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● The internet uses IP addresses to determine where to send messages
● IP addresses are difficult for people to remember!
● The Domain Name System is responsible to translating something easy for a 

human to remember into IP addresses

WHAT IS DNS?

example.com -> 93.184.216.34
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DNS IS BROKEN UP INTO ZONES DNS
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Quick Reminder: DNS Zones
● Look-up table for a domain name, including subdomains

; name                   TTL      type  content
example.com.           86400  IN  SOA   ...
example.com.            3600  IN  A     192.0.2.1
example.com.            3600  IN  AAAA  2001:db8:10::1
example.com.           86400  IN  MX    10 mail.example.com.
                                        20 backup.example.com.
mail.example.com.      86400  IN  A     192.0.2.3
...

● Most lookups done “via UDP” (easy to manipulate), using port 53

● One type of data can be: “nothing to see here, go look there” → delegation

intranet.example.com.  86400  IN  NS    other.provider.net.
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CLIENTS RARELY QUERY DIRECTLY
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HOW DO WE MAINTAIN KEY INTEGRITY?
● Construct a chain of trust!

● Typical scheme: two keys with different functions
○ Zone-signing key (ZSK): signs DNS records in a zone
○ Key-signing key (KSK): signs ZSK and is linked in the parent zone via DS record 

(“Delegation Signer”)

● The root verification KSK acts as a trust anchor
○ must be pre-configured on validating machine

● When the root ZSK is queried use the trust anchor to verify key and its signature
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HOW DO WE MAINTAIN KEY INTEGRITY?
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The peril of large DNS messages
DNS messages must be contained in a single UDP packet

● UDP fragmentation is fragile – long thought to cause deliverability issue

● DNS messages must be no larger than 1232 bytes

 
Algorithm Public Key Size Signature Size

RSA 2048 256 256

ECDSA P256 64 64

Falcon512 (FN-DSA) 897 666

Dilithium2 (ML-DSA) 1,312 2,420

SPHINCS+-128s (SLH-DSA) 32 7,856
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Gold standard DNS:

Quantum safe Algorithms:

10,000 probes, 2,000,000 queries
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Queries Using a PQC-aware Resolver
dig +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304

;; Truncated, retrying in TCP mode.

; <<>> DiG 9.18.24-0ubuntu0.22.04.1-Ubuntu <<>> +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22245
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
; COOKIE: 8455829f86d7fb7601000000669b5d9517dfc67dff539cac (good)
;; QUESTION SECTION:
;dilithium2.pdns.pq-dnssec.dedyn.io. IN A

;; ANSWER SECTION:
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN A 95.217.209.184
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN RRSIG A 18 5 3600 20240801000000 20240711000000 3978 dilithium2.pdns.pq-dnssec.ded
yn.io. 19/28JXGCgGbNtEAtUOzv1/SzP+kr6vBlglWrJ/ZfYgdC1DXZHdh+xol rnZ9uhvmADCqZzJXOyOU1Tyw2sHN32Vmcv4KLR8lI7TBwfTJq6T3nGfV oQnv9
DNvPJTyb4VonYH3fLTMYeQ3/0Wy9gbv0ngy55QqRjw+ikhS0yIp ezpZYH3ArY/xxmTgM7OBW0yBg3gXgo1G2mrX97ufqrwkO/n0Vu/xXfSI npGKq+dVu7LQQR7nM
lmM3FkbaRAFyo0FjmbzXDPtyrwJekJP8dfQ5zvc pOCRfrpjRg+ZBUofhdk1PURO539JwD[...shortened...]AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAABAcJzc=

;; Query time: 56 msec
;; SERVER: 35.232.14.170#5304(bind9.pq-dnssec.dedyn.io) (TCP)
;; WHEN: Fri Jul 19 23:47:49 PDT 2024
;; MSG SIZE  rcvd: 2593
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Failures for a valid label
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Failures for a nonexistent label
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Try it yourself!
https://pq-dnssec.dedyn.io/

(also has detailed results)
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What we observed
● Transmission issues are real

○ PQC response delivery rates go down significantly as response sizes increase → Falcon leads

○ Gets worse depending on circumstances, like with DO bit or with NSEC3

● UDP & DO=0:
~70% KSK/ZSK responses correct

~80% CSK responses correct
○ Goes up by ~10% via TCP

● UDP & DO=1:
~50% responses correct

○ Goes up by ~20–40% via TCP
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Investigations into Falcon AD bit
● In initial tests, 8.5% of probe-resolver pairs claim successfully validating Falcon

○ Implausible: resolvers in the wild are not expected to validate (our flavor of) Falcon signatures

● Re-measured select RIPE ATLAS probes showing this behavior
○ Selection: probes whose operators likely can be contacted for debugging (universities)

● Analysis of re-measurement did not reproduce AD bit behavior
○ Except for one university, but they did not respond to our reachout

→ root cause remains unknown

→ shows systematic error of RIPE ATLAS

● Note: Sporadically, AD bits were also observed for some probes which were 

configured to use Google’s or Cloudflare’s public resolvers (8.8.8.8 / 1.1.1.1)

→ Indicates some degree of network spoofing
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Want to use PQC while keeping messages small.
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Want to use PQC while keeping messages small.

