
Exploiting Vulnerable Implementations
of ZK-based Cryptographic Schemes

Used in the Ethereum Ecosystem

Oana Ciobotaru 1 Maxim Peter 2 Vesselin Velichkov 2

Nikesh Nazareth 2 Sam Wong 2

1Pi Squared
2OpenZeppelin

Real World Crypto Symposium
Sofia, March 26-28, 2025

1 / 18



(Incomplete) History of Vulnerabilities in ZK Schemes

Theoretical Attacks with Implications in Practice
Zcash counterfeiting vulnerability [G19].

The lack of security for the Fiat-Shamir transform applied to the GKR
protocol and hash function circuits [KRS25].

Vulnerabilities Encountered in Practice
Attacks on insecure implementation of the Fiat-Shamir transform (e.g.,
[BPW12], [HLPT20], [DMWG23]).

Attack on a Nova folding scheme implementation [NBS23].

2 / 18

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://eprint.iacr.org/2025/118.pdf
https://eprint.iacr.org/2016/771.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2723423/main.pdf
https://eprint.iacr.org/2023/691.pdf
https://eprint.iacr.org/2023/969


Interactive vs. Non-interactive Arguments

The Fiat-Shamir (FS) Transform
By default, computing proof/argument π is an interactive process between
the prover P and the verifier V.

The FS transform turns that into a non-interactive process (Pn,Vn) via an
idealised random oracle model (ROM).

In practice, Pn and Vn independently compute challenges as the hash of the
computation transcript up to that point.

3 / 18



History of Attacks on the Fiat-Shamir Transform

Theoretical Attacks
(Contrived) attacks on cryptographic primitives secure in the ROM but
insecure when ROM is instantiated ([Bar01], [CK03], [CGH04], [BBH+19]).

Theoretical Attacks with Implications in Practice
Proven lack of adaptive soundness for the FS transform applied to the
GKR15 protocol and certain circuits arithmetising hash functions [KRS25].

Vulnerabilities Encountered in Practice
Lack of adaptive soundness for FS transform implementations if the public
input is omitted from the transcript (e.g.,[BPW12], [HLPT20], [DMWG23]).

Assume a verifier omits from the transcript components different from the public
input. Are attacks still possible?

4 / 18

https://eprint.iacr.org/2025/118.pdf
https://eprint.iacr.org/2016/771.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2723423/main.pdf
https://eprint.iacr.org/2023/691.pdf


History of Attacks on the Fiat-Shamir Transform

Theoretical Attacks
(Contrived) attacks on cryptographic primitives secure in the ROM but
insecure when ROM is instantiated ([Bar01], [CK03], [CGH04], [BBH+19]).

Theoretical Attacks with Implications in Practice
Proven lack of adaptive soundness for the FS transform applied to the
GKR15 protocol and certain circuits arithmetising hash functions [KRS25].

Vulnerabilities Encountered in Practice
Lack of adaptive soundness for FS transform implementations if the public
input is omitted from the transcript (e.g.,[BPW12], [HLPT20], [DMWG23]).

Assume a verifier omits from the transcript components different from the public
input. Are attacks still possible?

4 / 18

https://eprint.iacr.org/2025/118.pdf
https://eprint.iacr.org/2016/771.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2723423/main.pdf
https://eprint.iacr.org/2023/691.pdf


Talk Outline

1 Setting: Scaling Ethereum
2 A New Type of Adaptive Soundness Attack on

Vulnerable FS Transform Implementations
First Attack:
The Last Challenge Attack (LCA)
Second Attack:
Fiat-Shamir Array Inputs Not Transcribed (FAINT)
Implications

3 Subtle Attack on Statistical Zero-Knowledge
4 Conclusions

5 / 18



Setting: Scaling Ethereum

L2 ZK-Rollups execute transactions off-chain.
(SNARK) prover Pn provides a succinct ZK argument π on L1.
π testifies that transactions were executed correctly.
(SNARK) verifier Vn verifies on L1 the correctness of π.
The state of L2 on L1 (and the state of L1) are updated accordingly.

Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

6 / 18

https://vitalik.eth.limo/general/2021/01/05/rollup.html


New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



New Soundness Attack on FS Implementations

Assume deviating V′
n omits hashing a transcript component other than the public

input. Malicious P′
n chooses public input x′ (adaptive soundness attack), then:

P ′
n Mounts a 6-Steps Attack Against V ′

n:
1 P′

n simulates a version of the pairing-based PCS underlying the SNARK. All
inputs to the PCS are chosen by P′

n.

2 P′
n chooses freely all components of proof π′ apart from those omitted by V′

n
in the transcript (i.e., V′

n’s degrees of freedom).

3 Using x′ and the above values, P′
n simulates* Pn and instantiates the system

of constraints with V′
n degrees of freedom as the only unknowns.

4 P′
n solves the above system, if feasible.

5 P′
n fills in the remaining components of π′ using a solution to the system.

6 V′
n accepts π′ as valid with probability 1.

7 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.

1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)
γ = hash(Tr1, 1)

2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)

2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)

3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)

4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)

5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)

Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Context
Short Background
Secure pairing function (e): bilinear, non-degenerate. First argument (e.g., [a]1):
EC point in Fp × Fp. Second argument (e.g., [b]2) in Fpk × Fpk . a, b scalars in Fr.

The KZG-based PPLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, [a]1, [b]1, [c]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [z]1 α = hash(Tr1, Tr2)
3 β, γ, α Tr3= ([tlo]1, [tmi]1, [thi]1) z = hash(Tr1, Tr2, Tr3)
4 β, γ, α, z Tr4= (ā, b̄, c̄, Sσ1, Sσ2, z̄ω) v = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, α, z, v Tr5= ([Wz]1, [Wzω]1, ) u = hash(Tr1, Tr2, Tr3, Tr4, Tr5)

Proof πPLONK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmi]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, Sσ1, Sσ2, z̄ω

)
Warning! The last challenge u is not used at all by PPLONK.

The KZG-based VPLONK Verifier Simplified

(Mainly) re-computes the FS challenges, [E]1, [F]1; verifies the pairing equation:
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2).

8 / 18



The Last Challenge Attack - Steps 1–3
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2)

Can VPLONK be Made More Efficient?
VPLONK computes u = hash(Tr1, Tr2, Tr3, Tr4, Tr5), Tr5 = ([Wz]1, [Wzω]1).
If VPLONK omits part of the full transcript for u, is soundness still preserved?
Assume deviating V′

PLONK does not include Tr5 in the transcript for u.

LCA: Malicious P ′
PLONK Steps 1–3

1 Simulating a KZG commitment to a polynomial of its choice, P′
PLONK

produces A, B s.t.: e(A, [x]2) = e(B, [1]2).
2 P′

PLONK chooses freely all public inputs and proof components except for
[Wz]1, [Wzω]1, preparing to produce a false proof:

π′
PLONK =

 [a]1 , [b]1 , [c]1 , [z]1 , [tlo]1 , [tmi]1 , [thi]1 ,

[Wz]1 , [Wzω]1 , ā , b̄ , c̄ , Sσ1 , Sσ2 , z̄ω


3 Following honest VPLONK’s computation and using the already chosen

components in π′
PLONK, P′

PLONK computes [F]1, [E]1.

9 / 18



The Last Challenge Attack - Steps 1–3
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2)

Can VPLONK be Made More Efficient?
VPLONK computes u = hash(Tr1, Tr2, Tr3, Tr4, Tr5), Tr5 = ([Wz]1, [Wzω]1).
If VPLONK omits part of the full transcript for u, is soundness still preserved?
Assume deviating V′

PLONK does not include Tr5 in the transcript for u.

