Exploiting Vulnerable Implementations of ZK-based Cryptographic Schemes Used in the Ethereum Ecosystem

Oana Ciobotaru<sup>1</sup> Maxim Peter<sup>2</sup> Vesselin Velichkov<sup>2</sup> Nikesh Nazareth<sup>2</sup> Sam Wong<sup>2</sup>

 $^{1}$ Pi Squared

<sup>2</sup>OpenZeppelin

Real World Crypto Symposium Sofia, March 26-28, 2025

# (Incomplete) History of Vulnerabilities in ZK Schemes

#### Theoretical Attacks with Implications in Practice

- Zcash counterfeiting vulnerability [G19].
- The lack of security for the Fiat-Shamir transform applied to the GKR protocol and hash function circuits [KRS25].

### Vulnerabilities Encountered in Practice

- Attacks on insecure implementation of the Fiat-Shamir transform (e.g., [BPW12], [HLPT20], [DMWG23]).
- Attack on a Nova folding scheme implementation [NBS23].

## Interactive vs. Non-interactive Arguments



#### The Fiat-Shamir (FS) Transform

- By default, computing proof/argument π is an interactive process between the prover *P* and the verifier *V*.
- The FS transform turns that into a non-interactive process  $(\mathcal{P}_n, \mathcal{V}_n)$  via an idealised random oracle model (ROM).
- In practice,  $\mathcal{P}_n$  and  $\mathcal{V}_n$  independently compute challenges as the hash of the computation transcript up to that point.

# History of Attacks on the Fiat-Shamir Transform

#### Theoretical Attacks

• (Contrived) attacks on cryptographic primitives secure in the ROM but insecure when ROM is instantiated ([Bar01], [CK03], [CGH04], [BBH+19]).

#### Theoretical Attacks with Implications in Practice

• Proven lack of *adaptive soundness* for the FS transform applied to the GKR15 protocol and certain circuits arithmetising hash functions [KRS25].

#### Vulnerabilities Encountered in Practice

• Lack of adaptive soundness for FS transform implementations if the public input is omitted from the transcript (e.g., [BPW12], [HLPT20], [DMWG23]).

# History of Attacks on the Fiat-Shamir Transform

#### Theoretical Attacks

• (Contrived) attacks on cryptographic primitives secure in the ROM but insecure when ROM is instantiated ([Bar01], [CK03], [CGH04], [BBH+19]).

#### Theoretical Attacks with Implications in Practice

• Proven lack of *adaptive soundness* for the FS transform applied to the GKR15 protocol and certain circuits arithmetising hash functions [KRS25].

#### Vulnerabilities Encountered in Practice

• Lack of adaptive soundness for FS transform implementations if the public input is omitted from the transcript (e.g., [BPW12], [HLPT20], [DMWG23]).

Assume a verifier omits from the transcript components different from the public input. Are attacks still possible?

• Setting: Scaling Ethereum

- A New Type of Adaptive Soundness Attack on Vulnerable FS Transform Implementations
  - First Attack: The Last Challenge Attack (LCA)
  - Second Attack: Fiat-Shamir Array Inputs Not Transcribed (FAINT)
  - Implications
- Subtle Attack on Statistical Zero-Knowledge
- Onclusions

# Setting: Scaling Ethereum

- L2 ZK-Rollups execute transactions off-chain.
- (SNARK) prover  $\mathcal{P}_n$  provides a succinct ZK argument  $\pi$  on L1.
- $\pi$  testifies that transactions were executed correctly.
- (SNARK) verifier  $\mathcal{V}_n$  verifies on L1 the correctness of  $\pi$ .
- The state of L2 on L1 (and the state of L1) are updated accordingly.



Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (*adaptive soundness attack*), then:

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (adaptive soundness attack), then:

### $\mathcal{P}'_n$ Mounts a 6-Steps Attack Against $\mathcal{V}'_n$ :

P'\_n simulates a version of the pairing-based PCS underlying the SNARK. All
 inputs to the PCS are chosen by P'\_n.

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (adaptive soundness attack), then:

- P'\_n simulates a version of the pairing-based PCS underlying the SNARK. All
   inputs to the PCS are chosen by P'\_n.
- ② *P*'<sub>n</sub> chooses freely all components of proof π' apart from those omitted by *V*'<sub>n</sub> in the transcript (i.e., *V*'<sub>n</sub>'s degrees of freedom).

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (*adaptive soundness attack*), then:

- P'<sub>n</sub> simulates a version of the pairing-based PCS underlying the SNARK. All inputs to the PCS are chosen by P'<sub>n</sub>.
- ② *P*'<sub>n</sub> chooses freely all components of proof π' apart from those omitted by *V*'<sub>n</sub> in the transcript (i.e., *V*'<sub>n</sub>'s degrees of freedom).
- 3 Using x' and the above values,  $\mathcal{P}'_n$  simulates<sup>\*</sup>  $\mathcal{P}_n$  and instantiates the system of constraints with  $\mathcal{V}'_n$  degrees of freedom as the only unknowns.

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (*adaptive soundness attack*), then:

- P'<sub>n</sub> simulates a version of the pairing-based PCS underlying the SNARK. All inputs to the PCS are chosen by P'<sub>n</sub>.
- 2 *P*'<sub>n</sub> chooses freely all components of proof π' apart from those omitted by *V*'<sub>n</sub> in the transcript (i.e., *V*'<sub>n</sub>'s degrees of freedom).
- 3 Using x' and the above values,  $\mathcal{P}'_n$  simulates<sup>\*</sup>  $\mathcal{P}_n$  and instantiates the system of constraints with  $\mathcal{V}'_n$  degrees of freedom as the only unknowns.
- ( )  $\mathcal{P}'_n$  solves the above system, if feasible.

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (*adaptive soundness attack*), then:

- P'<sub>n</sub> simulates a version of the pairing-based PCS underlying the SNARK. All inputs to the PCS are chosen by P'<sub>n</sub>.
- ② *P*'<sub>n</sub> chooses freely all components of proof π' apart from those omitted by *V*'<sub>n</sub> in the transcript (i.e., *V*'<sub>n</sub>'s degrees of freedom).
- 3 Using x' and the above values,  $\mathcal{P}'_n$  simulates<sup>\*</sup>  $\mathcal{P}_n$  and instantiates the system of constraints with  $\mathcal{V}'_n$  degrees of freedom as the only unknowns.
- ( )  $\mathcal{P}'_n$  solves the above system, if feasible.
- **(**)  $\mathcal{P}'_n$  fills in the remaining components of  $\pi'$  using a solution to the system.