We can use Merkle Trees to make DNSSEC messages smaller!
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What is a Merkle Tree?

H1 = 
hash(RRset1)

H2 = 
hash(RRset2)

H3 = 
hash(RRset3)

H4 = 
hash(RRset4)

H5 = 
hash(H1+H2)

H6 = 
hash(H3+H4)

H7 = 
hash(H5+H6)
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Can we apply this to DNS?
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Sure!

● Use a Standardized DNSSEC Algorithm for our KSK
○ Provides Authenticity and Integrity

● Define a new “Merkle Tree” algorithm
○ Store the root hash in the ZSK’s record
○ Provides Integrity via proof of inclusion + gets Authenticity from being signed by KSK

● Record “signatures” simply contain authenticating path of the Merkle tree
○ Grow logarithmically with the number of record sets in a zone

● We can combine the work from Batched Signatures Revisited [1] to reduce hash 
size without reducing security (Second Preimage Resistance)

[1] https://eprint.iacr.org/2023/492 
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We need to change some things about DNS first…

Circular signing is an issue Sign/Verify needs to change for 
Merkle Trees

● Exclude keytag as part of the data 

being signed

● ZSK changes each time we sign something

● Everytime the root node changes:
● the keytag changes -> sign/verify input changes
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We get two nice wins
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DNS messages 
without DNSKEY 

set stay below line 
of peril!
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Merkle trees make zone files smaller and faster

● The signatures logarithmically grow based on the number of signatures
○ In our largest real-world zone (6.2M signatures) we save 7GB by using merkle trees compared to 

using Falcon on its own (23GB when comparing to Dilithium)

● In general signing times are less than all other signing algorithms except for 

ECDSA
○ Fully implemented: slightly slower than ECDSA 

○ Partially implemented: twice faster (and seems vastly improvable)

29



Tiny zone transfers

● DNS infrastructures usually usehave a central primary, and many secondary 

servers answering clients’ queries (kept in sync via zone transfers)

● Since a private key isn’t involved, all secondary servers can rebuild the tree and 

authenticating paths

● Interesting trade-off: We can transmit empty signatures during zone transfers 

greatly reducing the size of the zone
○ Only one signature in zone transfer (for DNSKEY RRset)

● (We don’t have a full implementation for this at the moment)

30



Was there a difference in ATLAS tests?
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Failures for a valid label
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Failures for a nonexistent label
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DNS – A Real World Example of a large enterprise
● ~5000 zones in total

○ ~1000 in active use; many of the rest are defensively registered and parked

● Size: very small (a few records) to ~20 zones with millions of records each
○ Wide variety of DNS record types in use

● Update rates vary considerably
○ Many zones changing very seldom, but a few hundred changing rapidly

○ Most active ones support a change rate of a few hundred per minute

● Using pre-computed signatures or online signing
○ depending on the feature set needed and DNS provider involved

● Mix of inhouse DNS services and 3rd party managed DNS providers are in use
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Descriptions of Zones tested
● Copies of zones with some level of data redaction

○ Zone 1 - Cloud infrastructure services

○ Zone 2 - Email infrastructure services

○ Zone 3 - Corporate website services

○ Zone 4 - Smaller zone of  customer and tenant specific names (redacted)

○ Zone 5 - Realtime services

○ Zone 6 - Very large zone of customer and tenant specific endpoint names (redacted)

● Focusing in this presentation on Zones 1, 2, and 6
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Zone 1: Cloud infrastructure services (71380 signatures)
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Zone 2: Email infrastructure services (897922 signatures)
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Zone 6: Customer and tenant endpoints (6.2M signatures)
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Observations

● Zone size explodes when using PQC
○ Falcon is over 4x

○ Dilithium is over 14x

● Attempted to sign zones with sphincs+-128s and XMSSMT_H40_4
○ Two results happened:

■ Took forever to sign the smaller zones

■ Took forever to sign and got killed by the oom killer
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Zone Algorithm Signatures Generated Signatures per second Signing time in seconds Rough zonefile size: (ls -lh)

zone1 unsigned 0 - 2.1M
zone1 RSA 2048 71380 6610.336 10.798 38M
zone1 ECDSAP256SHA256 71380 127010.676 0.562 18M
zone1 Falcon512 71380 23793.333 3 82M
zone1 Dilithium2 71380 41548.311 1.718 267M
zone1 Merkle-Falcon512 71380 58787.356 1.218 59M
zone1 Merkle-Dilithium2 71380 55036.894 1.301 59M

zone2 unsigned 0 157M
zone2 RSA 2048 897922 6667.346 134.674 618M
zone2 ECDSAP256SHA256 897922 122232.779 7.346 364M
zone2 Falcon512 897922 19016.094 43.882 1.2G
zone2 Dilithium2 897922 41164.534 21.813 3.5G
zone2 Merkle-Falcon512 897921 51298.046 17.504 946M
zone2 Merkle-Dilithium2 897921 80274.254 11.185 946M
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Zone Algorithm Signatures Generated Signatures per second Signing time in seconds Rough zonefile size: (ls -lh)