LCA: Malicious P ′
PLONK Steps 1–3

1 Simulating a KZG commitment to a polynomial of its choice, P′
PLONK

produces A, B s.t.: e(A, [x]2) = e(B, [1]2).
2 P′

PLONK chooses freely all public inputs and proof components except for
[Wz]1, [Wzω]1, preparing to produce a false proof:

π′
PLONK =

 [a]1 , [b]1 , [c]1 , [z]1 , [tlo]1 , [tmi]1 , [thi]1 ,

[Wz]1 , [Wzω]1 , ā , b̄ , c̄ , Sσ1 , Sσ2 , z̄ω


3 Following honest VPLONK’s computation and using the already chosen

components in π′
PLONK, P′

PLONK computes [F]1, [E]1.

9 / 18



The Last Challenge Attack - Steps 1–3
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2)

Can VPLONK be Made More Efficient?
VPLONK computes u = hash(Tr1, Tr2, Tr3, Tr4, Tr5), Tr5 = ([Wz]1, [Wzω]1).
If VPLONK omits part of the full transcript for u, is soundness still preserved?
Assume deviating V′

PLONK does not include Tr5 in the transcript for u.

LCA: Malicious P ′
PLONK Steps 1–3

1 Simulating a KZG commitment to a polynomial of its choice, P′
PLONK

produces A, B s.t.: e(A, [x]2) = e(B, [1]2).

2 P′
PLONK chooses freely all public inputs and proof components except for

[Wz]1, [Wzω]1, preparing to produce a false proof:

π′
PLONK =

 [a]1 , [b]1 , [c]1 , [z]1 , [tlo]1 , [tmi]1 , [thi]1 ,

[Wz]1 , [Wzω]1 , ā , b̄ , c̄ , Sσ1 , Sσ2 , z̄ω


3 Following honest VPLONK’s computation and using the already chosen

components in π′
PLONK, P′

PLONK computes [F]1, [E]1.

9 / 18



The Last Challenge Attack - Steps 1–3
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2)

Can VPLONK be Made More Efficient?
VPLONK computes u = hash(Tr1, Tr2, Tr3, Tr4, Tr5), Tr5 = ([Wz]1, [Wzω]1).
If VPLONK omits part of the full transcript for u, is soundness still preserved?
Assume deviating V′

PLONK does not include Tr5 in the transcript for u.

LCA: Malicious P ′
PLONK Steps 1–3

1 Simulating a KZG commitment to a polynomial of its choice, P′
PLONK

produces A, B s.t.: e(A, [x]2) = e(B, [1]2).
2 P′

PLONK chooses freely all public inputs and proof components except for
[Wz]1, [Wzω]1, preparing to produce a false proof:

π′
PLONK =

 [a]1 , [b]1 , [c]1 , [z]1 , [tlo]1 , [tmi]1 , [thi]1 ,

[Wz]1 , [Wzω]1 , ā , b̄ , c̄ , Sσ1 , Sσ2 , z̄ω



3 Following honest VPLONK’s computation and using the already chosen
components in π′

PLONK, P′
PLONK computes [F]1, [E]1.

9 / 18



The Last Challenge Attack - Steps 1–3
e([Wz]1 + u · [Wzω]1, [x]2)

?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F]1 − [E]1, [1]2)

Can VPLONK be Made More Efficient?
VPLONK computes u = hash(Tr1, Tr2, Tr3, Tr4, Tr5), Tr5 = ([Wz]1, [Wzω]1).
If VPLONK omits part of the full transcript for u, is soundness still preserved?
Assume deviating V′

PLONK does not include Tr5 in the transcript for u.

