
Testing Side-Channel Security of Cryptographic
Implementations against Future Microarchitectures

Chitchanok Chuengsatiansup and Marco Guarnieri

RWC 2025

Joint work with Gilles. Barthe, Marcel Böhme, Sunjay Cauligi,

Daniel Genkin, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 1



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?

▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?

▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?

▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?

▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?
▶ cryptographic implementations

▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?
▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?

▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?
▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 2



Our framework

Program Result

Leakage models

µarch optimization proposals

Crypto code
(+mitigation) Problem?

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 3



Our framework

Program Result

Leakage models

µarch optimization proposals

Crypto code
(+mitigation) Problem?

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 3



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 4



Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 5



Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 5



Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 5



Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 5



Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 5



Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 5



Case study

18 microarchitecture optimization (leakage clause)

▶ CT constant time, SS silent store, RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)

▶ CT constant time, SS silent store, RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time,

SS silent store, RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store,

RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,

OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,

CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,

CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,

PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,

+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential,

conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch,

straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line,

store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass,

return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address

(x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries
▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries
▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 7



Example: leak from constant-time swap

secret

mask = 0 → result = 0
RFC: compress to zero register

mask = 0 → x = 0 → xor 0 not changed
CS: xor is simplified

values not swapped → memory not modified
SS: stores are suppressed

fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5], bool b)
{

mask = (-(int64_t) b);

x[0..5] = f[0..5] ^ g[0..5];

x[0..5] &= mask;

f[0..5] = f[0..5] ^ x[0..5];
g[0..5] = f[0..5] ^ x[0..5];

}

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 8



Example: leak from constant-time swap
secret

mask = 0 → result = 0
RFC: compress to zero register

mask = 0 → x = 0 → xor 0 not changed
CS: xor is simplified

values not swapped → memory not modified
SS: stores are suppressed

fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5], bool b)
{

mask = (-(int64_t) b);

x[0..5] = f[0..5] ^ g[0..5];

x[0..5] &= mask;

f[0..5] = f[0..5] ^ x[0..5];
g[0..5] = f[0..5] ^ x[0..5];

}

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 8



Example: leak from constant-time swap
secret

mask = 0 → result = 0
RFC: compress to zero register

mask = 0 → x = 0 → xor 0 not changed
CS: xor is simplified

values not swapped → memory not modified
SS: stores are suppressed

fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5], bool b)
{

mask = (-(int64_t) b);

x[0..5] = f[0..5] ^ g[0..5];

x[0..5] &= mask;

f[0..5] = f[0..5] ^ x[0..5];
g[0..5] = f[0..5] ^ x[0..5];

}

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 8



Example: leak from constant-time swap
secret

mask = 0 → result = 0
RFC: compress to zero register

mask = 0 → x = 0 → xor 0 not changed
CS: xor is simplified

values not swapped → memory not modified
SS: stores are suppressed

fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5], bool b)
{

mask = (-(int64_t) b);

x[0..5] = f[0..5] ^ g[0..5];

x[0..5] &= mask;

f[0..5] = f[0..5] ^ x[0..5];
g[0..5] = f[0..5] ^ x[0..5];

}

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 8



Example: leak from constant-time swap
secret

mask = 0 → result = 0
RFC: compress to zero register

mask = 0 → x = 0 → xor 0 not changed
CS: xor is simplified

values not swapped → memory not modified
SS: stores are suppressed

fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5], bool b)
{

mask = (-(int64_t) b);

x[0..5] = f[0..5] ^ g[0..5];

x[0..5] &= mask;

f[0..5] = f[0..5] ^ x[0..5];
g[0..5] = f[0..5] ^ x[0..5];

}

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 8



Summary

LmSpec: Language for specifying leakage models at the ISA level

LmTest: Testing framework for automatically detecting leaks

Extensive evaluation on cryptographic algorithms → all leak!

For more details, see https://arxiv.org/pdf/2402.00641

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 9

https://arxiv.org/pdf/2402.00641


Summary
LmSpec: Language for specifying leakage models at the ISA level

LmTest: Testing framework for automatically detecting leaks

Extensive evaluation on cryptographic algorithms → all leak!

For more details, see https://arxiv.org/pdf/2402.00641

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 9

https://arxiv.org/pdf/2402.00641


Summary
LmSpec: Language for specifying leakage models at the ISA level

LmTest: Testing framework for automatically detecting leaks

Extensive evaluation on cryptographic algorithms → all leak!

For more details, see https://arxiv.org/pdf/2402.00641

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 9

https://arxiv.org/pdf/2402.00641


Summary
LmSpec: Language for specifying leakage models at the ISA level

LmTest: Testing framework for automatically detecting leaks

Extensive evaluation on cryptographic algorithms → all leak!

For more details, see https://arxiv.org/pdf/2402.00641

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 9

https://arxiv.org/pdf/2402.00641


Summary
LmSpec: Language for specifying leakage models at the ISA level

LmTest: Testing framework for automatically detecting leaks

Extensive evaluation on cryptographic algorithms → all leak!

For more details, see https://arxiv.org/pdf/2402.00641

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 9

https://arxiv.org/pdf/2402.00641