Assume deviating  $\mathcal{V}'_n$  omits hashing a transcript component other than the public input. Malicious  $\mathcal{P}'_n$  chooses public input x' (*adaptive soundness attack*), then:

- P'<sub>n</sub> simulates a version of the pairing-based PCS underlying the SNARK. All inputs to the PCS are chosen by P'<sub>n</sub>.
- ② *P*'<sub>n</sub> chooses freely all components of proof π' apart from those omitted by *V*'<sub>n</sub> in the transcript (i.e., *V*'<sub>n</sub>'s degrees of freedom).
- 3 Using x' and the above values,  $\mathcal{P}'_n$  simulates<sup>\*</sup>  $\mathcal{P}_n$  and instantiates the system of constraints with  $\mathcal{V}'_n$  degrees of freedom as the only unknowns.
- ( )  $\mathcal{P}'_n$  solves the above system, if feasible.
- **(**)  $\mathcal{P}'_n$  fills in the remaining components of  $\pi'$  using a solution to the system.
- **(**)  $\mathcal{V}'_n$  accepts  $\pi'$  as valid with probability **1**.

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

### The KZG-based $\mathcal{P}_{PLONK}$ Prover Simplified

| R. | In FS Chall. | Transcript |
|----|--------------|------------|
|----|--------------|------------|

Out FS Chall.

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| R. | In FS Chall. | Transcript                         | Out FS Chall.                                                                         |
|----|--------------|------------------------------------|---------------------------------------------------------------------------------------|
| 1  | Ø            | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$ | $egin{array}{l} eta = 	ext{hash}(Tr_1, 0) \ \gamma = 	ext{hash}(Tr_1, 1) \end{array}$ |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| R. | In FS Chall.  | Transcript                                  | Out FS Chall.                                                                                                                                 |
|----|---------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Ø             | $\mathbf{Tr_1} = (pp, [a]_1, [b]_1, [c]_1)$ | $\beta = \operatorname{hash}(Tr_1, 0)$                                                                                                        |
| 2  | $eta, \gamma$ | $Tr_2 = [z]_1$                              | $egin{array}{l} eta = 	ext{hash}(	ext{Tr}_1, 0) \ \gamma = 	ext{hash}(	ext{Tr}_1, 1) \ lpha = 	ext{hash}(	ext{Tr}_1, 	ext{Tr}_2) \end{array}$ |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| _  |                                                          |                                                                                                                            |                                                  |
|----|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| R. | In FS Chall.                                             | Transcript                                                                                                                 | Out FS Chall.                                    |
| 1  | Ø                                                        | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$                                                                                         | $\beta = \operatorname{hash}(Tr_1, 0)$           |
|    |                                                          | $\mathbf{Tr_1} = (pp, [a]_1, [b]_1, [c]_1)$ $\mathbf{Tr_2} = [z]_1$ $\mathbf{Tr_3} = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$ | $\gamma = \operatorname{hash}(Tr_1, 1)$          |
| 2  | $egin{array}{c} eta,\gamma\ eta,\gamma,lpha \end{array}$ | $Tr_2 = [z]_1$                                                                                                             | $\alpha = \operatorname{hash}(Tr_1, Tr_2)$       |
| 3  | $eta,\gamma,lpha$                                        | $Tr_3 = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$                                                                              | $\mathfrak{z} = \mathrm{hash}(Tr_1, Tr_2, Tr_3)$ |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| R. | In FS Chall.                   | Transcript                                                                                             | Out FS Chall.                                                                                          |
|----|--------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1  | Ø                              | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$                                                                     | $\beta = \operatorname{hash}(Tr_1, 0)$                                                                 |
| 2  | $eta,\gamma$                   | $\mathbf{Tr_2} = [z]_1$                                                                                | $ \begin{array}{l} \gamma = \mathrm{hash}(Tr_1, 1) \\ \alpha = \mathrm{hash}(Tr_1, Tr_2) \end{array} $ |
| 3  | $eta,\gamma,lpha$              | $Tr_3 = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$                                                          | $\mathfrak{z} = \mathrm{hash}(Tr_1, Tr_2, Tr_3)$                                                       |
| 4  | $eta,\gamma,lpha,\mathfrak{z}$ | $Tr_4 = (\overline{a}, \overline{b}, \overline{c}, S_{\sigma 1}, S_{\sigma 2}, \overline{z}_{\omega})$ | $v = hash(Tr_1, Tr_2, Tr_3, Tr_4)$                                                                     |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| R. | In FS Chall.                                                               | Transcript                                                                                                                                                     | Out FS Chall.                                                                                                       |
|----|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1  | Ø                                                                          | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$                                                                                                                             | $egin{array}{l} eta = 	ext{hash}(Tr_1, 0) \ \gamma = 	ext{hash}(Tr_1, 1) \end{array}$                               |
| 2  | $eta, \gamma$                                                              | $Tr_2 = [z]_1$                                                                                                                                                 | $\alpha = \operatorname{hash}(Tr_1, Tr_2)$                                                                          |
| 4  | $egin{array}{l} eta,\gamma,lpha\ eta,\gamma,lpha,\mathfrak{z} \end{array}$ | $\mathbf{Tr_3} = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$ $\mathbf{Tr_4} = (\bar{a}, \bar{b}, \bar{c}, \bar{S}_{\sigma 1}, \bar{S}_{\sigma 2}, \bar{z}_{\omega})$ | $\mathfrak{z} = \operatorname{hash}(Tr_1, Tr_2, Tr_3)$ $\mathfrak{v} = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4)$ |
| 5  | $eta,\gamma,lpha,\mathfrak{z},v$                                           | $\mathbf{Tr}_{5} = ([W_{\mathfrak{z}}]_1, [W_{\mathfrak{z}\omega}]_1,)$                                                                                        | $u = hash(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5)$                                                                            |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| R.                                                                                                                                                                                                                                                           | In FS Chall.                                                                              | Transcript                                                                                     | Out FS Chall.                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                            | Ø                                                                                         | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$                                                             | $\beta = \operatorname{hash}(Tr_1, 0)$                     |
|                                                                                                                                                                                                                                                              |                                                                                           |                                                                                                | $\gamma = \operatorname{hash}(Tr_1, 1)$                    |
| 2                                                                                                                                                                                                                                                            | $eta,\gamma$                                                                              | $Tr_2 = [z]_1$                                                                                 | $\alpha = \operatorname{hash}(Tr_1, Tr_2)$                 |
| 3                                                                                                                                                                                                                                                            | $egin{array}{l} eta,\gamma\ eta,\gamma,lpha \end{array}$                                  | $Tr_3 = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$                                                  | $\mathfrak{z} = \operatorname{hash}(Tr_1, Tr_2, Tr_3)$     |
| 4                                                                                                                                                                                                                                                            | $eta,\gamma,lpha,\mathfrak{z}$                                                            | $Tr_4 = (\bar{a}, \bar{b}, \bar{c}, \bar{S}_{\sigma 1}, \bar{S}_{\sigma 2}, \bar{z}_{\omega})$ | $\mathbf{v} = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4)$ |
| 5                                                                                                                                                                                                                                                            | $egin{array}{l} eta,\gamma,lpha,\mathfrak{z}\ eta,\gamma,lpha,\mathfrak{z},v \end{array}$ | $Tr_5 = ([W_{\mathfrak{z}}]_1, [W_{\mathfrak{z}\omega}]_1,)$                                   | $u = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5)$    |
| $Proof \pi_{PLONK} = \begin{pmatrix} [a]_1, [b]_1, [c]_1, [z]_1, [t_{lo}]_1, [t_{lii}]_1, [t_{hii}]_1, [W_3]_1, [W_3]_1, \\ \overline{a}, \overline{b}, \overline{c}, \overline{S}_{\sigma 1}, \overline{S}_{\sigma 2}, \overline{z}_{\omega} \end{pmatrix}$ |                                                                                           |                                                                                                |                                                            |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

