
Field Experiments
on Post-Quantum DNSSEC

Carlos Aguilar Melchor1, Jason Goertzen2, Aydın Mercan3 , Shumon Huque4,
 Peter Thomassen5, Nils Wisiol5

1 SandboxAQ, 2 Epsilon Cyber, 3 Internet Systems Consortium,
4 Salesforce, 5 deSEC

1

● The internet uses IP addresses to determine where to send messages
● IP addresses are difficult for people to remember!
● The Domain Name System is responsible to translating something easy for a

human to remember into IP addresses

WHAT IS DNS?

example.com -> 93.184.216.34

2

WHAT IS DNS?

Domain
Name

System

example.com

What is the IP address

of example.com?

3

WHAT IS DNS?

Domain
Name

System

example.com

93.1
84.2

16.3
4

4

WHAT IS DNS?

Domain
Name

System

example.com

5

WHAT IS DNS?

Domain
Name

System

example.com

6

DNS IS BROKEN UP INTO ZONES DNS

root (.)

.ca.com

uwaterloo.caexample.com .gc.ca

hc-sc.gc.ca chrt-tcdp.gc.ca

Root level

Top level domains

Second level domains

Third level domains

7

Quick Reminder: DNS Zones
● Look-up table for a domain name, including subdomains

; name TTL type content
example.com. 86400 IN SOA ...
example.com. 3600 IN A 192.0.2.1
example.com. 3600 IN AAAA 2001:db8:10::1
example.com. 86400 IN MX 10 mail.example.com.
 20 backup.example.com.
mail.example.com. 86400 IN A 192.0.2.3
...

● Most lookups done “via UDP” (easy to manipulate), using port 53

● One type of data can be: “nothing to see here, go look there” → delegation

intranet.example.com. 86400 IN NS other.provider.net.
8

CLIENTS RARELY QUERY DIRECTLY

client DNS
Resolver

Authoritative
Name Server

Authoritative
Name Server

Authoritative
Name ServerAuthoritative

Name Server

DNS

9

HOW DO WE MAINTAIN KEY INTEGRITY?
● Construct a chain of trust!

● Typical scheme: two keys with different functions
○ Zone-signing key (ZSK): signs DNS records in a zone
○ Key-signing key (KSK): signs ZSK and is linked in the parent zone via DS record

(“Delegation Signer”)

● The root verification KSK acts as a trust anchor
○ must be pre-configured on validating machine

● When the root ZSK is queried use the trust anchor to verify key and its signature

10

HOW DO WE MAINTAIN KEY INTEGRITY?

Root KSK

Root (.)

Root’s KSK

Root’s ZSK

.com’s KSK DS
record

.com

.com’s KSK

.com’s ZSK

example.com’s KSK
DS record

example.com
example.com’s KSK

example.com’s ZSK

11

The peril of large DNS messages
DNS messages must be contained in a single UDP packet

● UDP fragmentation is fragile – long thought to cause deliverability issue

● DNS messages must be no larger than 1232 bytes

Algorithm Public Key Size Signature Size

RSA 2048 256 256

ECDSA P256 64 64

Falcon512 (FN-DSA) 897 666

Dilithium2 (ML-DSA) 1,312 2,420

SPHINCS+-128s (SLH-DSA) 32 7,856
12

Gold standard DNS:

Quantum safe Algorithms:

10,000 probes, 2,000,000 queries

13

Queries Using a PQC-aware Resolver
dig +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304

;; Truncated, retrying in TCP mode.

; <<>> DiG 9.18.24-0ubuntu0.22.04.1-Ubuntu <<>> +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22245
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
; COOKIE: 8455829f86d7fb7601000000669b5d9517dfc67dff539cac (good)
;; QUESTION SECTION:
;dilithium2.pdns.pq-dnssec.dedyn.io. IN A

