 23 24 25 26 27 28

# #

1 3 : 2 2

31 32 33 34 35 36 37 38 39 40

# # # # #

id

amt

nar

ts
Secure merge yields the 

desired final result



Secure Parsing
6 7 8 9 10

S 1 8 4 2

1 2 3 4 5

# # # # #

15 16 17 18 19 20

5 5 . 2

11 12 13 14

# # # # # #

29 30

U P I / Z M T O

21 22 23 24 25 26 27 28

# #

1 3 : 2 2

31 32 33 34 35 36 37 38 39 40

# # # # #

id

amt

nar

ts
Secure merge yields the 

desired final result



Efficiency / Practicalities

• Rough cost profile: 

- Per character: constant number of additions, comparisons, 
share conversions 

- Constant number of shuffles (simple custom protocol) 

- Overall round complexity independent of file size 

• Currently the most expensive component in our integration with  
the AA ecosystem



• End-to-end: Order of minutes to process a small encrypted bank 
statement, obtained via actual API 

• Plenty of scope to improve the protocol and implementation 

• Pilot deployment with partners:

Efficiency / Practicalities

fold
Infrastructure provided 

by Sahamati
Financial Information 

User (FIU)
Technology Service 

Provider



Conclusion
• Open Finance frameworks are increasingly popular worldwide 

- eg. India’s regulator-driven Account Aggregator (AA) ecosystem 

• We propose an MPC-based solution to close gaps in incentives and trust 
- Duplication protection from rogue data fiduciaries (AA: FIUs) 
- Fair compensation model for data custodians (AA: FIPs) 

• Design principle: drop-in replacement for immediate use 

• Coming soon: full specs on eprint, report on pilot deployment

anks!
silencelaboratories.com/open-banking

https://www.silencelaboratories.com/open-banking