| R.                                                                                                                                                                                                                                                                                                 | In FS Chall.                     | Transcript                                                                                     | Out FS Chall.                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                  | Ø                                | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$                                                             | $\beta = \operatorname{hash}(Tr_1, 0)$                     |
|                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                | $\gamma = \operatorname{hash}(Tr_1, 1)$                    |
| 2                                                                                                                                                                                                                                                                                                  | $eta,\gamma$                     | $Tr_2 = [z]_1$                                                                                 | $\alpha = \operatorname{hash}(Tr_1, Tr_2)$                 |
| 3                                                                                                                                                                                                                                                                                                  | $eta,\gamma,lpha$                | $Tr_3 = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$                                                  | $\mathfrak{z} = \operatorname{hash}(Tr_1, Tr_2, Tr_3)$     |
| 4                                                                                                                                                                                                                                                                                                  | $eta,\gamma,lpha,\mathfrak{z}$   | $Tr_4 = (\bar{a}, \bar{b}, \bar{c}, \bar{S}_{\sigma 1}, \bar{S}_{\sigma 2}, \bar{z}_{\omega})$ | $\mathbf{v} = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4)$ |
| 5                                                                                                                                                                                                                                                                                                  | $eta,\gamma,lpha,\mathfrak{z},v$ | $Tr_5 = ([W_{\mathfrak{z}}]_1, [W_{\mathfrak{z}\omega}]_1,)$                                   | $u = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5)$    |
| $\text{Proof } \pi_{PLONK} = \begin{pmatrix} [a]_1, [b]_1, [c]_1, [z]_1, [t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1, [W_{\mathfrak{z}}]_1, [W_{\mathfrak{z}\omega}]_1, \\ \overline{a}, \overline{b}, \overline{c}, \overline{S}_{\sigma 1}, \overline{S}_{\sigma 2}, \overline{z}_{\omega} \end{pmatrix}$ |                                  |                                                                                                |                                                            |
|                                                                                                                                                                                                                                                                                                    | Warning                          | ! The last challenge $u$ is not use                                                            | ed at all by $\mathcal{P}_{PLONK}$ .                       |

### Short Background

Secure pairing function (e): bilinear, non-degenerate. First argument (e.g.,  $[a]_1$ ): EC point in  $\mathbb{F}_p \times \mathbb{F}_p$ . Second argument (e.g.,  $[b]_2$ ) in  $\mathbb{F}_{p^k} \times \mathbb{F}_{p^k}$ . a, b scalars in  $\mathbb{F}_r$ .

#### The KZG-based $\mathcal{P}_{PLONK}$ Prover Simplified

| R.                                                                                                                                                                                                                                                                                                 | In FS Chall.                                       | Transcript                                                                                                                            | Out FS Chall.                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                  | Ø                                                  | $Tr_1 = (pp, [a]_1, [b]_1, [c]_1)$                                                                                                    | $\beta = \operatorname{hash}(Tr_1, 0)$                     |
|                                                                                                                                                                                                                                                                                                    |                                                    |                                                                                                                                       | $\gamma = \operatorname{hash}(Tr_1, 1)$                    |
| 2                                                                                                                                                                                                                                                                                                  | $eta, \gamma$                                      | $Tr_2 = [z]_1$                                                                                                                        | $\alpha = \operatorname{hash}(Tr_1, Tr_2)$                 |
| 3                                                                                                                                                                                                                                                                                                  | $eta,\gamma,lpha$                                  | $Tr_3 = ([t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1)$                                                                                         | $\mathfrak{z} = \mathrm{hash}(Tr_1, Tr_2, Tr_3)$           |
| 4                                                                                                                                                                                                                                                                                                  | $eta,\gamma,lpha,\mathfrak{z}$                     | $\mathbf{Tr_4} = (\overline{a}, \overline{b}, \overline{c}, \overline{S}_{\sigma 1}, \overline{S}_{\sigma 2}, \overline{z}_{\omega})$ | $\mathbf{v} = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4)$ |
| 5                                                                                                                                                                                                                                                                                                  | $egin{array}{llllllllllllllllllllllllllllllllllll$ | $Tr_5 = ([W_{\mathfrak{z}}]_1, [W_{\mathfrak{z}\omega}]_1,)$                                                                          | $u = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5)$    |
| $\text{Proof } \pi_{PLONK} = \begin{pmatrix} [a]_1, [b]_1, [c]_1, [z]_1, [t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1, [W_{\mathfrak{z}}]_1, [W_{\mathfrak{z}\omega}]_1, \\ \overline{a}, \overline{b}, \overline{c}, \overline{S}_{\sigma 1}, \overline{S}_{\sigma 2}, \overline{z}_{\omega} \end{pmatrix}$ |                                                    |                                                                                                                                       |                                                            |
|                                                                                                                                                                                                                                                                                                    | Warning                                            | ! The last challenge $u$ is not use                                                                                                   | ed at all by $\mathcal{P}_{PLONK}$ .                       |

