i
I*lis NVIDIA. ...

RSITY OF
TORONTO

Teaching an Old Dog New Tricks:
Verifiable FHE Using Commodity Hardware

Jules Drean Fisher Jepsen Edward Suh Aamer Jaleel = Gururaj Saileshwar

What is Fully Homomorphic Encryption (FHE)?

1000

24

What is Fully Homomorphic Encryption (FHE)?

What is Fully Homomorphic Encryption (FHE)?

+ - -

What is Fully Homomorphic Encryption (FHE)?

+ — 1024

What is Fully Homomorphic Encryption (FHE)?

]
-+

1024

]
OR

]
X

What is Fully Homomorphic Encryption (FHE)?

]
-+

1024

]
OR

]
X

2400

What is Fully Homomorphic Encryption (FHE)?

+ — 1024

OR

2400

& Significant performance overheads
(3 to 6 orders of magnitude slowdown)

FHE Applications

Build other interesting Many real-world applications:

cryptographic primitives Confidential Credit Scoring

Private set intersection (PSI) Biometric Identification
o . .
= Private information retrieval (PIR) Blockchain Transactions

PN . . Medicine and Healthcare
% _ o Multiparty computation (MPC)

Private Machine Learning

FHE in the client-server setup

i

Evaluation Server

FHE Circuit

Enc(A) = N

R = Dec(-) -«

Problem: No Integrity!

FHE schemes are only passively secure

D Evaluation Server
Enc(A) = N \@
R/@ < Dec(-) -« \/\ﬁ/;

If client reaction can be observed

= Key recovery attacks!!

Solution: Add a Layer of Verifiable Computation

Allows a remote user to verify the results of a computation

Solution: Add a Layer of Verifiable Computation

Allows a remote user to verify the results of a computation -

Remote Client

Solution: Add a Layer of Verifiable Computation

Allows a remote user to verify the results of a computation -

Remote Client Server

Solution: Add a Layer of Verifiable Computation

Circuit + Data
R
"

Remote Client Server

Allows a remote user to verify the results of a computation

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client Server

Results + Proof

Allows a remote user to verify the results of a computation

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client ﬁ@.‘ Server

Allows a remote user to verify the results of a computation

Unfortunately, existing solutions are insufficient...

Results + Proof

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client ﬁ@.‘ Server

Allows a remote user to verify the results of a computation

Unfortunately, existing solutions are insufficient...

Cryptographic solutions Results + Proof

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client ﬁ@.‘ Server

Allows a remote user to verify the results of a computation

Unfortunately, existing solutions are insufficient...

Cryptographic solutions Results + Proof

%@ Zero Knowledge Proofs!‘’l: Between 5-6 order of magnitude overhead!

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client ﬁ@.‘ Server

Allows a remote user to verify the results of a computation

Unfortunately, existing solutions are insufficient...

Cryptographic solutions Results + Proof
%@ Zero Knowledge Proofs!‘l: Between 5-6 order of magnitude overhead!

22 Replication: Hard to achieve distributed trust +1-2 order of magnitude overhead

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client ﬁ@.‘ Server

Allows a remote user to verify the results of a computation

Unfortunately, existing solutions are insufficient...

Cryptographic solutions Results + Proof
%@ Zero Knowledge Proofs!‘l: Between 5-6 order of magnitude overhead!

22 Replication: Hard to achieve distributed trust +1-2 order of magnitude overhead

Trusted Hardware Solutions

Solution: Add a Layer of Verifiable Computation

Circuit + Data

i
"

-

Remote Client ﬁ@.‘ Server

Allows a remote user to verify the results of a computation

Unfortunately, existing solutions are insufficient...

Cryptographic solutions Results + Proof
%@ Zero Knowledge Proofs!‘l: Between 5-6 order of magnitude overhead!

