Formally analyzing
a cryptographic protocol standard

(or: how MLS kept this PhD student busy for three years)

Théophile Wallez, Inria Paris C/

V4

+ work of co-authors 5 -

Introduction

The destination of my PhD:
» become a cryptographic protocol analyst

» produce a machine-checked security proof of MLS (secure group messaging protocol)

Introduction

The destination of my PhD:
» become a cryptographic protocol analyst

» produce a machine-checked security proof of MLS (secure group messaging protocol)

The journey:
» help to fix flaws in MLS before its standardization
» identify and fill gaps in formal security proofs (Comparse)
> improve tools to conduct symbolic security analysis at scale (DY*)
> ..

Introduction

The destination of my PhD:
» become a cryptographic protocol analyst

» produce a machine-checked security proof of MLS (secure group messaging protocol)

The journey:
» help to fix flaws in MLS before its standardization
» identify and fill gaps in formal security proofs (Comparse)
> improve tools to conduct symbolic security analysis at scale (DY*)
> ..

Goal of this talk: share lessons |'ve learned
» for protocol analysts

» for protocol designers

Analyzing cryptographic protocols

Traditional pen & paper proofs:
_& several proof techniques (game-hop, UC, SSP, ...)
2 requires expert humans to check the proof

Analyzing cryptographic protocols

Traditional pen & paper proofs:
_& several proof techniques (game-hop, UC, SSP, ...)
2 requires expert humans to check the proof

Machine-checked computational proofs:
.= several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, ...)
= same guarantees as pen & paper proofs
2 limited automation

Analyzing cryptographic protocols

Traditional pen & paper proofs:
_& several proof techniques (game-hop, UC, SSP, ...)
2 requires expert humans to check the proof

Machine-checked computational proofs:

_= several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, ...

.= same guarantees as pen & paper proofs
2 limited automation

Machine-checked symbolic proofs:
_& several tools (ProVerif, Tamarin, DY* ...)
= good automation
») symbolic model is less precise than computational model
&= many successes during the last decade (TLS 1.3, Signal, ...)

Our approach for protocol analysis

<> MLS

l

F* specification

&

[Security proofs]

(for TreeSync and TreeKEM)

Our approach for protocol analysis
<> MLS

F* specification

y A %‘
5

[Security proofs] Bit-precise
(for TreeSync and TreeKEM) %9“‘ implementation
IR
X l
@/;;;~ .. Interoperability
- tests

(4 implementations)

Symbolic security analysis of MLS

Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages

Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages

Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages

Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages

Modularizing MLS

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)
L+ MLS
/
evolve group < > TreeSync
Authenticated
state
update keys < > TreeKEM
ﬁ Epoch keys
send / receive =
/ receive S(TreeDEM

message N

https://ia.cr/2022/1732

Modularizing MLS

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)
4)
evolve group < > TreeSync

Possible thanks to
~30 lines change
in the specification

Authenticated
state

update keys <

~N

F
(o)
(0]
-~
M
<

Epoch keys

-

d :
send / receive y EM
message ' |)

N
—
=
o
@ yi

https://ia.cr/2022/1732

Lesson for protocol designers:
modularize protocols

» Collaborate with protocol analysts
» Bonus: protocol is easier to understand
» Bonus: help implementers

Proving security of TreeSync
(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)

> prove agreement theorem (incl. membership agreement)
» relies on minimal assumptions on TreeKEM and TreeDEM

https://ia.cr/2022/1732

Proving security of TreeSync
(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)

> prove agreement theorem (incl. membership agreement)
» relies on minimal assumptions on TreeKEM and TreeDEM

... however these assumption were initially not true

https://ia.cr/2022/1732

Signature ambiguity in MLS draft 12

(“TreeSync: .

..", USENIX Security '23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serialize1(msgy))
verify(pk, sig, serializer1(msg1))

- J

10

https://ia.cr/2022/1732

Signature ambiguity in MLS draft 12

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serialize1(msgy))
verify(pk, sig, serializer1(msg1))

- J

TreeDEM

sig = sign(sk, serializer2(msgy))

verify(pk, sig, serializeT2(msg2))
. J

10

https://ia.cr/2022/1732

Signature ambiguity in MLS draft 12

(“TreeSync: ..

", USENIX Security '23, https://ia.cr/2022/1732)

/ Same key \

TreeSync

sig = sign(sk, serialize1(msgy)
verify(pk, sig, serializer1(msg1)
S A

~

)
)

J

r

TreeDEM

sig = sign(sk, serializer2(msgy))

verify(pk, sig, serializeT2(msg2))
L A J

\ Different types —/

10

https://ia.cr/2022/1732

Signature ambiguity in MLS draft 12

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)

/ Same key \

r

TreeSync

sig = sign(sk, serialize1(msgy))
verify(pk, sig, serializer1(msg1))
N A J

TreeDEM

sig = sign(sk, serializer2(msgy))

verify(pk, sig, serializeT2(msg2))

-

A J

\ Different types -/

What if serializer1(msg;) = serializeT(msg,)?