#### The KZG-based $\mathcal{V}_{PLONK}$ Verifier Simplified

(Mainly) re-computes the FS challenges,  $[E]_1$ ,  $[F]_1$ ; verifies the pairing equation:  $e([W_j]_1 + u \cdot [W_{j\omega}]_1, [x]_2) \stackrel{?}{=} e(j \cdot [W_j]_1 + u_j\omega \cdot [W_{j\omega}]_1 + [F]_1 - [E]_1, [1]_2).$ 

 $e([W_{\mathfrak{z}}]_1 + u \cdot [W_{\mathfrak{z}\omega}]_1, [\mathtt{x}]_2) \stackrel{?}{=} e(\mathfrak{z} \cdot [W_{\mathfrak{z}}]_1 + u\mathfrak{z}\omega \cdot [W_{\mathfrak{z}\omega}]_1 + [F]_1 - [E]_1, [1]_2)$ 

 $e([W_{\mathfrak{z}}]_1 + u \cdot [W_{\mathfrak{z}\omega}]_1, [x]_2) \stackrel{?}{=} e(\mathfrak{z} \cdot [W_{\mathfrak{z}}]_1 + u\mathfrak{z}\omega \cdot [W_{\mathfrak{z}\omega}]_1 + [F]_1 - [E]_1, [1]_2)$ 

#### Can $\mathcal{V}_{PLONK}$ be Made More Efficient?

 $\mathcal{V}_{PLONK}$  computes  $u = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5), Tr_5 = ([W_j]_1, [W_{j\omega}]_1).$ If  $\mathcal{V}_{PLONK}$  omits part of the full transcript for u, is soundness still preserved? Assume deviating  $\mathcal{V}'_{PLONK}$  does not include  $Tr_5$  in the transcript for u.

 $e([W_{\mathfrak{z}}]_1 + u \cdot [W_{\mathfrak{z}\omega}]_1, [x]_2) \stackrel{?}{=} e(\mathfrak{z} \cdot [W_{\mathfrak{z}}]_1 + u\mathfrak{z}\omega \cdot [W_{\mathfrak{z}\omega}]_1 + [F]_1 - [E]_1, [1]_2)$ 

#### Can $\mathcal{V}_{PLONK}$ be Made More Efficient?

 $\mathcal{V}_{PLONK}$  computes  $u = \text{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5), Tr_5 = ([W_j]_1, [W_j\omega]_1).$ If  $\mathcal{V}_{PLONK}$  omits part of the full transcript for u, is soundness still preserved? Assume deviating  $\mathcal{V}'_{PLONK}$  does not include  $Tr_5$  in the transcript for u.

### LCA: Malicious $\mathcal{P}'_{PLONK}$ Steps 1–3

Simulating a KZG commitment to a polynomial of its choice, \$\mathcal{P}'\_{PLONK}\$ produces \$A, B\$ s.t.: \$e(A, [x]\_2) = e(B, [1]\_2)\$.

 $e([W_{\mathfrak{z}}]_1 + u \cdot [W_{\mathfrak{z}\omega}]_1, [x]_2) \stackrel{?}{=} e(\mathfrak{z} \cdot [W_{\mathfrak{z}}]_1 + u\mathfrak{z}\omega \cdot [W_{\mathfrak{z}\omega}]_1 + [F]_1 - [E]_1, [1]_2)$ 

#### Can $\mathcal{V}_{PLONK}$ be Made More Efficient?

 $\mathcal{V}_{PLONK}$  computes  $u = \text{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5), Tr_5 = ([W_j]_1, [W_j\omega]_1).$ If  $\mathcal{V}_{PLONK}$  omits part of the full transcript for u, is soundness still preserved? Assume deviating  $\mathcal{V}'_{PLONK}$  does not include  $Tr_5$  in the transcript for u.

### LCA: Malicious $\mathcal{P}'_{PLONK}$ Steps 1–3

- Simulating a KZG commitment to a polynomial of its choice,  $\mathcal{P}'_{PLONK}$  produces A, B s.t.:  $e(A, [x]_2) = e(B, [1]_2)$ .
- P'<sub>PLONK</sub> chooses freely all public inputs and proof components except for
   [W<sub>j</sub>]<sub>1</sub>, [W<sub>jω</sub>]<sub>1</sub>, preparing to produce a false proof:

$$\pi'_{PLONK} = \begin{pmatrix} [a]_1, [b]_1, [c]_1, [z]_1, [t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1, \\ [W_3]_1, [W_3\omega]_1, [a, b, c, S_{\sigma 1}, S_{\sigma 2}, z_{\omega} \end{pmatrix}$$

 $e([W_{\mathfrak{z}}]_1 + u \cdot [W_{\mathfrak{z}\omega}]_1, [\mathfrak{z}]_2) \stackrel{?}{=} e(\mathfrak{z} \cdot [W_{\mathfrak{z}}]_1 + u\mathfrak{z}\omega \cdot [W_{\mathfrak{z}\omega}]_1 + [F]_1 - [E]_1, [1]_2)$ 

#### Can $\mathcal{V}_{PLONK}$ be Made More Efficient?

 $\mathcal{V}_{PLONK}$  computes  $u = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4, Tr_5), Tr_5 = ([W_j]_1, [W_{j\omega}]_1).$ If  $\mathcal{V}_{PLONK}$  omits part of the full transcript for u, is soundness still preserved? Assume deviating  $\mathcal{V}'_{PLONK}$  does not include  $Tr_5$  in the transcript for u.

### LCA: Malicious $\mathcal{P}'_{PLONK}$ Steps 1–3

- Simulating a KZG commitment to a polynomial of its choice, \$\mathcal{P}'\_{PLONK}\$ produces \$A, B\$ s.t.: \$e(A, [x]\_2) = e(B, [1]\_2)\$.
- P'<sub>PLONK</sub> chooses freely all public inputs and proof components except for
   [W<sub>j</sub>]<sub>1</sub>, [W<sub>jω</sub>]<sub>1</sub>, preparing to produce a false proof:

$$\pi'_{PLONK} = \begin{pmatrix} [a]_1, [b]_1, [c]_1, [z]_1, [t_{lo}]_1, [t_{mi}]_1, [t_{hi}]_1, \\ [W_3]_1, [W_3\omega]_1, [a, b, c, S_{\sigma 1}, S_{\sigma 2}, z_{\omega} \end{pmatrix}$$

**③** Following honest  $\mathcal{V}_{PLONK}$ 's computation and using the already chosen components in  $\pi'_{PLONK}$ ,  $\mathcal{P}'_{PLONK}$  computes  $[F]_1$ ,  $[E]_1$ .