22 Replication: Hard to achieve distributed trust +1-2 order of magnitude overhead

Trusted Hardware Solutions

. Trusted execution environments or trusted enclaves:
Based on Remote attestation

RRRRRRRR

Code + Data

101G
QIO g

- i
~— — umoun
Remote User S0

Results + Proof

Remote attestation

nnnnon

Code + Data

101G
QIO g

. i
~— — umoun
Remote User S0

Results + Proof

Remote attestation

nnnnon

Leverages Trusted Hardware

Code + Data

1010
[j”[] nnnnni

Remote attestation

nnnnon

V\\-~_____—”,/ ﬂhﬂﬂﬁ;
Remote User S0

Results + Proof

Leverages Trusted Hardware

* Measure (hash) the binary and data inside the enclave

Code + Data

1010
@”@ .I':Il'lnnl'llr'l:

v . 1
~— — umoun
Remote User S0

Results + Proof

Remote attestation

nnnnon

Leverages Trusted Hardware
* Measure (hash) the binary and data inside the enclave

» Creates an attestation report

Code + Data

[0l@
0l ;";:"--”-”-:":;

Remote attestation

nnnnon

Remote User S0

Results + Proof

Leverages Trusted Hardware
* Measure (hash) the binary and data inside the enclave
» Creates an attestation report

« Signs and sends it to the remote user as an attestation proof

Code + Data

l@]l@)
0lo

Remote attestation

Remote User

Results + Proof

Leverages Trusted Hardware

* Measure (hash) the binary and data inside the enclave
» Creates an attestation report
« Signs and sends it to the remote user as an attestation proof

* Based on a root-of-trust and a chain-of-trust

Code + Data

l@]l@)
0lo

emote User @0

Results + Proof

Remote attestation

nnnnon

Leverages Trusted Hardware

* Measure (hash) the binary and data inside the enclave

Creates an attestation report

Signs and sends it to the remote user as an attestation proof

Based on a root-of-trust and a chain-of-trust

No performance overhead beyond fix setup cost

Code + Data
[0l

Remote attestation .

V\/

nnnnon

Remote User

Results + Proof

Leverages Trusted Hardware

* Measure (hash) the binary and data inside the enclave

Creates an attestation report

Signs and sends it to the remote user as an attestation proof

Based on a root-of-trust and a chain-of-trust

No performance overhead beyond fix setup cost

Problem: vulnerable to
microarchitectural side channels!

Microarchitectural Side Channels

Microarchitectural Side Channels

Microarchitectural Side Channels

OBSERVE

Contention on...

Shared
Microarchitecture

CPU

Branch Predictor
Cache
DRAM

Microarchitectural Side Channels

Contention on...

Shared
Microarchitecture

CPU

Branch Predictor
Cache
DRAM

.eep calm: just write good (constant-time)

But these attacks can get worse...

Transient execution attacks:
;{} - use speculation to weaponize side channels

“ - break isolation of all existing TEEs

2018 - Spectre

...and the rest of the logo mafia

But these attacks can get worse...

' i ttacks:
Transient execution a ' |
[/ - use speculation to weaponize sEIe channels
“ - break isolation of all existing TEEs

2018 - Spectre

SGAxe: How SGX Fails in Practice

Stephan van Schaik Andrew Kwong Daniel Genkin Yuval Yarom
University of Michigan University of Michigan University of Michigan University of Adelaide and Data6]
stephvs @umich.edy ankwong @umich.edy genkin@umich.edy yvalc

...and the rest of the logo mafia

But these attacks can get worse...

' i ttacks:
Transient execution a ' |
;{; - use speculation to weaponize sEIe channels
“ - break isolation of all existing TEEs

2018 - Spectre

SGAxe: How SGX Fails in Practice

Stephan van Schaik Andrew Kwong Daniel Genkin Yuval Yarom

University of Michigan University of Michigan University of Michigan University of Adelaide and Data6]
stephvs @umich.edy ankwong @umich.edy

genkin@umich.edy yval@cs.adelaide.edu.ay

me to panic

...and the rest of the logo mafia

Existing TEEs Are Not Enough

Enclaves

Trusted VM

Platform

Vulnerable to
Side Channels

Dedicated
Hardware

Availability

ARM
TrustZone

Intel SGX V1

Intel SGX V2

Amazon Nitro
Enclaves

Intel TDX

AMD SEV

ARM CCA

YES

YES

Available

Not Available

10

Goal:

