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Goal of this talk: share lessons |'ve learned
» for protocol analysts

» for protocol designers
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Analyzing cryptographic protocols

Traditional pen & paper proofs:
_& several proof techniques (game-hop, UC, SSP, ...)
2 requires expert humans to check the proof

Machine-checked computational proofs:

_= several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, ...

.= same guarantees as pen & paper proofs
2 limited automation

Machine-checked symbolic proofs:
_& several tools (ProVerif, Tamarin, DY* ...)
= good automation
») symbolic model is less precise than computational model
&= many successes during the last decade (TLS 1.3, Signal, ...)
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Modularizing MLS

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)
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Modularizing MLS

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)
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Lesson for protocol designers:
modularize protocols

» Collaborate with protocol analysts
» Bonus: protocol is easier to understand
» Bonus: help implementers



Proving security of TreeSync
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Proving security of TreeSync
(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)

> prove agreement theorem (incl. membership agreement)
» relies on minimal assumptions on TreeKEM and TreeDEM

... however these assumption were initially not true
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Signature ambiguity in MLS draft 12

(“TreeSync: .

..", USENIX Security '23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serialize1(msgy))
verify(pk, sig, serializer1(msg1))
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Signature ambiguity in MLS draft 12
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Signature ambiguity in MLS draft 12
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What if serializer1(msg; ) = serializeT(msg,)?

First step for an attack:

TreeDEM signature on msg, is a signature forgery on msg; in TreeSync!
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Signature ambiguity in MLS draft 12

(“TreeSync: ...", USENIX Security '23, https://ia.cr/2022/1732)
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Two questions

From a protocol designer perspective:

» How did this attack survive 4 years and 12 drafts of the MLS standard,
although this is a classic issue known as “lack of domain-separation”?

Our answer:
» there is no rigorous definition for “domain-separation”
» it is hard to enforce in a large standard
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Why the attack was not caught by previous security proofs?

aﬁo MLS _)(I\/Iathematical model

Security proof

Security properties

In mathematical models of MLS: no precise message format

leafNodeTBS «|(id, pk, spk, parentHash, In_source, source)|
sig « Sig.Sign(ssk, leafNodeTBS)

‘g‘JI:oupInfoTBS + |(groupCtxt, y'.7.public(), confTag, 7" .leafldx())|
sig < Sig.Sign(~'.ssk, groupInfoTBS)

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420", C. Cremers, E. Giinsay, V. Wesselkamp, M. Zhao
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Lesson for protocol analysts:
reason on precise mathematical models

» catch subtle attacks
» bonus: also provide a reference implementation
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Lesson for protocol analysts:
reason on precise mathematical models

» catch subtle attacks
» bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

Our solution:
» define a rigorous notion of “secure formats”
» secure formats can soundly be abstracted away
» make a tool to check if a format is secure (Comparse)
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Security critical message formats
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Security critical message formats

(“Comparse: ..

.", ACM CCS 2023, https://ia.cr/2023/1390)

Security properties actually used
(Pen & Paper, ProVerif, Tamarin, ...)
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A rigorous approach toward domain separation
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “"good domain-separation” for signatures as:
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A rigorous approach toward domain separation
(“Comparse: ...", ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.
For example, we define “"good domain-separation” for signatures as:
» format must be injective (i.e. parseable)

» choose one format per signature key (across all versions and extensions of the protocol)
» format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

verify v/
TreeSync Tm

Bytes b Bytes & b
High-level m A m TreeDEM m2
Sign «-ess- ¥ verify v sign

16
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Good domain-separation in real-world protocols

Claim: in real-world protocols, data sent on the network have “good domain-separation”.

17



Good domain-separation in real-world protocols

Claim: in real-world protocols, data sent on the network have “good domain-separation”.

enum {
client_hello(1),
server_hello(2),

(255)
} HandshakeType;
struct {
|HandshakeType msg_type;l /* handshake type */
uint24 length; /* remaining bytes in message */
select (Handshake.msg_type) {
case client_hello: ClientHello;
case server_hello: ServerHello;
b

} Handshake;

TLS 1.3 Handshake message, properly domain-separated across versions since 1996 (SSLv3)



Ugly message formats in real-world protocols

In the same specification, TLS 1.3 Transcript hash

Transcript-Hash(M1, M2, ... Mn) = Hash(M1 || M2 ||

[] Mn)
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Lesson for protocol designers:
love all message formats equally

» rule out a whole class of attacks
» help protocol analysts willing to model them precisely
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Symbolic security of MLS: TreeKEM
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Proving security of TreeKEM

(“TreeKEM: ...", to appear at IEEE S&P 2025, https://ia.cr/2025/410)

We prove a confidentiality theorem on TreeKEM.
Challenges:

» requires recursive data types

» inductive proofs

» an unbounded sequence of key derivations

» an unbounded sequence of public-key encryptions (and internally, KEMs)
DY*is a tool of choice for these challenges, still we had to heavily improve it.

21
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Lesson for protocol analysts:
novel protocols may require new tools

// TODO: insert “modern problems require modern solutions” meme

» can't have “one tool to rule them all”
» similar to various pen & paper proof frameworks (game-hop, UC, SSP, ...)

22



Conclusion

vvyVvyyvyy
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://github.com/Inria-Prosecco/mls-star

://ia.cr/2022/1732 (TreeSync)
://ia.cr/2023/1390 (Comparse)
://ia.cr/2025/410 (TreeKEM)

we produced machine-checked security proofs for parts of MLS (TreeSync & TreeKEM)
developed a methodology to reason on a precise model of cryptographic standards
shed light on the importance of message formatting in cryptographic protocols

and propose a rigorous approach to domain-separation

we improved the tools to perform machine-checked symbolic security proofs

X theophile.wallez@inria.fr
@ https://wuw.twal.org/
% Otwal.org
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Backup slides
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Symbolic protocol provers

d.fpfr_oolft A ProVerif
iheutty Tamarin
DY*
>
~ ~ ~ ~—— ~—— complexity
2-3 participants 2-3 participants n participants
< 10 steps n steps n steps
n sessions n sessions n sessions
(e.g. TLS) (e.g. Signal) (e.g. MLS)
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High-level
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A rigorous approach to domain separation

Bytes i High-level
sign : % sign
g. format g
verify ; > verify
EUF-CMA i Unforgeability

"eduction |

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.



	Introduction
	Symbolic security analysis of MLS
	Security critical message formats
	Symbolic security of MLS: TreeKEM
	Conclusion
	Backup slides