;; ANSWER SECTION:
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN A 95.217.209.184
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN RRSIG A 18 5 3600 20240801000000 20240711000000 3978 dilithium2.pdns.pq-dnssec.ded
yn.io. 19/28JXGCgGbNtEAtUOzv1/SzP+kr6vBlglWrJ/ZfYgdC1DXZHdh+xol rnZ9uhvmADCqZzJXOyOU1Tyw2sHN32Vmcv4KLR8lI7TBwfTJq6T3nGfV oQnv9
DNvPJTyb4VonYH3fLTMYeQ3/0Wy9gbv0ngy55QqRjw+ikhS0yIp ezpZYH3ArY/xxmTgM7OBW0yBg3gXgo1G2mrX97ufqrwkO/n0Vu/xXfSI npGKq+dVu7LQQR7nM
lmM3FkbaRAFyo0FjmbzXDPtyrwJekJP8dfQ5zvc pOCRfrpjRg+ZBUofhdk1PURO539JwD[...shortened...]AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAABAcJzc=

;; Query time: 56 msec
;; SERVER: 35.232.14.170#5304(bind9.pq-dnssec.dedyn.io) (TCP)
;; WHEN: Fri Jul 19 23:47:49 PDT 2024
;; MSG SIZE rcvd: 2593

14

Failures for a valid label

15

Failures for a nonexistent label

16

Try it yourself!
https://pq-dnssec.dedyn.io/

(also has detailed results)

17

https://pq-dnssec.dedyn.io/

What we observed
● Transmission issues are real

○ PQC response delivery rates go down significantly as response sizes increase → Falcon leads

○ Gets worse depending on circumstances, like with DO bit or with NSEC3

● UDP & DO=0:
~70% KSK/ZSK responses correct

~80% CSK responses correct
○ Goes up by ~10% via TCP

● UDP & DO=1:
~50% responses correct

○ Goes up by ~20–40% via TCP

18

Investigations into Falcon AD bit
● In initial tests, 8.5% of probe-resolver pairs claim successfully validating Falcon

○ Implausible: resolvers in the wild are not expected to validate (our flavor of) Falcon signatures

● Re-measured select RIPE ATLAS probes showing this behavior
○ Selection: probes whose operators likely can be contacted for debugging (universities)

● Analysis of re-measurement did not reproduce AD bit behavior
○ Except for one university, but they did not respond to our reachout

→ root cause remains unknown

→ shows systematic error of RIPE ATLAS

● Note: Sporadically, AD bits were also observed for some probes which were

configured to use Google’s or Cloudflare’s public resolvers (8.8.8.8 / 1.1.1.1)

→ Indicates some degree of network spoofing
19

Want to use PQC while keeping messages small.

20

Want to use PQC while keeping messages small.

We can use Merkle Trees to make DNSSEC messages smaller!

21

What is a Merkle Tree?

H1 =
hash(RRset1)

H2 =
hash(RRset2)

H3 =
hash(RRset3)

H4 =
hash(RRset4)

H5 =
hash(H1+H2)

H6 =
hash(H3+H4)

H7 =
hash(H5+H6)

22

What is a Merkle Tree?

H1 =
hash(RRset1)

H2 =
hash(RRset2)

H3 =
hash(RRset3)

H4 =
hash(RRset4)

H5 =
hash(H1+H2)

H6 =
hash(H3+H4)

H7 =
hash(H5+H6)

23

Can we apply this to DNS?

24

Sure!

● Use a Standardized DNSSEC Algorithm for our KSK
○ Provides Authenticity and Integrity

● Define a new “Merkle Tree” algorithm
○ Store the root hash in the ZSK’s record
○ Provides Integrity via proof of inclusion + gets Authenticity from being signed by KSK

● Record “signatures” simply contain authenticating path of the Merkle tree
○ Grow logarithmically with the number of record sets in a zone

● We can combine the work from Batched Signatures Revisited [1] to reduce hash
size without reducing security (Second Preimage Resistance)

[1] https://eprint.iacr.org/2023/492

25

https://eprint.iacr.org/2023/492

We need to change some things about DNS first…

Circular signing is an issue Sign/Verify needs to change for
Merkle Trees

● Exclude keytag as part of the data

being signed

● ZSK changes each time we sign something

● Everytime the root node changes:
● the keytag changes -> sign/verify input changes

26

We get two nice wins

27

DNS messages
without DNSKEY

set stay below line
of peril!