First step for an attack:

TreeDEM signature on msg, is a signature forgery on msg; in TreeSync!

10

https://ia.cr/2022/1732

Signature ambiguity in MLS draft 12

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)

/ Same key \

(7

TreeSync TreeDEM

sig = sign(sk, serialize1(msgy)) sig = sign(sk, serializer2(msgy))
verify(pk, sig, serializer1(msg1)) verify(pk, sig, serializeT2(msg>))

\ A J N A J

\ Different types —/

What if serializer1(msg;) = serializeT(msg,)? ’@TEB
First step for an attack: 9@-
TreeDEM signature on msg, is a signature forgery on msg; in TreeSync!

10

https://ia.cr/2022/1732

Two questions

From a protocol designer perspective:

» How did this attack survive 4 years and 12 drafts of the MLS standard,
although this is a classic issue known as “lack of domain-separation”?

Our answer:
» there is no rigorous definition for “domain-separation”
» it is hard to enforce in a large standard

11

Two questions

From a protocol designer perspective:

» How did this attack survive 4 years and 12 drafts of the MLS standard,
although this is a classic issue known as “lack of domain-separation”?

Our answer:
» there is no rigorous definition for “domain-separation”
» it is hard to enforce in a large standard

From a protocol analyst perspective:
» Why was this attack not caught by previous pen & paper security proofs?

11

Why the attack was not caught by previous security proofs?

aﬁo MLS ——> Mathematical model

Security proof

Security properties

12

Why the attack was not caught by previous security proofs?

aﬁo MLS ——> Mathematical model

Security proof

(Secu rity properties

12

Why the attack was not caught by previous security proofs?

aﬁo MLS ——> Mathematical model

Security proof

Security properties

12

Why the attack was not caught by previous security proofs?

aﬁo MLS _)(Mathematical model

Security proof

Security properties

12

Why the attack was not caught by previous security proofs?

aﬁo MLS _)(I\/Iathematical model

Security proof

Security properties

In mathematical models of MLS: no precise message format

leafNodeTBS «|(id, pk, spk, parentHash, In_source, source)|
sig « Sig.Sign(ssk, leafNodeTBS)

‘g‘JI:oupInfoTBS + |(groupCtxt, y'.7.public(), confTag, 7" .leafldx())|
sig < Sig.Sign(~'.ssk, groupInfoTBS)

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420", C. Cremers, E. Giinsay, V. Wesselkamp, M. Zhao

12

Lesson for protocol analysts:
reason on precise mathematical models

» catch subtle attacks
» bonus: also provide a reference implementation

13

Lesson for protocol analysts:
reason on precise mathematical models

» catch subtle attacks
» bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

13

Lesson for protocol analysts:
reason on precise mathematical models

» catch subtle attacks
» bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

Our solution:
» define a rigorous notion of “secure formats”
» secure formats can soundly be abstracted away
» make a tool to check if a format is secure (Comparse)

13

Security critical message formats

14

Security critical message formats

(“Comparse: ..

.", ACM CCS 2023, https://ia.cr/2023/1390)

Security properties actually used
(Pen & Paper, ProVerif, Tamarin, ...)

R L L L LS
e R .
- - -
- -
- -
-— .

?
Hash Si
ignature
High—level (format)\ Binary \ HPKE MAC
protocol data " data ") KDF
AEAD
{--. 4

Cryptographic assumptions
(from the literature)

15

https://ia.cr/2023/1390

Security critical message formats
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

Security properties actually used
(Pen & Paper, ProVerif, Tamarin, ...)

R L L L LS
e R .
- - -
- -
- -
-— .

4 ?
Hash Si

ignature

High-level (format)\ Binary v\ HPKE MAC
protocol data " data ") KDF

AEAD

T i 4 . (
Format properties Cryptographic assumptions

(Comparse) (from the literature)

15

https://ia.cr/2023/1390

A rigorous approach toward domain separation
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “"good domain-separation” for signatures as:

16

https://ia.cr/2023/1390

A rigorous approach toward domain separation
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “"good domain-separation” for signatures as:

» format must be injective (i.e. parseable)

16

https://ia.cr/2023/1390

A rigorous approach toward domain separation
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.
For example, we define “"good domain-separation” for signatures as:

» format must be injective (i.e. parseable)

» choose one format per signature key (across all versions and extensions of the protocol)
» format must not depend on external context

verify v/
TreeSync Tm

Bytes b Bytes & b
High-level m A m TreeDEM m2

https://ia.cr/2023/1390

A rigorous approach toward domain separation
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.
For example, we define “"good domain-separation” for signatures as:
» format must be injective (i.e. parseable)

» choose one format per signature key (across all versions and extensions of the protocol)
» format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

verify v/
TreeSync Tm

Bytes b Bytes & b
High-level m A m TreeDEM m2
Sign «-ess- ¥ verify v sign

16

https://ia.cr/2023/1390

Good domain-separation in real-world protocols

Claim: in real-world protocols, data sent on the network have “good domain-separation”.