### LCA: Malicious $\overline{\mathcal{P}'_{PLONK}}$ Steps 4–6

**9**  $\mathcal{P}'_{PLONK}$  uses A, B from Step 1 and exploits the independence between u and  $[W_{j}]_{1}$  and  $[W_{j\omega}]_{1}$  to solve a system of **2** linear equations with **2** unknowns

$$\begin{cases} X + uY = A \\ \mathfrak{z}X + u\mathfrak{z}\omega Y + C = B \end{cases}$$

with  $X = [W_{\mathfrak{z}}]_1$ ,  $Y = [W_{\mathfrak{z}\omega}]_1$  as unknowns and  $A, B, C, u, \mathfrak{z}, \omega$  as constants

$$\underbrace{e([\underbrace{W_{\mathfrak{z}}]_{1}}_{X} + u \cdot [\underbrace{W_{\mathfrak{z}}\omega]_{1}}_{Y}, [x]_{2}) \stackrel{?}{=} e(\mathfrak{z} \cdot [\underbrace{W_{\mathfrak{z}}]_{1}}_{X} + u\mathfrak{z}\omega \cdot [\underbrace{W_{\mathfrak{z}}\omega]_{1}}_{Y} + [F]_{1} - [E]_{1}, [1]_{2}).}_{B}$$

### LCA: Malicious $\overline{\mathcal{P}'_{PLONK}}$ Steps 4–6

**9**  $\mathcal{P}'_{PLONK}$  uses A, B from Step 1 and exploits the independence between u and  $[W_{j}]_{1}$  and  $[W_{j\omega}]_{1}$  to solve a system of **2** linear equations with **2** unknowns

$$\begin{cases} X + uY = A \\ \mathfrak{z}X + u\mathfrak{z}\omega Y + C = B \end{cases}$$

with  $X = [W_{\mathfrak{z}}]_1$ ,  $Y = [W_{\mathfrak{z}\omega}]_1$  as unknowns and  $A, B, C, u, \mathfrak{z}, \omega$  as constants

$$\underbrace{e([\underbrace{W_{\mathfrak{z}}]_{1}}_{X} + u \cdot [\underbrace{W_{\mathfrak{z}}\omega]_{1}}_{Y}, [x]_{2}) \stackrel{?}{=} e(\mathfrak{z} \cdot [\underbrace{W_{\mathfrak{z}}]_{1}}_{X} + u\mathfrak{z}\omega \cdot [\underbrace{W_{\mathfrak{z}}\omega]_{1}}_{Y} + [\underbrace{F]_{1} - [E]_{1}}_{E}, [1]_{2}).$$

 $\bigcirc \ \mathcal{P}'_{PLONK} \text{ fills in missing } X = \begin{bmatrix} W_{\mathfrak{z}} \end{bmatrix}_{\mathfrak{z}}, \ Y = \begin{bmatrix} W_{\mathfrak{z}\omega} \end{bmatrix}_{\mathfrak{z}} \text{ and completes } \pi'_{PLONK}.$ 

### LCA: Malicious $\overline{\mathcal{P}'_{PLONK}}$ Steps 4–6

**9**  $\mathcal{P}'_{PLONK}$  uses A, B from Step 1 and exploits the independence between u and  $[W_{j}]_{1}$  and  $[W_{j\omega}]_{1}$  to solve a system of **2** linear equations with **2** unknowns

$$\begin{cases} X + uY = A \\ \mathfrak{z}X + u\mathfrak{z}\omega Y + C = B \end{cases}$$

with  $X = [W_{\mathfrak{z}}]_1$ ,  $Y = [W_{\mathfrak{z}}\omega]_1$  as unknowns and  $A, B, C, u, \mathfrak{z}, \omega$  as constants

$$\underbrace{e([\underbrace{W_{\mathfrak{z}}]_{1}}_{X} + u \cdot [\underbrace{W_{\mathfrak{z}}\omega]_{1}}_{Y}, [x]_{2}) \stackrel{?}{=} e(\mathfrak{z} \cdot [\underbrace{W_{\mathfrak{z}}]_{1}}_{X} + u\mathfrak{z}\omega \cdot [\underbrace{W_{\mathfrak{z}}\omega]_{1}}_{Y} + [\underbrace{F]_{1} - [E]_{1}}_{P}, [1]_{2}).$$

\$\mathcal{P}'\_{PLONK}\$ fills in missing X = [W<sub>3</sub>]<sub>1</sub>, Y = [W<sub>3ω</sub>]<sub>1</sub> and completes π'<sub>PLONK</sub>.
 Deviating V'<sub>PLONK</sub> accepts false proof π'<sub>PLONK</sub> as valid with probability 1!

FFLONK: a variant of PLONK SNARK having the most efficient verifier at the expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

FFLONK: a variant of PLONK SNARK having the most efficient verifier at the expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

| The $\mathcal{P}_{FFLONK}$ | Prover | Simplified |
|----------------------------|--------|------------|
|----------------------------|--------|------------|

| R.                                    | In FS Chall.                                                                                                       | Transcript                              | Out FS Chall.                                           |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| 1                                     | Ø                                                                                                                  | $Tr_1 = (pp, PI, [c_0]_1, [c_1]_1)$     | $\beta = \operatorname{hash}(Tr_1, 0)$                  |
|                                       |                                                                                                                    |                                         | $\gamma = \text{hash}(Tr_1, 1)$                         |
| 2                                     | $eta,\gamma$                                                                                                       | $Tr_2 = [c_2]_1$                        | $\mathfrak{z} = (\operatorname{hash}(Tr_1, Tr_2))^{24}$ |
| 3                                     | $\beta, \gamma, \mathfrak{z}$                                                                                      | $Tr_3 = (\bar{q_L}, \ldots, \bar{t_0})$ | $\alpha = \operatorname{hash}(Tr_1, Tr_2, Tr_3)$        |
| 4                                     | $eta,\gamma,\mathfrak{z},lpha$                                                                                     | $Tr_4 = ([W]_1)$                        | $y = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4)$       |
| 5                                     | $egin{array}{c} eta,\gamma,\mathfrak{z},lpha\ eta,\gamma,\mathfrak{z},lpha,\gamma,\mathfrak{z},lpha,y \end{array}$ | $Tr_5 = ([W']_1)$                       |                                                         |
| $- ([c_1]_1, [c_2]_1, [W]_1, [W']_1,$ |                                                                                                                    |                                         |                                                         |