28

Merkle trees make zone files smaller and faster

● The signatures logarithmically grow based on the number of signatures
○ In our largest real-world zone (6.2M signatures) we save 7GB by using merkle trees compared to

using Falcon on its own (23GB when comparing to Dilithium)

● In general signing times are less than all other signing algorithms except for

ECDSA
○ Fully implemented: slightly slower than ECDSA

○ Partially implemented: twice faster (and seems vastly improvable)

29

Tiny zone transfers

● DNS infrastructures usually usehave a central primary, and many secondary

servers answering clients’ queries (kept in sync via zone transfers)

● Since a private key isn’t involved, all secondary servers can rebuild the tree and

authenticating paths

● Interesting trade-off: We can transmit empty signatures during zone transfers

greatly reducing the size of the zone
○ Only one signature in zone transfer (for DNSKEY RRset)

● (We don’t have a full implementation for this at the moment)

30

Was there a difference in ATLAS tests?

31

Failures for a valid label

32

Failures for a nonexistent label

33

DNS – A Real World Example of a large enterprise
● ~5000 zones in total

○ ~1000 in active use; many of the rest are defensively registered and parked

● Size: very small (a few records) to ~20 zones with millions of records each
○ Wide variety of DNS record types in use

● Update rates vary considerably
○ Many zones changing very seldom, but a few hundred changing rapidly

○ Most active ones support a change rate of a few hundred per minute

● Using pre-computed signatures or online signing
○ depending on the feature set needed and DNS provider involved

● Mix of inhouse DNS services and 3rd party managed DNS providers are in use

34

Descriptions of Zones tested
● Copies of zones with some level of data redaction

○ Zone 1 - Cloud infrastructure services

○ Zone 2 - Email infrastructure services

○ Zone 3 - Corporate website services

○ Zone 4 - Smaller zone of customer and tenant specific names (redacted)

○ Zone 5 - Realtime services

○ Zone 6 - Very large zone of customer and tenant specific endpoint names (redacted)

● Focusing in this presentation on Zones 1, 2, and 6

35

Zone 1: Cloud infrastructure services (71380 signatures)

36

Zone 2: Email infrastructure services (897922 signatures)

37

Zone 6: Customer and tenant endpoints (6.2M signatures)

38

Observations

● Zone size explodes when using PQC
○ Falcon is over 4x

○ Dilithium is over 14x

● Attempted to sign zones with sphincs+-128s and XMSSMT_H40_4
○ Two results happened:

■ Took forever to sign the smaller zones

■ Took forever to sign and got killed by the oom killer

39

40

Zone Algorithm Signatures Generated Signatures per second Signing time in seconds Rough zonefile size: (ls -lh)

zone1 unsigned 0 - 2.1M
zone1 RSA 2048 71380 6610.336 10.798 38M
zone1 ECDSAP256SHA256 71380 127010.676 0.562 18M
zone1 Falcon512 71380 23793.333 3 82M
zone1 Dilithium2 71380 41548.311 1.718 267M
zone1 Merkle-Falcon512 71380 58787.356 1.218 59M
zone1 Merkle-Dilithium2 71380 55036.894 1.301 59M

zone2 unsigned 0 157M
zone2 RSA 2048 897922 6667.346 134.674 618M
zone2 ECDSAP256SHA256 897922 122232.779 7.346 364M
zone2 Falcon512 897922 19016.094 43.882 1.2G
zone2 Dilithium2 897922 41164.534 21.813 3.5G
zone2 Merkle-Falcon512 897921 51298.046 17.504 946M
zone2 Merkle-Dilithium2 897921 80274.254 11.185 946M

41

Zone Algorithm Signatures Generated Signatures per second Signing time in seconds Rough zonefile size: (ls -lh)

zone3 unsigned 0 3.1M
zone3 RSA 2048 65627 6635.021 9.891 36M
zone3 ECDSAP256SHA256 65627 114532.286 0.573 17M
zone3 Falcon512 65627 23977.712 2.737 76M
zone3 Dilithium2 65627 42068.589 1.56 246M
zone3 Merkle-Falcon512 65626 117609.318 0.558 52M
zone3 Merkle-Dilithium2 65626 121981.412 0.538 52M

zone4 unsigned 0 110M
zone4 RSA 2048 2627256 6601.574 397.974 1.5G
zone4 ECDSAP256SHA256 2627256 70370.823 37.334 710M
zone4 Falcon512 2627256 22753.695 115.465 3.0G
zone4 Dilithium2 2627256 36816.426 71.36 9.7G
zone4 Merkle-Falcon512 2627255 32023.629 82.041 2.6G
zone4 Merkle-Dilithium2 2627255 31453.402 83.528 2.6G