LCA: Malicious P ′
PLONK Steps 1–3

1 Simulating a KZG commitment to a polynomial of its choice, P′
PLONK

produces A, B s.t.: e(A, [x]2) = e(B, [1]2).
2 P′

PLONK chooses freely all public inputs and proof components except for
[Wz]1, [Wzω]1, preparing to produce a false proof:

π′
PLONK =

 [a]1 , [b]1 , [c]1 , [z]1 , [tlo]1 , [tmi]1 , [thi]1 ,

[Wz]1 , [Wzω]1 , ā , b̄ , c̄ , Sσ1 , Sσ2 , z̄ω


3 Following honest VPLONK’s computation and using the already chosen

components in π′
PLONK, P′

PLONK computes [F]1, [E]1.

9 / 18



The Last Challenge Attack - Steps 4–6

LCA: Malicious P ′
PLONK Steps 4–6

4 P′
PLONK uses A, B from Step 1 and exploits the independence between u and

[Wz]1 and [Wzω]1 to solve a system of 2 linear equations with 2 unknowns{
X + uY = A
zX + uzωY + C = B

with X = [Wz]1, Y = [Wzω]1 as unknowns and A, B, C, u, z, ω as constants

e([Wz]1︸ ︷︷ ︸
X

+u ·[Wzω ]1︸ ︷︷ ︸
Y︸ ︷︷ ︸

A

, [x]2)
?
= e(z · [Wz]1︸ ︷︷ ︸

X

+uzω · [Wzω ]1︸ ︷︷ ︸
Y

+ [F]1 − [E]1︸ ︷︷ ︸
C︸ ︷︷ ︸

B

, [1]2).

5 P′
PLONK fills in missing X = [Wz]1 , Y = [Wzω]1 and completes π′

PLONK.

6 Deviating V′
PLONK accepts false proof π′

PLONK as valid with probability 1!

10 / 18



The Last Challenge Attack - Steps 4–6

LCA: Malicious P ′
PLONK Steps 4–6

4 P′
PLONK uses A, B from Step 1 and exploits the independence between u and

[Wz]1 and [Wzω]1 to solve a system of 2 linear equations with 2 unknowns{
X + uY = A
zX + uzωY + C = B

with X = [Wz]1, Y = [Wzω]1 as unknowns and A, B, C, u, z, ω as constants

e([Wz]1︸ ︷︷ ︸
X

+u ·[Wzω ]1︸ ︷︷ ︸
Y︸ ︷︷ ︸

A

, [x]2)
?
= e(z · [Wz]1︸ ︷︷ ︸

X

+uzω · [Wzω ]1︸ ︷︷ ︸
Y

+ [F]1 − [E]1︸ ︷︷ ︸
C︸ ︷︷ ︸

B

, [1]2).

5 P′
PLONK fills in missing X = [Wz]1 , Y = [Wzω]1 and completes π′

PLONK.

6 Deviating V′
PLONK accepts false proof π′

PLONK as valid with probability 1!

10 / 18



The Last Challenge Attack - Steps 4–6

LCA: Malicious P ′
PLONK Steps 4–6

4 P′
PLONK uses A, B from Step 1 and exploits the independence between u and

[Wz]1 and [Wzω]1 to solve a system of 2 linear equations with 2 unknowns{
X + uY = A
zX + uzωY + C = B

with X = [Wz]1, Y = [Wzω]1 as unknowns and A, B, C, u, z, ω as constants

e([Wz]1︸ ︷︷ ︸
X

+u ·[Wzω ]1︸ ︷︷ ︸
Y︸ ︷︷ ︸

A

, [x]2)
?
= e(z · [Wz]1︸ ︷︷ ︸

X

+uzω · [Wzω ]1︸ ︷︷ ︸
Y

+ [F]1 − [E]1︸ ︷︷ ︸
C︸ ︷︷ ︸

B

, [1]2).

5 P′
PLONK fills in missing X = [Wz]1 , Y = [Wzω]1 and completes π′

PLONK.

6 Deviating V′
PLONK accepts false proof π′

PLONK as valid with probability 1!

