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Motivation

Microarchitectural optimization → speed up computation

Sanchez Vicarte et al., ISCA 2021
▶ identify many security-critical optimization proposals

How to evaluate security impacts?

▶ cryptographic implementations
▶ existing mitigations → do they really help preventing leaks?
▶ future microarchitectural optimizations
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Our framework

Program Result

Leakage models

µarch optimization proposals

Crypto code
(+mitigation) Problem?
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Specify leakage models: LmSpec

Prediction clause Leakage clause

Program Result

misprediction paths
to be explored

leakage observations
based on events

Register read/write
Memory load/store
Address computation
Expression evaluation
Control-flow change

control-flow /
data speculation
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Test for leakage: LmTest

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations

Program Result

-location (register/memory)
-size in bytes
-security type (public/secret)

1)generate initial state at random
2)change secret parts to get another state

Leak detected if
leakage traces differ
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Case study

18 microarchitecture optimization (leakage clause)

▶ CT constant time, SS silent store, RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)

▶ CT constant time, SS silent store, RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time,

SS silent store, RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store,

RFC register file compression,
CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,

OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,

CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,

CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,

PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,

+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)

▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential,

conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch,

straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line,

store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass,

return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address

(x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives

▶ AES, SHA512, HMAC Stream-XOR,
Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries

▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries
▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Case study
18 microarchitecture optimization (leakage clause)
▶ CT constant time, SS silent store, RFC register file compression,

CS computation simplification,OP operand packing,CR computation reuse,
CC cacheline compression,PF prefetching,+++ their variations

6 execution models (prediction clause)
▶ sequential, conditional branch, straight-line, store bypass, return address (x2)

8 cryptographic primitives
▶ AES, SHA512, HMAC Stream-XOR,

Salsa20, Poly1305, Ed25519, X25519

5 popular libraries
▶ libsodium, libjade, libnettle, cryptlib, rust-crypto

108 leakage models

25 implementations

Chitchanok Chuengsatiansup and Marco Guarnieri Testing Side-Channel Security of Cryptographic Implementations 6



Evaluation results

All analyzed implementations leak

Memory-safe languages (e.g., Rust) do
not significantly mitigate leaks

CT programming (e.g., libsodium,
libjade) does not fully prevent leaks

Majority of leaks are present even
without prediction clause
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Example: leak from constant-time swap

secret

mask = 0 → result = 0
RFC: compress to zero register

mask = 0 → x = 0 → xor 0 not changed
CS: xor is simplified

values not swapped → memory not modified
SS: stores are suppressed

fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5], bool b)
{

mask = (-(int64_t) b);

x[0..5] = f[0..5] ^ g[0..5];

x[0..5] &= mask;

f[0..5] = f[0..5] ^ x[0..5];
g[0..5] = f[0..5] ^ x[0..5];

}
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Summary

LmSpec: Language for specifying leakage models at the ISA level

LmTest: Testing framework for automatically detecting leaks

Extensive evaluation on cryptographic algorithms → all leak!

For more details, see https://arxiv.org/pdf/2402.00641

Prediction clause

Engine controller

hooks predictions

Leakage clause

Program

Labeled
interface

Input
generator input

pairs

Unicorn
engine hooks

Tracer
leakage
traces

Checker Detected
violations
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