Side-Channel-Resistant Verifiable FHE Using
Commodity Hardware

11

Key Insight
In FHE, all sensitive da

Enclaves do not need to guarantee any
program privacy

We can focus our efforts on providing

12

Argos

Argos

Integrity-only TEE for maliciously-secure verifiable FHE

13

Argos

Integrity-only TEE for maliciously-secure verifiable FHE

Can be used for fully malicious and authenticated PSI and PIR

13

Argos

Integrity-only TEE for maliciously-secure verifiable FHE

Can be used for fully malicious and authenticated PSI and PIR

Secure by design against microarchitectural side channels

13

Argos

Integrity-only TEE for maliciously-secure verifiable FHE
Can be used for fully malicious and authenticated PSI and PIR

Secure by design against microarchitectural side channels

No specialized hardware — Compatible with commodity processors

13

Argos

Integrity-only TEE for maliciously-secure verifiable FHE

Can be used for fully malicious and authenticated PSI and PIR

Secure by design against microarchitectural side channels

No specialized hardware — Compatible with commodity processors

~3% performance overhead for FHE computation, <8% for complex protocols

13

What's the catch?

e Argos only provides integrity
o \Weaker threat model than ZK proofs

e Requires a custom hypervisor and runtime

14

Plan

Il - A QUICK HISTORY OF TRUST
Il - DESIGN OVERVIEW
IV - PERFORMANCE OPTIMIZATION

V - PROTOTYPE AND EVALUATION

15

Threat Model @

We assume a strong privilege software attacker

They have compromised most of the software stack
and can mount any type of side channels.

Assumptions (all standard)
« A small trusted code base (TCB)
+ Constant-time cryptography
+ Hardware is functionally correct

Out-of-Scope Attacks (see discussion later)
* Physical attacks
+ Fault Injection

App App

0os

FIRMWARE

CACHES

A Quick History of Trust
)

Legend

Side-Channels
[1cs

Software

Hardware
[side-Channels

vulnerabilities

CACHES

DRAM

1990
Baseline

- Software-only TEE
- Trusted code base
- Hardware contains some side-channels

- Software that manipulates secrets or keys is
vulnerable to side channels

17

A Quick History of Trust
)

Legend

App

Side-Channels
[1cs

Software

Hardware
[side-Channels

vulnerabilities

1990
Baseline

- Software-only TEE
- Trusted code base
- Hardware contains some side-channels

- Software that manipulates secrets or keys is
vulnerable to side channels

17

A Quick History of Trust
=

Legend

App

Side-Channels
[1cs

Software

Hardware
[side-Channels

vulnerabilities

1990
Baseline

- Software-only TEE
- Trusted code base
- Hardware contains some side-channels

- Software that manipulates secrets or keys is
vulnerable to side channels

17

Legend

Side-Channels
[1cs

Software

Hardware
[side-Channels

vulnerabilities

App

FIRMWARE

2007
Dynamic Root of Trust

- Discrete or integrated TPM chip

- Exclude the BIOS/bootloader from the TCB
- Significantly shrinks the TCB

- Still have the entire OS

18

Legend

Side-Channels
0 1cs

Software

Hardware
[side-Channels

vulnerabilities

App

FIRMWARE

2008

Hypervisor-based Isolation

- Virtual environments can be isolated
- Use a small hypervisor as a security monitor
- TPM needs to be virtualized in the hypervisor

- Exposes secrets to side channels

19

Legend

App

Side-Channels
0 1cs

Software

Hardware
[side-Channels

vulnerabilities

FIRMWARE

DRAM

2015

Secure Enclaves
Intel SGX

- Security monitor in implemented in microcode

- Most of the root-of-trust cryptography is performed in
a co-processor (Intel ME)

- Cryptography for final remote attestation step is
performed inside an enclave

- Side channels attacks also break remote
attestation

20

Legend

Side-Channels
0 1cs

Software

Hardware
[side-Channels

vulnerabilities

App

Trusted VM

| HYPERVISOR

FIRMWARE

DRAM

2016
Trusted VMs

AMD SEV

- Exclude the hypervisor from the TCB

- Most of the root-of-trust cryptography is performed in
a co-processor (AMD PSP)

- Cryptography for final remote attestation step is
performed inside a paravisor

- Exposes secrets to side channels

21

Plan - Argos

Il - DESIGN OVERVIEW
IV - PERFORMANCE OPTIMIZATION

V - PROTOTYPE AND EVALUATION

22

Today
What can we do from there?