10 / 18



Fiat-Shamir Array Inputs Not Transcribed - Context
FFLONK: a variant of PLONK SNARK having the most efficient verifier at the
expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

The PFFLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, PI, [c0]1, [c1]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [c2]1 z = (hash(Tr1, Tr2))24
3 β, γ, z Tr3= (q̄L, . . . , t̄0) α = hash(Tr1, Tr2, Tr3)
4 β, γ, z, α Tr4= ([W]1) y = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, z, α, y Tr5= ([W′]1)

πFFLONK =

(
[c1]1, [c2]1, [W]1, [W′]1,

q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0

)
The VFFLONK Verifier Simplified

Re-computes the FS challenges, [D]1 and the meaningful scalar ms and verifies the

pairing equation: e([D]1 − ms · [1]1, [1]2)
?
= e([W′]1, [x]2).

11 / 18



Fiat-Shamir Array Inputs Not Transcribed - Context
FFLONK: a variant of PLONK SNARK having the most efficient verifier at the
expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

The PFFLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, PI, [c0]1, [c1]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [c2]1 z = (hash(Tr1, Tr2))24
3 β, γ, z Tr3= (q̄L, . . . , t̄0) α = hash(Tr1, Tr2, Tr3)
4 β, γ, z, α Tr4= ([W]1) y = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, z, α, y Tr5= ([W′]1)

πFFLONK =

(
[c1]1, [c2]1, [W]1, [W′]1,

q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0

)

The VFFLONK Verifier Simplified

Re-computes the FS challenges, [D]1 and the meaningful scalar ms and verifies the

pairing equation: e([D]1 − ms · [1]1, [1]2)
?
= e([W′]1, [x]2).

11 / 18



Fiat-Shamir Array Inputs Not Transcribed - Context
FFLONK: a variant of PLONK SNARK having the most efficient verifier at the
expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

The PFFLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, PI, [c0]1, [c1]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [c2]1 z = (hash(Tr1, Tr2))24
3 β, γ, z Tr3= (q̄L, . . . , t̄0) α = hash(Tr1, Tr2, Tr3)
4 β, γ, z, α Tr4= ([W]1) y = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, z, α, y Tr5= ([W′]1)

πFFLONK =

(
[c1]1, [c2]1, [W]1, [W′]1,

q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0

)
The VFFLONK Verifier Simplified

Re-computes the FS challenges, [D]1 and the meaningful scalar ms and verifies the

pairing equation: e([D]1 − ms · [1]1, [1]2)
?
= e([W′]1, [x]2).

11 / 18



Fiat-Shamir Array Inputs Not Transcribed - Context
FFLONK: a variant of PLONK SNARK having the most efficient verifier at the
expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

The PFFLONK Prover Simplified

R. In FS Chall. Transcript Out FS Chall.
1 ∅ Tr1= (pp, PI, [c0]1, [c1]1) β = hash(Tr1, 0)

γ = hash(Tr1, 1)
2 β, γ Tr2= [c2]1 z = (hash(Tr1, Tr2))24
3 β, γ, z Tr3= (q̄L, . . . , t̄0) α = hash(Tr1, Tr2, Tr3)
4 β, γ, z, α Tr4= ([W]1) y = hash(Tr1, Tr2, Tr3, Tr4)
5 β, γ, z, α, y Tr5= ([W′]1)

πFFLONK =

(
[c1]1, [c2]1, [W]1, [W′]1,

q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0

)
The VFFLONK Verifier Simplified

Re-computes the FS challenges, [D]1 and the meaningful scalar ms and verifies the
pairing equation: e([D]1 − ms · [1]1, [1]2)

?
= e([W′]1, [x]2).

What if a deviating V′
FFLONK omits checking the length of evaluations array Tr3?

12 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 1–3
Can VFFLONK Safely Omit Checking Length of Evaluations Array?
Assume V′

FFLONK is identical to VFFLONK but it does not check the length of the
evaluations array. Can P′

FFLONK set the evaluations array to an empty one?

