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Apple’s Deployment of 
Homomorphic Encryption at Scale
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Homomorphic Encryption across Apple features

Caller ID Business Services in MailEnhanced Visual Search
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Meets client constraints

• Small storage

• High quality experience


Meets server constraints

• High queries per second

• Small communication

Tens of thousands
< 1 MegaByte

A few MegaBytes
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Practical system requirements

Apple’s privacy commitment 
Client queries remain private, even from Apple



Feature Walkthrough: Enhanced Visual Search   
Improving on-device search with privately tagging landmarks and 
places of interest
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Improving On-Device Search with Private Tagging
Enhanced Visual Search  
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Improving On-Device Search with Private Tagging
Enhanced Visual Search  



Embedding: A vector of floats of a fixed dimension that retains 
semantic meaning about the input

Embedding Space
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ML 
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Similar images are closer in the embedding space 

Embedding Space

ML Embeddings 
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Nearest Neighbor Search with Plaintext Embeddings

Similarity metric computed using dot product

Database Index Embeddings

Dot-product compute 
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Download embeddings to the device

Global POI Database 
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Trivial Solution
Download embeddings to the device
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Devices are storage constrained 
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Trivial Solution
Download embeddings to the device
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Trivial Solution
Download embeddings to the device

✅

❌

Practical system requirements
Meets client constraints


• Small storage

• High quality experience


Meets server constraints

• High queries per second

• Small communication

Apple’s privacy commitment 
Client queries remain private, even from Apple

✅
Tens of thousands

< 1 MegaByte

A few MegaBytes



Server assisted Nearest Neighbor Search without Query Privacy

Dot-product compute 
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Global POI Index 
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Embeddings Leak Original Data
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HE: Operations under encryption

Encrypted embedding

Candidate Secure Solution

Encrypted dot-
product compute 
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Global POI Database 
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Technique Queries per 
second

Communication 
per query

Tiptoe [1] Additive HE 909 ~17.4 MB

Requirements

[1]- Henzinger, Alexandra, et al. "Private web search with Tiptoe." Proceedings of the 29th symposium on operating systems principles. 2023
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Candidate Secure Solution
Using homomorphic encryption only

Tens of thousands < 1 MegaByte

For 3.2 million MSMARCO dataset , assuming 10-thousand cores  
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Candidate Secure Solution
Using homomorphic encryption only

✅

❌

Practical system requirements
Meets client constraints


• Small storage

• High quality experience


Meets server constraints

• High queries per second

• Small communication

Apple’s privacy commitment 
Client queries remain private, even from Apple

✅

Tens of thousands
< 1 MegaByte

A few MegaBytes



Problem: High computation + communication 
server performs HE operation for each entry in the database 

Our solution 
Use Differential Privacy to reduce server computation  
Use efficient HE to reduce communication                                      
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Global POI Database 
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Clustering:  standard ML 
technique that’s a hard 
requirement for an efficient 
nearest neighbor search 

Our Solution
Reduce server computation with DP
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Reduce server computation with DP



Problem: Revealing cluster might reveal semantic information about the 
client photo 

Observation: Many users at any given time.  We can hide a user query in 
batch of queries.
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Our Solution
Reduce server computation with DP



Provides trade-off between efficiency and privacy 
Formally bounds worst privacy leakage through clusters 

Guarantees ( , )-differential privacy at the user level w.r.t user’s photo libraryϵ δ

Our Solution
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Reduce server computation with DP



• Intuition of our privacy guarantee

Server View Server View

Our Solution
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Reduce server computation with DP

We selected  ϵ = 0.8, δ = 10−9



Global POI Database 
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Achieving ( )-DP: First Stepϵ, δ

Works in epochs, with many clients
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Time line

Epoch
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Global POI Index 
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Global POI Index 
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Proof Intuition: 

1. We show that server view is a noisy 
histogram of clusters 

2. Prove this noisy histogram is -DP in 
central model 

3. The server gains no extra advantage in 
distributed model 

(ϵ, δ)

Server View

Curator

Curator =

Proof details: Scalable Private Search with Wally (https://arxiv.org/abs/2406.06761) 

Our Solution
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Reduce server computation with DP

https://arxiv.org/abs/2406.06761


Global POI Index 
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Reduce server computation with DP