23

Today
What can we do from there?

- We don't want specific hardware: start from
hypervisor-based isolation design

23

Legend

Side-Channels
0 1cs

Software

Hardware
[side-Channels

vulnerabilities

App

FIRMWARE

Today
What can we do from there?

- We don't want specific hardware: start from
hypervisor-based isolation design

23

Legend

Side-Channels
0 1cs

Software

Hardware
[side-Channels

vulnerabilities

App

FIRMWARE

Today
What can we do from there?

- We don't want specific hardware: start from
hypervisor-based isolation design

- Remember or key insight:

23

Legend

Side-Channels
0 os

Software

Hardware

[side-Channels
vulnerabilities

App

FIRMWARE

Today
What can we do from there?

- We don't want specific hardware: start from
hypervisor-based isolation design

- Remember or key insight:

In FHE, all sensitive data is
encrypted

23

Legend

Side-Channels
[1cs

Software

Hardware

[side-Channels
vulnerabilities

App

FIRMWARE

Today
What can we do from there?

- We don't want specific hardware: start from
hypervisor-based isolation design

- Remember or key insight:

In FHE, all sensitive data is
encrypted

23

Legend

Side-Channels
0 1cs

Software

Hardware
[side-Channels

vulnerabilities

App

FIRMWARE

Today
What can we do from there?

- Start back from hypervisor-based isolation (no
specific hardware)

- In FHE, all sensitive data is encrypted
- We do not need long-term secret storag

- Only secret left on the CPU is final attestation key

24

Legend

Side-Channels
T ves

Software

Hardware
[side-Channels

vulnerabilities

App

FIRMWARE

Today
What can we do from there?

- Start back from hypervisor-based isolation (no
specific hardware)

- In FHE, all sensitive data is encrypted
- We do not need long-term secret storage

- Only secret left on the CPU is final attestation key

Keep the final attestation key in the TPM!

24

Legend

[E—=J side-Channels
0 os

Software

Hardware
[side-Channels

vulnerabilities

App
oS
FHE
HYPERVISOR

FIRMWARE
Crypto
TPM

CPU
CACHES
DRAM

Argos

- Start back from hypervisor-based isolation (no
specific hardware)

- In FHE, all sensitive data is encrypted
- We do not need long-term

- Final attestation key is kep!

25

Legend

[E—=J side-Channels
0 os

Software

Hardware
[side-Channels

vulnerabilities

App
oS
FHE
HYPERVISOR

FIRMWARE
Crypto
TPM

CPU
CACHES
DRAM

Argos

- Start back from hypervisor-based isolation (no
specific hardware)

- In FHE, all sensitive data is encrypted
- We do not need long-term

- Final attestation key is kep!

25

Argos

TPM does not share microarchitecture with the CPU.
TPM cannot run (attacker) arbitrary code.
TPM microarchitecture is intentionally extremely simple.

Only side channels left
- TPM-based timing or completion timeld (addressed by constant-time cryptography)
- TPM physical side channels such as power, electromagnetic (out-of-scope for now)

26

A Quick History of Trust

Static Root of Trust

Static Root of Trust

FIRMWARE

AWS Nitro / Trustvisor

App

os

FIRMWARE

(%))

GX

App

os

FIRMWARE

Argos

App

os

FIRMWARE

27

Plan

IV - PERFORMANCE OPTIMIZATION

V - PROTOTYPE AND EVALUATION

28

Performance Impact

G TPM U App o
Hash Binary TPM communications and
j > operations are expensive
« > TPM signature ~200ms
Sign Binary -
S il + S . .
»| e meeener - For complex interactive
. i Private Input protocols
) Sign Message (s) 1 signature per message
@fsignt - - Computation
: Current solution:
Gf |« Sign Output virtualized TPM
Sign

Performance Impact

S TPM

e

SM + App
Sign vIPM key 44____—2253————_—
Signature
—» .
Hash Binary I
Sign Binary
Sign < o end Attestation

Sign

Sign

—p

 Sign Message
<+

—p

 Sign Output

44—

[
—P

VIPM needs to get attested
by a real TPM

vTPM signature ~1ms

How to keep secrets in the TPM
without performance
overheads?