FAINT: Malicious P ′
FFLONK Steps 1–3

1 Simulating a version of SHPLONK* to a public polynomial* and two freely
chosen polynomials plus an empty array for evaluations, P′

FFLONK produces
[c1]1, [c2]1, [W]1, [W′]1, β, γ, z, α, y verifying the respective pairing check.

2 P′
FFLONK chooses freely all public inputs and proof components except for the

scalars representing polynomial evaluations, preparing to produce false proof:

π′
FFLONK =


[c1]1 , [c2]1 , [W]1 , [W′]1 ,

q̄L , q̄R , q̄O , q̄M , ¯qconst , S̄σ1 , S̄σ2 , S̄σ3 ,

ā , b̄ , c̄ , z̄ , z̄ω , t̄1 , t̄2 , t̄1ω , t̄2ω , t̄0


3 Following honest VFFLONK’s computation and using the values obtained in

Step 1 above, P′
FFLONK computes a scalar ms involved in the final check of

V′
FFLONK.

13 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 1–3
Can VFFLONK Safely Omit Checking Length of Evaluations Array?
Assume V′

FFLONK is identical to VFFLONK but it does not check the length of the
evaluations array. Can P′

FFLONK set the evaluations array to an empty one?

FAINT: Malicious P ′
FFLONK Steps 1–3

1 Simulating a version of SHPLONK* to a public polynomial* and two freely
chosen polynomials plus an empty array for evaluations, P′

FFLONK produces
[c1]1, [c2]1, [W]1, [W′]1, β, γ, z, α, y verifying the respective pairing check.

2 P′
FFLONK chooses freely all public inputs and proof components except for the

scalars representing polynomial evaluations, preparing to produce false proof:

π′
FFLONK =


[c1]1 , [c2]1 , [W]1 , [W′]1 ,

q̄L , q̄R , q̄O , q̄M , ¯qconst , S̄σ1 , S̄σ2 , S̄σ3 ,

ā , b̄ , c̄ , z̄ , z̄ω , t̄1 , t̄2 , t̄1ω , t̄2ω , t̄0


3 Following honest VFFLONK’s computation and using the values obtained in

Step 1 above, P′
FFLONK computes a scalar ms involved in the final check of

V′
FFLONK.

13 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 1–3
Can VFFLONK Safely Omit Checking Length of Evaluations Array?
Assume V′

FFLONK is identical to VFFLONK but it does not check the length of the
evaluations array. Can P′

FFLONK set the evaluations array to an empty one?

FAINT: Malicious P ′
FFLONK Steps 1–3

1 Simulating a version of SHPLONK* to a public polynomial* and two freely
chosen polynomials plus an empty array for evaluations, P′

FFLONK produces
[c1]1, [c2]1, [W]1, [W′]1, β, γ, z, α, y verifying the respective pairing check.

2 P′
FFLONK chooses freely all public inputs and proof components except for the

scalars representing polynomial evaluations, preparing to produce false proof:

π′
FFLONK =


[c1]1 , [c2]1 , [W]1 , [W′]1 ,

q̄L , q̄R , q̄O , q̄M , ¯qconst , S̄σ1 , S̄σ2 , S̄σ3 ,

ā , b̄ , c̄ , z̄ , z̄ω , t̄1 , t̄2 , t̄1ω , t̄2ω , t̄0



3 Following honest VFFLONK’s computation and using the values obtained in
Step 1 above, P′

FFLONK computes a scalar ms involved in the final check of
V′

FFLONK.

13 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 1–3
Can VFFLONK Safely Omit Checking Length of Evaluations Array?
Assume V′

FFLONK is identical to VFFLONK but it does not check the length of the
evaluations array. Can P′

FFLONK set the evaluations array to an empty one?

FAINT: Malicious P ′
FFLONK Steps 1–3

1 Simulating a version of SHPLONK* to a public polynomial* and two freely
chosen polynomials plus an empty array for evaluations, P′

FFLONK produces
[c1]1, [c2]1, [W]1, [W′]1, β, γ, z, α, y verifying the respective pairing check.

