Apple's Deployment of Homomorphic Encryption at Scale

Rehan Rishi, Haris Mughees RWC 2025 | Apple | 03/26/2025

Business Services in Mail

Business Services in Mail

Business Services in Mail

Apple's privacy commitment

Client gueries remain private, even from Apple

Practical system requirements

Meets client constraints

- Small storage A few MegaBytes
- High quality experience

Meets server constraints

- High queries per second Tens of thousands
- Small communication < 1 MegaByte

Feature Walkthrough: Enhanced Visual Search Improving on-device search with privately tagging landmarks and places of interest

Region-of-interest

Detector

Region-of-interest

Detector

Landmark Region Of Interest in an image is converted into embeddings

ML Embeddings

Embedding: A vector of floats of a fixed dimension that retains semantic meaning about the input

Embedding Space

ML Embeddings

Embedding Space

Nearest Neighbor Search with Plaintext Embeddings

Query Embedding

Max dot-product ID

Similarity metric computed using dot product

Database Index Embeddings

5 Million

Devices are storage constrained

Apple's privacy commitment

Client queries remain private, even from Apple \checkmark

Practical system requirements

Meets client constraints

- Small storage A few MegaBytes
- High quality experience

Meets server constraints

- High queries per second Tens of thousands
- Small communication < 1 MegaByte

Background Server assisted Nearest Neighbor Search without Query Privacy

Embeddings Leak Original Data

Session 2A: ML and Information Leakage

CCS '20, November 9-13, 2020, Virtual Event, USA

Information Leakage in Embedding Models

Congzheng Song Cornell University & Google Brain cs2296@cornell.edu

Ananth Raghunathan Facebook & Google Brain ananthr@cs.stanford.edu

Information Leakage from Embedding in Large Language Models

Zhipeng Wan^{*1} Anda Cheng^{*1} Yinggui Wang¹ Lei Wang¹

Deep Private-Feature Extraction

Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, Hamid R. Rabiee

Analyzing Sensitive Information Leakage in Trajectory Embedding Models

Jiaxin Ding* jiaxinding@sjtu.edu.cn Shanghai Jiao Tong University

Pan Liu wslp1999@sjtu.edu.cn Shanghai Jiao Tong University

Shichuan Xi* Xi Shichuan@sjtu.edu.cn Shanghai Jiao Tong University

Xinbing Wang xwang8@sjtu.edu.cn Shanghai Jiao Tong University

Kailong Wu 1473686097@sjtu.edu.cn Shanghai Jiao Tong University

Chenghu Zhou zhouch@lreis.ac.cn Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences

Saeed Mahloujifar Princeton University sfar@princeton.edu

Text Embeddings Reveal (Almost) As Much As Text

John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, Alexander M. Rush Department of Computer Science **Cornell University**

Candidate Secure Solution Using homomorphic encryption only

Candidate Secure Solution Using homomorphic encryption only

For 3.2 million MSMARCO dataset , assuming 10-thousand cores

[1]- Henzinger, Alexandra, et al. "Private web search with Tiptoe." Proceedings of the 29th symposium on operating systems principles. 2023

Queries per	Communication		
second	per querv		
909	~17.4 MB		
Tens of thousands	< 1 MegaBvte		

Candidate Secure Solution Using homomorphic encryption only

Apple's privacy commitment

Client queries remain private, even from Apple \checkmark

Practical system requirements

Meets client constraints

- Small storage A few MegaBytes
- High quality experience

Meets server constraints

- High queries per second Tens of thousands
- Small communication < 1 MegaByte

Problem: High computation + communication

server performs HE operation for each entry in the database

Our solution

- Use Differential Privacy to reduce server computation
- Use efficient HE to reduce communication

educe server computation communication

Problem: High computation + communication

server performs HE operation for each entry in the database

Our solution

Use Differential Privacy to reduce server computation

Use efficient HE to reduce communication

Clustering: standard ML technique that's a hard requirement for an efficient nearest neighbor search

-0.9 1.5

0.5

client photo

batch of queries.