Problem: High computation + communication 
server performs HE operation for each entry in the database 

Our solution 
Use Differential Privacy to reduce server computation  
Use efficient HE to reduce communication                                      
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Global POI Index 
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BFV HE [1]

[1] Jean-Claude Bajard, et al., "A Full RNS Variant of FV-like Somewhat Homomorphic Encryption Schemes," 
International Conference on Selected Areas in Cryptography, 2016 38
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Global POI Index 
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Reduce communication with HE
Our Solution



Global POI Index 
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Reduce communication with HE
Our Solution



Score Noise

Score Noise

RNS based ciphertext of BFV HE 

RNS Limb 1

RNS Limb 2

RLWE error

Message

Message is encoded in higher order bits
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Reduce communication with HE
Our Solution



- Modulus switching [1]: Keep single RNS limb

Score Noise

Score Noise

Score Noise

- Dropping LSB [2]: Further drop least significant bits from the remaining limb

NoiseScore

[1] Zvika Brakerski and Vinod Vaikuntanathan, "Efficient Fully Homomorphic Encryption from (Standard) LWE," IEEE Symposium on Foundations of 
Computer Science, 2011 
[2] Zhenyu Huang, et al., "Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference," USENIX Security Symposium, 2022

42

Reduce communication with HE
Our Solution

Score



• Delayed modular reduction to reduce server compute 

• Plaintext RNS to reduce evaluation key size 
- Evaluation key dominates request size to maintain anonymity

Other Optimizations

Operation 1 | ⸻⸻⸻⸻⸻—|

Operation 2 | ⸻⸻⸻⸻⸻—|⸺

Modular reduction | ⸺⸻⸻⸻⸻⸺|

Operation = arithmetic operations in field

❌
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Our Solution



Enhanced Visual Search

Technique Queries per 
second

Communication 
per query

Our Results* HE+DP+ 
Anonymization Network >25,000 0.56 MB

Tiptoe [1] Additive HE 909 ~17.4 MB

*Includes overhead due to fake queries
For 3.2 million MSMARCO dataset , assuming 10-thousand cores  
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Results

[1] Alexandra Henzinger, et al., "Private Web Search with Tiptoe," Symposium on Operating Systems Principles, 2023
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✅

Practical system requirements
Meets client constraints


• Small storage

• High quality experience


Meets server constraints

• High queries per second

• Small communication

Apple’s privacy commitment 
Client queries remain private, even from Apple

✅

✅

Our Solution



Open source Server HE implementation

Server Side: Apple Swift Homomorphic Encryption 

Auditable ✅ 
Novel optimizations ✅ 
Feedback welcome via Github ✅ 
https://github.com/apple/swift-homomorphic-encryption 

Device Side HE implementation: Corecrypto  

Auditable ✅ 
Novel optimizations ✅ 
https://developer.apple.com/security/#corecrypto
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https://github.com/apple/swift-homomorphic-encryption
http://developer.apple.com/security/#corecrypto


Summary of Apple’s Deployment of Homomorphic 
Encryption at Scale

•Enhancing on-device experiences with information from the server while 
maintaining one of the strongest notions of privacy  

•Efficient Homomorphic Encryption for several features running on over a billion 
devices 

•Uniquely combined with other state-of-the-art privacy technologies:  
- Differential privacy 
- Anonymization network  
- Privacy pass
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https://developer.apple.com/documentation/identitylookup/
getting-up-to-date-calling-and-blocking-information-for-your-
app

https://machinelearning.apple.com/research/homomorphic-
encryption

https://github.com/apple/swift-homomorphic-encryption

Public documentation and resources

https://machinelearning.apple.com/research/wally-search
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https://developer.apple.com/documentation/identitylookup/getting-up-to-date-calling-and-blocking-information-for-your-app
https://developer.apple.com/documentation/identitylookup/getting-up-to-date-calling-and-blocking-information-for-your-app
https://developer.apple.com/documentation/identitylookup/getting-up-to-date-calling-and-blocking-information-for-your-app
https://machinelearning.apple.com/research/homomorphic-encryption
https://machinelearning.apple.com/research/homomorphic-encryption
https://machinelearning.apple.com/research/wally-search
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