42

Zone Algorithm Signatures Generated Signatures per second Signing time in seconds Rough zonefile size: (ls -lh)

zone5 unsigned 0 84M
zone5 RSA 2048 2415918 6650.713 363.256 1.3G
zone5 ECDSAP256SHA256 2415918 94668.108 25.519 618M
zone5 Falcon512 2415918 23229.767 104 2.7G
zone5 Dilithium2 2415918 35760.878 67.557 8.9G
zone5 Merkle-Falcon512 2415917 44760.77 53.973 2.4G
zone5 Merkle-Dilithium2 2415917 45353.45 53.268 2.4G

zone6 unsigned 0 194M
zone6 RSA 2048 6285416 6511.006 965.352 3.3G
zone6 ECDSAP256SHA256 6285416 41631.825 150.976 1.6G
zone6 Falcon512 6285416 21613.365 290.811 7.0G
zone6 Dilithium2 6285416 30449.105 206.423 23G
zone6 Merkle-Falcon512 6285415 18110.71 347.055 6.2G
zone6 Merkle-Dilithium2 6285415 17962.181 349.924 6.2G

dnssec-signzone

● Currently only supports offline signing

● Heavy modifications to BIND’s dnssec-signzone
○ Iterate through all RRSets and add them to the Merkle tree

○ Finalize the Merkle tree and update keytag

○ Iterate over all RRSIGs and insert the correct authenticating path and keytag

○ Takes about half the time of signing the same zone with ECDSA

- Heavily unoptimized code

43

Some takeaways for Merkle trees

● (Minor) DNSSEC protocol changes would need to be made

● By defining it with its own algorithm number you can use Merkle trees with any

other DNSSEC algorithm

● Zone updates are limited by the root node’s (ZSK) TTL
○ Verisign’s MTL might help with this?

● DNSKEY messages are not compressed

44

What’s next?

● What about ATLAS measures instability?

○ The study was motivational, there clearly seems to be a problem with PQC

○ Consequences:

■ Regular IETF side meetings on the subject

■ A number of groups are doing studies now

● Fixing may require revamping signature representation in DNS
○ Does not necessarily involve a wire format / spec change

○ Or will more robust DoT/DoH/DoQ gain enough traction?

● To transition, any scalable solution will require DS provisioning
automation

● Future work needed!

→ Research agenda

→ Mailing list: pq-dnssec@ietf.org

45

https://datatracker.ietf.org/doc/draft-fregly-research-agenda-for-pqc-dnssec/
mailto:pq-dnssec@ietf.org

Carlos Aguilar Melchor1, Jason Goertzen2,
Aydın Mercan3 , Shumon Huque4,
 Peter Thomassen5, Nils Wisiol5

1 SandboxAQ, 2 Epsilon Cyber,
3 Internet Systems Consortium,

4 Salesforce, 5 deSEC

Thank you!

Acknowledgments:

46

Web app and results:
https://pq-dnssec.dedyn.io

https://pq-dnssec.dedyn.io

● In 2022, performed (local-only) DNSSEC study with Falcon in PowerDNS
○ Results: https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns

● Now: Broader experiments with multiple PQC algorithms
○ fast validation, short signatures, short-ish keys

● Goal: Public deployment on the Internet, to investigate …
○ behavior of non-PQC-aware resolvers typically used by clients
○ behavior of PQC-aware resolvers

● Parameters:
○ KSK/ZSK (BIND) vs. CSK (PowerDNS)
○ Name existence and NSEC vs. [NSEC3 conventional (BIND) vs. minimal (PowerDNS)]
○ UDP vs. TCP
○ DO bit

Context & Motivation

47

https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns

Algorithm Considerations

● Selected algorithms with public keys and signatures < 10 KB
● Plus: a stateful hash-based algorithm (XMSS)

Müller, M. et al.: Retrofitting post-quantum cryptography in internet protocols: a case study of DNSSEC. SIGCOMM Comput. Commun. Rev. 50, 49–57 (2020)

48

https://dl.acm.org/doi/10.1145/3431832.3431838

49

50

51