2 P′
FFLONK chooses freely all public inputs and proof components except for the

scalars representing polynomial evaluations, preparing to produce false proof:

π′
FFLONK =


[c1]1 , [c2]1 , [W]1 , [W′]1 ,

q̄L , q̄R , q̄O , q̄M , ¯qconst , S̄σ1 , S̄σ2 , S̄σ3 ,

ā , b̄ , c̄ , z̄ , z̄ω , t̄1 , t̄2 , t̄1ω , t̄2ω , t̄0


3 Following honest VFFLONK’s computation and using the values obtained in

Step 1 above, P′
FFLONK computes a scalar ms involved in the final check of

V′
FFLONK.

13 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 4–6

FAINT: Malicious P ′
PLONK Steps 4–6

4 P′
FFLONK solves for the vector of scalars

(q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0)

verifying the system of constraints
t̄0 · ZH(z) = q̄Lā + q̄Rb̄ + q̄Oc̄ + q̄Māb̄ + q̄C + PI(z) (1)

t̄1 · ZH(z) = L1(z)(̄z − 1) (2)

t̄2 · ZH(z) =
[
(ā + βz + γ)(b̄ + k1βz + γ)(̄c + k2βz + γ)̄z

−(ā + βS̄σ1 + γ)(b̄ + βS̄σ2 + γ)(̄c + βS̄σ3 + γ)̄zω
]

(3)

in addition to a constraint defining ms (4).
Note: β, γ, z have already been set and ZH(X), L1(X) are public.

5 P′
FFLONK fills in the above computed evaluations and completes π′

FFLONK.
6 Deviating V′

FFLONK accepts false proof π′
FFLONK as valid with probability 1!

14 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 4–6

FAINT: Malicious P ′
PLONK Steps 4–6

4 P′
FFLONK solves for the vector of scalars

(q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0)

verifying the system of constraints
t̄0 · ZH(z) = q̄Lā + q̄Rb̄ + q̄Oc̄ + q̄Māb̄ + q̄C + PI(z) (1)

t̄1 · ZH(z) = L1(z)(̄z − 1) (2)

t̄2 · ZH(z) =
[
(ā + βz + γ)(b̄ + k1βz + γ)(̄c + k2βz + γ)̄z

−(ā + βS̄σ1 + γ)(b̄ + βS̄σ2 + γ)(̄c + βS̄σ3 + γ)̄zω
]

(3)

in addition to a constraint defining ms (4).
Note: β, γ, z have already been set and ZH(X), L1(X) are public.

5 P′
FFLONK fills in the above computed evaluations and completes π′

FFLONK.

6 Deviating V′
FFLONK accepts false proof π′

FFLONK as valid with probability 1!

14 / 18



Fiat-Shamir Array Inputs Not Transcribed - Steps 4–6

FAINT: Malicious P ′
PLONK Steps 4–6

4 P′
FFLONK solves for the vector of scalars

(q̄L, q̄R, q̄O, q̄M, ¯qconst, S̄σ1 , S̄σ2 , S̄σ3 , ā, b̄, c̄, z̄, z̄ω, t̄1, t̄2, t̄1ω, t̄2ω, t̄0)

verifying the system of constraints
t̄0 · ZH(z) = q̄Lā + q̄Rb̄ + q̄Oc̄ + q̄Māb̄ + q̄C + PI(z) (1)

t̄1 · ZH(z) = L1(z)(̄z − 1) (2)

t̄2 · ZH(z) =
[
(ā + βz + γ)(b̄ + k1βz + γ)(̄c + k2βz + γ)̄z

−(ā + βS̄σ1 + γ)(b̄ + βS̄σ2 + γ)(̄c + βS̄σ3 + γ)̄zω
]

(3)

in addition to a constraint defining ms (4).
Note: β, γ, z have already been set and ZH(X), L1(X) are public.