30

Performance Impact

ZTPM

SM + App

Hash Binary

Sign Binary

dl
Sy *
o Send Attestation
L »
L
Get Private Input
<+

Sign Message (s)

A

Computation

@ siand

v

Sign Output

A

Foiont

v

31

Performance Impact

STPM
Hash Binary I

Sign Binary

n
@
Q
]
s
A

Send Attestation

[
g »

L
Get Private Input
<
Sign Message (s)
<7
@fsignt Computation
>
Sign Output
<

Foiont

4

In FHE, all sensitive d:
encrypted

31

Performance Impact

STPM
Hash Binary I
Sign Binary

@fsiqnt
Send Attestation

[
g »

A

Get Private Input
<

Sign Message (s)

A

Computation

@ siand

v

Sign Output

A

Foiont

4

In FHE, all sensitive
encrypted

- Hashing does not require any
secrets

31

Performance Impact

tTPM .
Hash Binary I
Sign Binary
S~
o Send Atyastati n
L 4 [
Get Private Input
<
Sign Message (s)
<
@fsign¢ Computation
>
Sign Output
f et =
>

In FHE, all sensitiv
encrypted

- Hashing does not require any
secrets

- No need to attest the enclave
before sending input

31

Performance Impact

STPM In FHE, all sensiti
I encryptec
Sy »| o/ - Hashing does not require any

s secrets

Sign Message (s)

T - No need to gttete_.t the enclave
before sending input

- Depending on the protocol, no
need to sign individual messages

A

v

Sign Output

A

Foiont

v

31

Performance Impac

TPM In FHE, all sensiti
Hash BlnaryI encrypte‘

@_j?) Sign Binary

SjiGn ~ . .

Pk s |/ - Hashing does not require any

: :i Private Input Secrets
Sign Message (s)

Fotdl = S - No need to attest the enclave

before sending input

- Depending on the protocol, no
need to sign individual messages

Sign Output

A

Foiont

v

- Only sign final transcript

31

Performance Impac

STPM In FHE, all sensit
encrypte
- Hashing does not require any
rash vessaze @ P compucaion secrets
Sign Hash Final Transcript 5 - No need to attest the enclave
F s 2 R before sending input

- Depending on the protocol, no
need to sign individual messages

- Only sign final transcript

32

Plan

V - PROTOTYPE AND EVALUATION

33

Building Our Prototype

Hardware — Minimal Requirements

We use an Intel i7-7700 3.60GHz
from 2017

34

Building Our Prototype

Hardware — Minimal Requirements

We use an Intel i7-7700 3.60GHz
from 2017

Software - Building Blocks
Mini-hypervisor from EPFL: Tyche

OS for resource management: Linux +
KVM

Runtime custom or Gramine
FHE library SEAL 4.1
Applications PSI or PIR benchmark

TCB is between

34

Evaluation

FHE Evaluation

Argos is
than ZK proofs
over previous work on SGXv110l

Similar performance that commercial
TEEs

Complex protocols

Authenticated Private Information Retrieval

Pre-processing: 3.4s ()
Query Processing: 1.6s ()

Authenticated Private Set Intersection

Pre-processing: 37s ()
Query Processing: 1.6s ()

35

Discussion — What about physical attacks? @

Argos protects against some physical attacks:

- Cold boot attacks (common)

- BIOS tampering (common)

- Physical side channels on the CPU such as electro-magnetic, sound, power etc.