 $\pi_{FFLONK} = \left(\begin{array}{c} [c_{1]1}, [c_{2]1}, [w]_{1}, [w]_{1}, [w]_{1}, [w]_{1}, [w]_{1}, [w]_{1}, [w]_{1}, [v]_{1}, [v]_{1$ 

FFLONK: a variant of PLONK SNARK having the most efficient verifier at the expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

### The $\mathcal{P}_{FFLONK}$ Prover Simplified

| R.                                                                                                                                                                                                                                                                                                                                                          | In FS Chall.                                                                                                                                                       | Transcript                              | Out FS Chall.                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                           | Ø                                                                                                                                                                  | $Tr_1 = (pp, PI, [c_0]_1, [c_1]_1)$     | $\beta = \operatorname{hash}(Tr_1, 0)$                                                             |
| 2                                                                                                                                                                                                                                                                                                                                                           | $eta,\gamma$                                                                                                                                                       | $Tr_2 = [c_2]_1$                        | $\gamma = \operatorname{hash}(Tr_1, 1)$<br>$\mathfrak{z} = (\operatorname{hash}(Tr_1, Tr_2))^{24}$ |
| 3                                                                                                                                                                                                                                                                                                                                                           | $egin{array}{lll} eta,\gamma\ eta,\gamma,\mathfrak{z}\ eta,\gamma,\mathfrak{z},lpha\ eta,\gamma,\mathfrak{z},lpha\ eta,\gamma,\mathfrak{z},lpha,arphi \end{array}$ | $Tr_3 = (\bar{q_L}, \ldots, \bar{t_0})$ | $\alpha = \operatorname{hash}(Tr_1, Tr_2, Tr_3)$                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                           | $eta,\gamma,\mathfrak{z},lpha$                                                                                                                                     | $Tr_4 = ([W]_1)$                        | $y = \operatorname{hash}(Tr_1, Tr_2, Tr_3, Tr_4)$                                                  |
| 5                                                                                                                                                                                                                                                                                                                                                           | $eta,\gamma,\mathfrak{z},lpha,y$                                                                                                                                   | $Tr_5 = ([W]_1)$                        |                                                                                                    |
| $\pi_{FFLONK} = \begin{pmatrix} [c_1]_1, [c_2]_1, [W]_1, [W']_1, \\ \bar{q}_1, \bar{q}_2, \bar{q}_0, \bar{q}_0, \bar{q}_0, \bar{q}_{0,1}, \bar{s}_{\sigma_1}, \bar{s}_{\sigma_2}, \bar{s}_{\sigma_2}, \bar{s}_{\sigma_1}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t}_1, \bar{t}_2, \bar{t}_{1\omega}, \bar{t}_{2\omega}, \bar{t}_0 \end{pmatrix}$ |                                                                                                                                                                    |                                         |                                                                                                    |

### The $\mathcal{V}_{FFLONK}$ Verifier Simplified

Re-computes the FS challenges,  $[D]_1$  and the meaningful scalar  $\underline{ms}$  and verifies the pairing equation:  $e([D]_1 - \underline{ms} \cdot [1]_1, [1]_2) \xrightarrow{?} e([W']_1, [x]_2).$ 

FFLONK: a variant of PLONK SNARK having the most efficient verifier at the expense of increased proof length. Underlying PCS: KZG-based SHPLONK.

#### The $\mathcal{P}_{FFLONK}$ Prover Simplified R. In FS Chall. Transcript Out FS Chall. 1 Ø $Tr_1 = (pp, PI, [c_0]_1, [c_1]_1) \mid \beta = hash(Tr_1, 0)$ $\gamma = \operatorname{hash}(Tr_1, 1)$ $\mathfrak{z} = (\text{hash}(Tr_1, Tr_2))^{24}$ $\alpha = \operatorname{hash}(Tr_1, Tr_2, Tr_3)$ $y = hash(Tr_1, Tr_2, Tr_3, Tr_4)$ $\pi_{\textit{FFLONK}} = \left(\begin{array}{c} [c_1]_1, [c_2]_1, [W]_1, [W']_1, \\ \bar{q_L}, \bar{q_R}, \bar{q_O}, \bar{q_M}, \bar{q_{onst}}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t_1}, \bar{t_2}, \bar{t_1}_{\omega}, \bar{t_2}_{\omega}, \bar{t_0} \end{array}\right)$

#### The $\mathcal{V}_{FFLONK}$ Verifier Simplified

Re-computes the FS challenges,  $[D]_1$  and the meaningful scalar ms and verifies the pairing equation:  $e([D]_1 - ms \cdot [1]_1, [1]_2) \stackrel{?}{=} e([W']_1, [x]_2).$ 

What if a deviating  $\mathcal{V}'_{FFLONK}$  omits checking the length of evaluations array  $Tr_3$ ?
Can  $\mathcal{V}_{FFLONK}$  Safely Omit Checking Length of Evaluations Array?

Assume  $\mathcal{V}'_{FFLONK}$  is identical to  $\mathcal{V}_{FFLONK}$  but it does not check the length of the evaluations array. Can  $\mathcal{P}'_{FFLONK}$  set the evaluations array to an empty one?

Can  $\mathcal{V}_{FFLONK}$  Safely Omit Checking Length of Evaluations Array?

Assume  $\mathcal{V}'_{FFLONK}$  is identical to  $\mathcal{V}_{FFLONK}$  but it does not check the length of the evaluations array. Can  $\mathcal{P}'_{FFLONK}$  set the evaluations array to an empty one?

### FAINT: Malicious $\mathcal{P}'_{FFLONK}$ Steps 1–3

Simulating a version of SHPLONK\* to a public polynomial\* and two freely chosen polynomials plus an empty array for evaluations, *P*'<sub>FFLONK</sub> produces [c<sub>1</sub>]<sub>1</sub>, [c<sub>2</sub>]<sub>1</sub>, [W]<sub>1</sub>, [W']<sub>1</sub>, β, γ, *i*, α, y verifying the respective pairing check.

Can  $\mathcal{V}_{FFLONK}$  Safely Omit Checking Length of Evaluations Array?

Assume  $\mathcal{V}'_{FFLONK}$  is identical to  $\mathcal{V}_{FFLONK}$  but it does not check the length of the evaluations array. Can  $\mathcal{P}'_{FFLONK}$  set the evaluations array to an empty one?

