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What about post-quantum key exchanges? Can use Saber or FrodoKEM.

What about standardized post-quantum key exchanges — ML-KEM?



Overview

- Kemeleon Encoding 

- ML-Kemeleon: Obfuscated PQ KEM 

- OEINC: Obfuscated KEM Combiner 

- Hybrid Applications: 

- Obfuscated Key Exchange 

- Password Authenticated Key 
Exchange (with adaptive security)



4

Byte Distribution of ML-KEM-768 Public Keys

Image inspired by: Jack Wampler

ML-KEM public keys:  Polynomials with coefficients mod q=3329, and a random seed



4

Byte Distribution of ML-KEM-768 Public Keys

Image inspired by: Jack Wampler

ML-KEM public keys:  Polynomials with coefficients mod q=3329, and a random seed



4

Byte Distribution of ML-KEM-768 Public Keys

Seed  
(Uniformly Distributed)

Image inspired by: Jack Wampler

Public Key Coefficients 
(most sig. bit biased towards 0)

ML-KEM public keys:  Polynomials with coefficients mod q=3329, and a random seed
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[ A = a1 + a2×q + a3×q3 + ... + ab×qb-1 ] (A is a number mod qb-1)

Most sig. bit still biased towards 0

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

Encoded public keys ~2.5% smaller than regular 
(19/28/38 bytes for ML-KEM-512/768/1024)

MLKEM-768 likelihood of rejection is 17% 
(Elligator likelihood of rejection is ~50%)

[ a1 ][ a2 ][ a3 ] ... [ ab ] (ai is a number mod q=3329)

1. Accumulate into one big integer

ML-KEM public keys 
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Distribution of ML-KEM-768 Ciphertext Coefficients
ML-KEM ciphertexts 

Vector of polynomials, compressed before returned by Encap

Compression step in Encap performs rounding which 
results in a non-uniform ciphertext distribution. 

Kemeleon encoding for ciphertexts: 

1. Decompress and “recover” randomness 
from ciphertexts 

2. Use same rejection-sampling method as 
was used for public keys

Encoded ciphertexts are 6-15% larger than regular 
(109/164/90 bytes for ML-KEM-512/768/1024) 
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- IND-CCA: IND-CCA of ML-KEM 
- SPR-CCA: SPR-CCA of ML-KEM and ciphertext 

uniformity 
- Ciphertext Uniformity: SPR-CCA of ML-KEM  
- Public Key Uniformity: reduces to MLWE 

+ small loss from rejection rates in each case

Note: while Elligator is statistically 
uniform, Kemeleon relies on MLWE 
assumption.
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Don’ts! 

- Use randomness derived from the KEM 
shared secret to seed the encoding 
algorithm (i.e., careful with key 
separation) 

- Reveal randomness used for the 
encoding algorithm (i.e., randomness 
must be kept secret)

Time for Key Generation (and Encoding) 

Constant-time Kemeleon implementation, non-rejection 
variant, NIST security level 3

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/
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Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA 

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

Suffices to distinguish 
either ciphertext

Sometimes c1 is 
unconditionally uniform

Can we use c1 to encrypt c2?
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outOKEM can be DHKEM 
sk = x       pk = xG 

ct = Elligator2(r · pk)

Concrete Instantiation 

outOKEM = DHKEM[Ristretto]+Elligator2 
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- All handshake traffic should appear 
indistinguishable from random (or simulatable).

- Honest clients assumed to know server public key.

- Applications in censorship circumvention:  

- obfs4 as a Tor pluggable transport 

- Traffic does not match any blocklists

101001..

011010..

skS pkSKnows: pkS

Existing KEM-based protocol requires 
hybrid public key uniformity
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(c1, K1) := OKEM.Encap(pkS)

K1 := OKEM.Decap(skS, c1)

(c2, K2) := KEM.Encap(pke)
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(ske, pke) := KEM.Keygen()
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K2 := KEM.Decap(ske, c2)
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(c1, K1) := OKEM.Encap(pkS)
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(c2, K2) := KEM.Encap(pke)
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(ske, pke) := KEM.Keygen()

Client Server skS pkS

pke := SE.DecK1(epke)

K2 := KEM.Decap(ske, c2)

No public key uniformity 
necessary

return H(K1, K2)return H(K1, K2)

Ephemeral and static 
hybrid (O)KEM 
encapsulations

(c1, K1) := OKEM.Encap(pkS)

epke := SE.EncK1(pke)
K1 := OKEM.Decap(skS, c1)

(c2, K2) := KEM.Encap(pke)
ec2 := SE.EncK1(c2)c2 := SE.DecK1(ec2)

c1



Overview

- Kemeleon Encoding 

- ML-Kemeleon: Obfuscated PQ KEM 

- OEINC: Obfuscated KEM Combiner 

- Hybrid Applications: 

- Obfuscated Key Exchange 

- Password Authenticated Key 
Exchange (with adaptive security)
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We can instantiate CAKE with 
OEINC[DHKEM+Elligator, StatFrodoKEM]

7.5x comms overhead compared to 3-round 
PAKEs

CAKE

- LWE schemes only fail this bc of an optimization
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Thanks! Questions?
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We made: 
- an encoding for ML-KEM 
- an OKEM from ML-KEM 
- an OKEM combiner 

We got: 
- Hybrid obfuscated key exchange 
- Hybrid PAKE

Kemeleon: Elligator-like Obfuscation for Post-Quantum Cryptography
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