Argos against row-hammer or fault-injection attacks
No published RH attacks demonstrate gaining hypervisor privilege on a hardware VM
Software can be harden against fault injections with control flow checks

Argos against physical side channels on the TPM
TPM are now integrated - No published physical attacks
For the most part, is addressed by constant-time cryptography

36

Argos

Integrity-only TEE for maliciously-secure verifiable FHE

Can be used for fully malicious and authenticated PSI and PIR

Secure by design against microarchitectural side channels

No specialized hardware — Compatible with commodity processors

~3% performance overhead for FHE computation, <8% for complex protocols

37

https:/arxiv.org/pdf/2412.03550

<>

https://github.com/mit-enclaves/argos

GIOTEN 3
jieer = =il
mar. T s gtem 60 |

“As they were speaking, a dog that had been lying asleep
raised his head and pricked up his ears. This was Argos,
whom Odysseus had bred before setting out for Trey"

Inte| the side-channel war
38

https://github.com/mit-enclaves/argos
https://arxiv.org/pdf/2412.03550

Backup Slides

Performance Evaluation

Simple FHE evaluation of various circuit sizes

ZK Proofs

Trusted Hardware

Argos is 2-7 orders

of magnitude faster

d than ZK proofs

~83x improvement

over previous work

on SGXIO

Platform Tiny Small Medium
Baseline 2ms 11ms 14ms
Bulletproofs 7569s 3957s 8697s
Aurora 1554s 3750s 5028s
Grothl6 196s 473s 634s
Rinocchio 320ms 305s 443s
SGXvl 154ms 1100ms 1260ms L
Baseline Azure 283us 1727us 3170us
SGXv2 Azure 290us (+3%) | 1840us (+7%) | 3638us (+15%)
B: 1e AWS 324us 1889us 3456us
Nitro Encl 317us (-2%) 1827us (-3%) 3450us (-0%)
Baseline Local 351us 2341us 4376us

Argos+G

392us (+12%)

2702us (+16%)

5202us (+19%)

Argos

352us (+0%)

2480us (+6%)

4447us (+2%)

40

Evaluation - TCB

Component LOC
BIOS 1.5M
Linux 28M
Security Monitor 18K
Runtime (Custom /| 870 / 20K
Gramine)

SEAL Library [179| 20K
Application 1IK—20K

Minimal compared to Linux or
other existing hypervisors
(e.g. XEN ~200KLOC)

41

Comparison With Existing Platforms

Security Usability Performance
P ; =
TEE Platform g Q % "g' é & :ﬁ _g E‘ = .
TCB | x Om | =g w5 =8 Availability DI_CI&IIC‘ Implementation Setup | Attest. | Comp.
ZK Proofs Null P P P P P Sw SwW Open Source -———— | - ===
Nitro Enclaves Large A% \ A% Vv A% Yes Closed Source -—- ++ ++
Arm TrustZone Small Vv \Y A% Vv Vv High Yes HW Closed Source + + -
Intel SGX V1 Small Vv P Vv A% Vv Deprecated Yes HW Closed-Source — = + - -
Intel SGX V2 Small Vv P A% Vv Vv Yes HW Closed-Source - - + +
AMD SEV Large \% P \% \% \% Yes HW Closed-Source | - - - + ++
Intel TDX Large Vv P Vv Vv Vv Coming Yes HW Closed-Source | - - - + ++
ARM CCA Large A% P A% A% Vv Coming Yes HW Closed-Source | - - - + ++
TrustVisor[92] Small Vv \Y Vv Vv Vv Deprecated No Open Source - ++ ++
Flicker [93] Tiny P P P Vv Vv Deprecated No Open Source -—- -—- -—-
Argos Small P P P A% A% High No Open Source + - ++

SC: Side Channel, P: Protected, V: Vulnerable. +’s and -’s represent relative (and subjective) measure of performance.

Example: PSI for Contact Discovery

Signal Server @

B .
FHE Circuit
= =p Enc(I)
SSBRob's \A
NumbersS$s

\

€= Enc() <—

43

Problem: No Integrity!

FHE protocols are only passively secure

@)

m Signal Server @ @
B N
FHE Circuit
= =) Enc(-) Dataset
SSBob's \A
Numbersss
/

B <+ Enc(lll) <

Alice reaches-out to Bob through Signal @
leaking Bob's phone number

44