### FAINT: Malicious $\mathcal{P}'_{FFLONK}$ Steps 1–3

- Simulating a version of SHPLONK\* to a public polynomial\* and two freely chosen polynomials plus an empty array for evaluations, *P*'<sub>FFLONK</sub> produces [c<sub>1</sub>]<sub>1</sub>, [c<sub>2</sub>]<sub>1</sub>, [W]<sub>1</sub>, [W']<sub>1</sub>, β, γ, β, α, y verifying the respective pairing check.
- **2**  $\mathcal{P}'_{FFLONK}$  chooses freely all public inputs and proof components except for the scalars representing polynomial evaluations, preparing to produce false proof:

$$\pi'_{FFLONK} = \begin{pmatrix} [c_1]_1, [c_2]_1, [W]_1, [W']_1, \\ \bar{q}_L, \bar{q}_R, \bar{q}_0, \bar{q}_M, \bar{q}_{coust}, \bar{s}_{\sigma_1}, \bar{s}_{\sigma_2}, \bar{s}_{\sigma_3}, \\ \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t}_1, \bar{t}_2, \bar{t}_{1\omega}, \bar{t}_{2\omega}, \bar{t}_0 \end{pmatrix}$$

Can  $\mathcal{V}_{FFLONK}$  Safely Omit Checking Length of Evaluations Array?

Assume  $\mathcal{V}'_{FFLONK}$  is identical to  $\mathcal{V}_{FFLONK}$  but it does not check the length of the evaluations array. Can  $\mathcal{P}'_{FFLONK}$  set the evaluations array to an empty one?

### FAINT: Malicious $\mathcal{P}'_{FFLONK}$ Steps 1–3

- Simulating a version of SHPLONK\* to a public polynomial\* and two freely chosen polynomials plus an empty array for evaluations, *P*'<sub>FFLONK</sub> produces [c<sub>1</sub>]<sub>1</sub>, [c<sub>2</sub>]<sub>1</sub>, [W]<sub>1</sub>, [W']<sub>1</sub>, β, γ, β, α, y verifying the respective pairing check.
- **2**  $\mathcal{P}'_{FFLONK}$  chooses freely all public inputs and proof components except for the scalars representing polynomial evaluations, preparing to produce false proof:

$$\pi'_{FFLONK} = \begin{pmatrix} [c_1]_1, [c_2]_1, [W]_1, [W']_1, \\ \bar{q}_L, \bar{q}_R, \bar{q}_0, \bar{q}_M, \bar{q}_{const}, \bar{s}_{\sigma_1}, \bar{s}_{\sigma_2}, \bar{s}_{\sigma_3}, \\ \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t}_1, \bar{t}_2, \bar{t}_{1\omega}, \bar{t}_{2\omega}, \bar{t}_0 \end{pmatrix}$$

<sup>(2)</sup> Following honest  $\mathcal{V}_{FFLONK}$ 's computation and using the values obtained in Step 1 above,  $\mathcal{P}'_{FFLONK}$  computes a scalar *ms* involved in the final check of  $\mathcal{V}'_{FFLONK}$ .

### FAINT: Malicious $\overline{\mathcal{P}'_{PLONK}}$ Steps 4–6

 $\textcircled{9} \hspace{0.1in} \mathcal{P}_{\textit{FFLONK}}' \hspace{0.1in} \text{solves for the vector of scalars}$ 

$$(\bar{q_L}, \bar{q_R}, \bar{q_0}, \bar{q_M}, \bar{q_{const}}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t_1}, \bar{t_2}, \bar{t_1}_{\omega}, \bar{t_2}_{\omega}, \bar{t_0})$$

verifying the system of constraints

$$\begin{cases} \bar{t_0} \cdot Z_H(\mathfrak{z}) = \bar{q_L}\bar{\mathfrak{a}} + \bar{q_R}\bar{\mathfrak{b}} + \bar{q_O}\bar{\mathfrak{c}} + \bar{q_M}\bar{\mathfrak{a}}\bar{\mathfrak{b}} + \bar{q_C} + PI(\mathfrak{z}) & (1) \\ \bar{t_1} \cdot Z_H(\mathfrak{z}) = L_1(\mathfrak{z})(\bar{\mathfrak{z}} - 1) & (2) \\ \bar{t_2} \cdot Z_H(\mathfrak{z}) = [(\bar{\mathfrak{a}} + \beta\mathfrak{z} + \gamma)(\bar{\mathfrak{b}} + k_1\beta\mathfrak{z} + \gamma)(\bar{\mathfrak{c}} + k_2\beta\mathfrak{z} + \gamma)\bar{\mathfrak{z}} \\ -(\bar{\mathfrak{a}} + \beta\bar{\mathfrak{S}}_{\sigma_1} + \gamma)(\bar{\mathfrak{b}} + \beta\bar{\mathfrak{S}}_{\sigma_2} + \gamma)(\bar{\mathfrak{c}} + \beta\bar{\mathfrak{S}}_{\sigma_3} + \gamma)\bar{\mathfrak{z}}_{\omega} ] \end{cases}$$
(3)

in addition to a constraint defining ms (4).

Note:  $\beta, \gamma, \mathfrak{z}$  have already been set and  $Z_H(X)$ ,  $L_1(X)$  are public.

### FAINT: Malicious $\overline{\mathcal{P}'_{PLONK}}$ Steps 4–6

 $\textcircled{9} \hspace{0.1in} \mathcal{P}_{\textit{FFLONK}}' \hspace{0.1in} \text{ solves for the vector of scalars}$ 

$$(\bar{q_L}, \bar{q_R}, \bar{q_0}, \bar{q_M}, \bar{q_{const}}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t_1}, \bar{t_2}, \bar{t_1}_{\omega}, \bar{t_2}_{\omega}, \bar{t_0})$$

verifying the system of constraints

$$\begin{aligned} & \left( \bar{t_0} \cdot Z_H(\mathfrak{z}) = \bar{q_L} \bar{\mathfrak{a}} + \bar{q_R} \bar{b} + \bar{q_O} \bar{c} + \bar{q_M} \bar{\mathfrak{a}} \bar{b} + \bar{q_C} + PI(\mathfrak{z}) \quad (1) \\ & \bar{t_1} \cdot Z_H(\mathfrak{z}) = L_1(\mathfrak{z})(\bar{z} - 1) \quad (2) \\ & \bar{t_2} \cdot Z_H(\mathfrak{z}) = \left[ (\bar{\mathfrak{a}} + \beta \mathfrak{z} + \gamma)(\bar{b} + k_1\beta \mathfrak{z} + \gamma)(\bar{c} + k_2\beta \mathfrak{z} + \gamma) \bar{z} \\ & - (\bar{\mathfrak{a}} + \beta \bar{S}_{\sigma_1} + \gamma)(\bar{b} + \beta \bar{S}_{\sigma_2} + \gamma)(\bar{c} + \beta \bar{S}_{\sigma_3} + \gamma) \bar{z}_{\omega} \right] \end{aligned}$$
(3)

in addition to a constraint defining ms (4).