17

Good domain-separation in real-world protocols

Claim: in real-world protocols, data sent on the network have “good domain-separation”.

enum {
client_hello(1),
server_hello(2),

(255)
} HandshakeType;
struct {
|HandshakeType msg_type;l /* handshake type */
uint24 length; /* remaining bytes in message */
select (Handshake.msg_type) {
case client_hello: ClientHello;
case server_hello: ServerHello;
b

} Handshake;

TLS 1.3 Handshake message, properly domain-separated across versions since 1996 (SSLv3)

Ugly message formats in real-world protocols

In the same specification, TLS 1.3 Transcript hash

Transcript-Hash(M1, M2, ... Mn) = Hash(M1 || M2 ||

[] Mn)

18

Lesson for protocol designers:
love all message formats equally

» rule out a whole class of attacks
» help protocol analysts willing to model them precisely

19

Symbolic security of MLS: TreeKEM

20

Proving security of TreeKEM

(“TreeKEM: ...", to appear at IEEE S&P 2025, https://ia.cr/2025/410)

We prove a confidentiality theorem on TreeKEM.
Challenges:

» requires recursive data types

» inductive proofs

» an unbounded sequence of key derivations

» an unbounded sequence of public-key encryptions (and internally, KEMs)
DY*is a tool of choice for these challenges, still we had to heavily improve it.

21

https://ia.cr/2025/410

Lesson for protocol analysts:
novel protocols may require new tools

// TODO: insert “modern problems require modern solutions” meme

» can't have “one tool to rule them all”
» similar to various pen & paper proof frameworks (game-hop, UC, SSP, ...)

22

Conclusion

vvyVvyyvyy

</> https

@ https
(@ https
(3 https

://github.com/Inria-Prosecco/mls-star

://ia.cr/2022/1732 (TreeSync)
://ia.cr/2023/1390 (Comparse)
://ia.cr/2025/410 (TreeKEM)

we produced machine-checked security proofs for parts of MLS (TreeSync & TreeKEM)
developed a methodology to reason on a precise model of cryptographic standards
shed light on the importance of message formatting in cryptographic protocols

and propose a rigorous approach to domain-separation

we improved the tools to perform machine-checked symbolic security proofs

X theophile.wallez@inria.fr
@ https://wuw.twal.org/
% Otwal.org

23

https://github.com/Inria-Prosecco/mls-star
https://ia.cr/2022/1732
https://ia.cr/2023/1390
https://ia.cr/2025/410
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://bsky.app/profile/twal.org

References

@ Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan
Bhargavan.
TreeSync: Authenticated group management for messaging layer security.
In 32nd USENIX Security Symposium (USENIX Security 23), August 2023.

@ Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan.
Comparse: Provably secure formats for cryptographic protocols.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS 23, November 2023.

@ Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan.
TreeKEM: A modular machine-checked symbolic security analysis of group key agreement
in messaging layer security, 2025.
To appear at IEEE S&P 2025. https://eprint.iacr.org/2025/410.

24

https://eprint.iacr.org/2025/410

Backup slides

25

Symbolic protocol provers

d.fpfr_oolft A ProVerif
iheutty Tamarin
DY*
>
~ ~ ~ ~—— ~—— complexity
2-3 participants 2-3 participants n participants
< 10 steps n steps n steps
n sessions n sessions n sessions
(e.g. TLS) (e.g. Signal) (e.g. MLS)

26

A rigorous approach to domain separation

Bytes

sign
verify
EUF-CMA

High-level

27

A rigorous approach to domain separation

Bytes i High-level
si : > Si
gr.1 format I_gn
verify ; > verify
EUF-CMA i Unforgeability

27

A rigorous approach to domain separation

Bytes i High-level
sign : % sign
g. format g
verify ; > verify
EUF-CMA i Unforgeability

"eduction |

27

A rigorous approach to domain separation

Bytes i High-level
sign : % sign
g. format g
verify ; > verify
EUF-CMA i Unforgeability

"eduction |

Reduction if: this format is self-contained and non-ambiguous.

A rigorous approach to domain separation

Bytes i High-level
sign : % sign
g. format g
verify ; > verify
EUF-CMA i Unforgeability

"eduction |

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

	Introduction
	Symbolic security analysis of MLS
	Security critical message formats
	Symbolic security of MLS: TreeKEM
	Conclusion
	Backup slides