zone3 unsigned 0 3.1M
zone3 RSA 2048 65627 6635.021 9.891 36M
zone3 ECDSAP256SHA256 65627 114532.286 0.573 17M
zone3 Falcon512 65627 23977.712 2.737 76M
zone3 Dilithium2 65627 42068.589 1.56 246M
zone3 Merkle-Falcon512 65626 117609.318 0.558 52M
zone3 Merkle-Dilithium2 65626 121981.412 0.538 52M

zone4 unsigned 0 110M
zone4 RSA 2048 2627256 6601.574 397.974 1.5G
zone4 ECDSAP256SHA256 2627256 70370.823 37.334 710M
zone4 Falcon512 2627256 22753.695 115.465 3.0G
zone4 Dilithium2 2627256 36816.426 71.36 9.7G
zone4 Merkle-Falcon512 2627255 32023.629 82.041 2.6G
zone4 Merkle-Dilithium2 2627255 31453.402 83.528 2.6G
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Zone Algorithm Signatures Generated Signatures per second Signing time in seconds Rough zonefile size: (ls -lh)

zone5 unsigned 0 84M
zone5 RSA 2048 2415918 6650.713 363.256 1.3G
zone5 ECDSAP256SHA256 2415918 94668.108 25.519 618M
zone5 Falcon512 2415918 23229.767 104 2.7G
zone5 Dilithium2 2415918 35760.878 67.557 8.9G
zone5 Merkle-Falcon512 2415917 44760.77 53.973 2.4G
zone5 Merkle-Dilithium2 2415917 45353.45 53.268 2.4G

zone6 unsigned 0 194M
zone6 RSA 2048 6285416 6511.006 965.352 3.3G
zone6 ECDSAP256SHA256 6285416 41631.825 150.976 1.6G
zone6 Falcon512 6285416 21613.365 290.811 7.0G
zone6 Dilithium2 6285416 30449.105 206.423 23G
zone6 Merkle-Falcon512 6285415 18110.71 347.055 6.2G
zone6 Merkle-Dilithium2 6285415 17962.181 349.924 6.2G



dnssec-signzone

● Currently only supports offline signing

● Heavy modifications to BIND’s dnssec-signzone
○ Iterate through all RRSets and add them to the Merkle tree

○ Finalize the Merkle tree and update keytag

○ Iterate over all RRSIGs and insert the correct authenticating path and keytag

○ Takes about half the time of signing the same zone with ECDSA

- Heavily unoptimized code
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Some takeaways for Merkle trees

● (Minor) DNSSEC protocol changes would need to be made

● By defining it with its own algorithm number you can use Merkle trees with any 

other DNSSEC algorithm

● Zone updates are limited by the root node’s (ZSK) TTL
○ Verisign’s MTL might help with this?

● DNSKEY messages are not compressed
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What’s next?

● What about ATLAS measures instability?

○ The study was motivational, there clearly seems to be a problem with PQC

○ Consequences:

■ Regular IETF side meetings on the subject 

■ A number of groups are doing studies now

● Fixing may require revamping signature representation in DNS
○ Does not necessarily involve a wire format / spec change

○ Or will more robust DoT/DoH/DoQ gain enough traction?

● To transition, any scalable solution will require DS provisioning 
automation

● Future work needed!

→ Research agenda

→ Mailing list: pq-dnssec@ietf.org

45

https://datatracker.ietf.org/doc/draft-fregly-research-agenda-for-pqc-dnssec/
mailto:pq-dnssec@ietf.org


Carlos Aguilar Melchor1, Jason Goertzen2, 
Aydın Mercan3 , Shumon Huque4,
 Peter Thomassen5, Nils Wisiol5

1 SandboxAQ, 2 Epsilon Cyber,
3 Internet Systems Consortium,

4 Salesforce, 5 deSEC

Thank you!

   

Acknowledgments:

46

Web app and results:
https://pq-dnssec.dedyn.io

https://pq-dnssec.dedyn.io


● In 2022, performed (local-only) DNSSEC study with Falcon in PowerDNS
○ Results: https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns

● Now: Broader experiments with multiple PQC algorithms
○ fast validation, short signatures, short-ish keys

● Goal: Public deployment on the Internet, to investigate …
○ behavior of non-PQC-aware resolvers typically used by clients
○ behavior of PQC-aware resolvers

● Parameters:
○ KSK/ZSK (BIND) vs. CSK (PowerDNS)
○ Name existence and NSEC vs. [NSEC3 conventional (BIND) vs. minimal (PowerDNS)]
○ UDP vs. TCP
○ DO bit

Context & Motivation
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Algorithm Considerations

● Selected algorithms with public keys and signatures < 10 KB
● Plus: a stateful hash-based algorithm (XMSS)

Müller, M. et al.: Retrofitting post-quantum cryptography in internet protocols: a case study of DNSSEC. SIGCOMM Comput. Commun. Rev. 50, 49–57 (2020)
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