Note:  $\beta, \gamma, \mathfrak{z}$  have already been set and  $Z_H(X)$ ,  $L_1(X)$  are public.

 $\bigcirc \mathcal{P}'_{FFLONK}$  fills in the above computed evaluations and completes  $\pi'_{FFLONK}$ .

### FAINT: Malicious $\mathcal{P}'_{PLONK}$ Steps 4–6

 $\textcircled{9} \hspace{0.1in} \mathcal{P}_{\textit{FFLONK}}' \hspace{0.1in} \text{ solves for the vector of scalars}$ 

$$(\bar{q_L}, \bar{q_R}, \bar{q_0}, \bar{q_M}, \bar{q_{const}}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{t_1}, \bar{t_2}, \bar{t_1}_{\omega}, \bar{t_2}_{\omega}, \bar{t_0})$$

verifying the system of constraints

$$\begin{aligned} & \left(\bar{t_0} \cdot Z_H(\mathfrak{z}) = \bar{q_L}\bar{\mathfrak{a}} + \bar{q_R}\bar{\mathfrak{b}} + \bar{q_0}\bar{\mathfrak{c}} + \bar{q_M}\bar{\mathfrak{a}}\bar{\mathfrak{b}} + \bar{q_C} + PI(\mathfrak{z}) \quad (1) \\ & \bar{t_1} \cdot Z_H(\mathfrak{z}) = L_1(\mathfrak{z})(\bar{\mathfrak{z}} - 1) \quad (2) \\ & \bar{t_2} \cdot Z_H(\mathfrak{z}) = \left[(\bar{\mathfrak{a}} + \beta\mathfrak{z} + \gamma)(\bar{\mathfrak{b}} + k_1\beta\mathfrak{z} + \gamma)(\bar{\mathfrak{c}} + k_2\beta\mathfrak{z} + \gamma)\bar{\mathfrak{z}} \\ & -(\bar{\mathfrak{a}} + \beta\bar{S}_{\sigma_1} + \gamma)(\bar{\mathfrak{b}} + \beta\bar{S}_{\sigma_2} + \gamma)(\bar{\mathfrak{c}} + \beta\bar{S}_{\sigma_3} + \gamma)\bar{\mathfrak{z}}\omega\right] \quad (3) \end{aligned}$$

in addition to a constraint defining ms (4).

Note:  $\beta, \gamma, \mathfrak{z}$  have already been set and  $Z_H(X)$ ,  $L_1(X)$  are public.

*P*'<sub>FFLONK</sub> fills in the above computed evaluations and completes π'<sub>FFLONK</sub>.
 Deviating *V*'<sub>FFLONK</sub> accepts false proof π'<sub>FFLONK</sub> as valid with probability 1!

## Implications

Let  $\mathcal{P}'$  be a malicious SNARK prover interacting with a faulty verifier  $\mathcal{V}$  as described above. Then  $\mathcal{P}'$  can set itself as the owner of all the assets by changing the Merkle root (part of the **PI**) and steal all user funds.



Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

## Implications

Let  $\mathcal{P}'$  be a malicious SNARK prover interacting with a faulty verifier  $\mathcal{V}$  as described above. Then  $\mathcal{P}'$  can set itself as the owner of all the assets by changing the Merkle root (part of the **PI**) and steal all user funds.



Based on: https://vitalik.eth.limo/general/2021/01/05/rollup.html

#### What Is ZK, Again? - The Intuition

An honest prover convinces any curious verifier of the validity of a statement on a secret witness, without disclosing even one bit of the witness.

#### What Is ZK, Again? - The Intuition

An honest prover convinces any curious verifier of the validity of a statement on a secret witness, without disclosing even one bit of the witness.

#### What If the Witness Is a Polynomial a(X) in a PCS?

Blind a(X) with blind(X), where  $deg(blind(X)) \ge$  the number of opening points for the commitment to a(X). Ensures statistical ZK.

#### What Is ZK, Again? - The Intuition

An honest prover convinces any curious verifier of the validity of a statement on a secret witness, without disclosing even one bit of the witness.

#### What If the Witness Is a Polynomial a(X) in a PCS?

Blind a(X) with blind(X), where  $deg(blind(X)) \ge$  the number of opening points for the commitment to a(X). Ensures statistical ZK.

#### What If the Witness is a Vector of Polynomials (in a SNARK)?

Blind each polynomial as before. Are we then done?

For some SNARKs and efficiency considerations, other polynomials need blinding.

## Attack on Statistical Zero-Knowledge (cont.)

#### Attack Example: Missing Blinding of Shards in PLONK Prover

- PLONK prover Round 3, quotient polynomial:  $t(X) = t_{lo}(X) + X^{n+2} \cdot t_{mid}(X) + X^{2n+4} \cdot t_{hi}(X).$
- Missing blinding:

$$t'_{lo} = t_{lo}(X) + 
ho_1 \cdot X^{n+2}$$
  
 $t'_{mid}(X) = t_{mid}(X) - 
ho_1 + 
ho_2 \cdot X^{n+2}$   
 $t'_{hi}(X) = t_{hi}(X) - 
ho_2,$ 

where  $\rho_1, \rho_2$  are random coefficients in  $\mathbb{F}_p$ .

 Attack on statistical ZK: Marek Sefranek, How (Not) to Simulate PLONK, SCN 2024.

#### On the Soundness Vulnerabilities

We introduced LCA and FAINT, two new types of soundness attacks on specific incorrect implementations of the FS transform for KZG-based SNARKs.

- LCA exploits that the last FS transform challenge is incorrectly computed as independent from some KZG-based SNARK proof components.
- FAINT exploits the fact the length of certain proof components is unchecked.

#### On the Zero-Knowledge Vulnerability

We highlighted a subtle attack on zero-knowledge encountered in a SNARK implementation.

## Mind your blindings and your Fiat-Shamir-s!

Thank you!