Problem: Revealing cluster might reveal semantic information about the

Observation: Many users at any given time. We can hide a user query in

- Provides trade-off between efficiency and privacy
- Formally bounds worst privacy leakage through clusters
- Guarantees (ϵ , δ)-differential privacy at the user level w.r.t user's photo library

Intuition of our privacy guarantee

We selected $\epsilon=0.8, \delta=10^{-9}$

Achieving (ϵ , δ)-DP: First Step

Works in epochs, with many clients

Achieving (ϵ, δ)-DP: Second Step

Request

User IP: 123.123.123.123

Anonymization Network

Oblivious HTTP

Achieving (ϵ, δ)-DP: Third Step

33

Fake queries

Achieving (ϵ, δ)-DP: Fourth Step

34

Random query schedule

Proof details: Scalable Private Search with Wally (https://arxiv.org/abs/2406.06761)

Proof Intuition:

1. We show that server view is a noisy histogram of clusters

2. Prove this noisy histogram is (ϵ, δ) -DP in central model

3. The server gains no extra advantage in distributed model

Problem: High computation + communication

server performs HE operation for each entry in the database

Our solution

Use Differential Privacy to reduce server computation

Use efficient HE to reduce communication

BFV HE [1]

[1] Jean-Claude Bajard, et al., "A Full RNS Variant of FV-like Somewhat Homomorphic Encryption Schemes," International Conference on Selected Areas in Cryptography, 2016

HE computation

Message is encoded in higher order bits

RNS based ciphertext of BFV HE

RNS Limb 1

RNS Limb 2

- Modulus switching [1]: Keep single RNS limb

- Dropping LSB [2]: Further drop least significant bits from the remaining limb

[1] Zvika Brakerski and Vinod Vaikuntanathan, "Efficient Fully Homomorphic Encryption from (Standard) LWE," IEEE Symposium on Foundations of Computer Science, 2011 [2] Zhenyu Huang, et al., "Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference," USENIX Security Symposium, 2022

Our Solution Other Optimizations

Delayed modular reduction to reduce server compute

Modular reduction

Operation = arithmetic operations in field

 Plaintext RNS to reduce evaluation key size - Evaluation key dominates request size to maintain anonymity

Enhanced Visual Search Results

	Technique	Queries per second	Communication per query
Our Results*	HE+DP+ Anonymization Network	>25,000	0.56 MB
Tiptoe [1]	Additive HE	909	~17.4 MB

*Includes overhead due to fake queries For 3.2 million MSMARCO dataset , assuming 10-thousand cores

[1] Alexandra Henzinger, et al., "Private Web Search with Tiptoe," Symposium on Operating Systems Principles, 2023

Our Solution

Apple's privacy commitment

Client queries remain private, even from Apple

Practical system requirements

Meets client constraints

- Small storage
- High quality experience

Meets server constraints

- High queries per second
- Small communication

Open source Server HE implementation Server Side: Apple Swift Homomorphic Encryption Auditable 🗸 Novel optimizations Feedback welcome via Github 🗸

https://github.com/apple/swift-homomorphic-encryption

Device Side HE implementation: Corecrypto

Auditable 🗸

Novel optimizations

https://developer.apple.com/security/#corecrypto

Summary of Apple's Deployment of Homomorphic Encryption at Scale

- Enhancing on-device experiences with information from the server while maintaining one of the strongest notions of privacy
- Efficient Homomorphic Encryption for several features running on over a billion devices
- Uniquely combined with other state-of-the-art privacy technologies:
 - Differential privacy
 - Anonymization network
 - Privacy pass

Public documentation and resources

swift-homomorphic-encryption apple

https://github.com/apple/swift-homomorphic-encryption

<u>SMS and Call Reporting</u> / Getting up-to-date calling and blocking information for your app

Article

Getting up-to-date calling and blocking information for your app

Implement the Live Caller ID Lookup app extension to provide call-blocking and identity services.

https://developer.apple.com/documentation/identitylookup/ getting-up-to-date-calling-and-blocking-information-for-yourapp

Highlight | October 24, 2024

Privacy

Combining Machine Learning and **Homomorphic Encryption** in the Apple Ecosystem

XZ

Using Private Nearest Neighbor Search for Enhanced Visual Search for photos

https://machinelearning.apple.com/research/homomorphicencryption

Scalable Private Search with Wally

Hilal Asi, Fabian Boemer, Nicholas Genise, Muhammad Haris Mughees, Tabitha Ogilvie, Rehan Rishi, Guy N. Rothblum, Kunal Talwar, Karl Tarbe, Ruiyu Zhu, Marco Zuliani

https://machinelearning.apple.com/research/wally-search

TM and © 2025 Apple Inc. All rights reserved.