5 P′
FFLONK fills in the above computed evaluations and completes π′

FFLONK.
6 Deviating V′

FFLONK accepts false proof π′
FFLONK as valid with probability 1!

14 / 18



Implications
Let P ′ be a malicious SNARK prover interacting with a faulty verifier
V as described above. Then P ′ can set itself as the owner of all the
assets by changing the Merkle root (part of the PI) and steal all user
funds.

Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

15 / 18

https://vitalik.eth.limo/general/2021/01/05/rollup.html


Implications
Let P ′ be a malicious SNARK prover interacting with a faulty verifier
V as described above. Then P ′ can set itself as the owner of all the
assets by changing the Merkle root (part of the PI) and steal all user
funds.

Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

15 / 18

https://vitalik.eth.limo/general/2021/01/05/rollup.html


Attack on Statistical Zero-Knowledge

What Is ZK, Again? - The Intuition
An honest prover convinces any curious verifier of the validity of a statement on a
secret witness, without disclosing even one bit of the witness.

What If the Witness Is a Polynomial a(X) in a PCS?
Blind a(X) with blind(X), where deg(blind(X)) ≥ the number of opening points
for the commitment to a(X). Ensures statistical ZK.

What If the Witness is a Vector of Polynomials (in a SNARK)?
Blind each polynomial as before. Are we then done?
For some SNARKs and efficiency considerations, other polynomials need blinding.

16 / 18



Attack on Statistical Zero-Knowledge

What Is ZK, Again? - The Intuition
An honest prover convinces any curious verifier of the validity of a statement on a
secret witness, without disclosing even one bit of the witness.

What If the Witness Is a Polynomial a(X) in a PCS?
Blind a(X) with blind(X), where deg(blind(X)) ≥ the number of opening points
for the commitment to a(X). Ensures statistical ZK.

What If the Witness is a Vector of Polynomials (in a SNARK)?
Blind each polynomial as before. Are we then done?
For some SNARKs and efficiency considerations, other polynomials need blinding.

16 / 18



Attack on Statistical Zero-Knowledge

What Is ZK, Again? - The Intuition
An honest prover convinces any curious verifier of the validity of a statement on a
secret witness, without disclosing even one bit of the witness.

What If the Witness Is a Polynomial a(X) in a PCS?
Blind a(X) with blind(X), where deg(blind(X)) ≥ the number of opening points
for the commitment to a(X). Ensures statistical ZK.

What If the Witness is a Vector of Polynomials (in a SNARK)?
Blind each polynomial as before. Are we then done?
For some SNARKs and efficiency considerations, other polynomials need blinding.

16 / 18



Attack on Statistical Zero-Knowledge (cont.)

Attack Example: Missing Blinding of Shards in PLONK Prover
PLONK prover Round 3, quotient polynomial:
t(X) = tlo(X) + Xn+2 · tmid(X) + X2n+4 · thi(X).
Missing blinding:

t′lo = tlo(X) + ρ1 · Xn+2

t′mid(X) = tmid(X) − ρ1 + ρ2 · Xn+2

t′hi(X) = thi(X) − ρ2,

where ρ1, ρ2 are random coefficients in Fp.

Attack on statistical ZK: Marek Sefranek, How (Not) to Simulate PLONK,
SCN 2024.

17 / 18



Conclusions

On the Soundness Vulnerabilities
We introduced LCA and FAINT, two new types of soundness attacks on specific
incorrect implementations of the FS transform for KZG-based SNARKs.

LCA exploits that the last FS transform challenge is incorrectly computed as
independent from some KZG-based SNARK proof components.
FAINT exploits the fact the length of certain proof components is unchecked.

On the Zero-Knowledge Vulnerability
We highlighted a subtle attack on zero-knowledge encountered in a SNARK
implementation.

Mind your blindings and your Fiat-Shamir-s!

Thank you!

18 / 18


