
Kemeleon:
Elligator-like Obfuscation for
Post-Quantum Cryptography

1

Felix Günther
IBM Research – Zurich

Michael Rosenberg
Cloudflare

Douglas Stebila
University of Waterloo

Shannon Veitch
ETH Zurich

Real World Crypto 2025. Sofia, Bulgaria

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

2

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

2

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

Some PAKEs need to operate on random bytestrings

2

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

Some PAKEs need to operate on random bytestrings

Previously: Elligator maps elliptic curve public keys to random bytestrings

2

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

Some PAKEs need to operate on random bytestrings

Previously: Elligator maps elliptic curve public keys to random bytestrings

2

DH gx

DH gy

101001..

011010..

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

Some PAKEs need to operate on random bytestrings

Previously: Elligator maps elliptic curve public keys to random bytestrings

2

DH gx

DH gy

101001..

011010..

What about post-quantum key exchanges? Can use Saber or FrodoKEM.

Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

Some PAKEs need to operate on random bytestrings

Previously: Elligator maps elliptic curve public keys to random bytestrings

2

DH gx

DH gy

101001..

011010..

What about post-quantum key exchanges? Can use Saber or FrodoKEM.

What about standardized post-quantum key exchanges — ML-KEM?

Overview

- Kemeleon Encoding

- ML-Kemeleon: Obfuscated PQ KEM

- OEINC: Obfuscated KEM Combiner

- Hybrid Applications:

- Obfuscated Key Exchange

- Password Authenticated Key
Exchange (with adaptive security)

4

Byte Distribution of ML-KEM-768 Public Keys

Image inspired by: Jack Wampler

ML-KEM public keys: Polynomials with coefficients mod q=3329, and a random seed

4

Byte Distribution of ML-KEM-768 Public Keys

Image inspired by: Jack Wampler

ML-KEM public keys: Polynomials with coefficients mod q=3329, and a random seed

4

Byte Distribution of ML-KEM-768 Public Keys

Seed
(Uniformly Distributed)

Image inspired by: Jack Wampler

Public Key Coefficients
(most sig. bit biased towards 0)

ML-KEM public keys: Polynomials with coefficients mod q=3329, and a random seed

Kemeleon: Rejection-Sampling Public Keys

5Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

[a1][a2][a3] ... [ab] (ai is a number mod q=3329)
ML-KEM public keys

Kemeleon: Rejection-Sampling Public Keys

5

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1)

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

[a1][a2][a3] ... [ab] (ai is a number mod q=3329)

1. Accumulate into one big integer

ML-KEM public keys

2. Rejection sampling: reject if msb is 1

Kemeleon: Rejection-Sampling Public Keys

5

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1)

Most sig. bit still biased towards 0

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

[a1][a2][a3] ... [ab] (ai is a number mod q=3329)

1. Accumulate into one big integer

ML-KEM public keys

2. Rejection sampling: reject if msb is 1

Kemeleon: Rejection-Sampling Public Keys

5

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1)

Most sig. bit still biased towards 0

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

Encoded public keys ~2.5% smaller than regular
(19/28/38 bytes for ML-KEM-512/768/1024)

[a1][a2][a3] ... [ab] (ai is a number mod q=3329)

1. Accumulate into one big integer

ML-KEM public keys

2. Rejection sampling: reject if msb is 1

Kemeleon: Rejection-Sampling Public Keys

5

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1)

Most sig. bit still biased towards 0

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

Encoded public keys ~2.5% smaller than regular
(19/28/38 bytes for ML-KEM-512/768/1024)

MLKEM-768 likelihood of rejection is 17%
(Elligator likelihood of rejection is ~50%)

[a1][a2][a3] ... [ab] (ai is a number mod q=3329)

1. Accumulate into one big integer

ML-KEM public keys

6

Distribution of ML-KEM-768 Ciphertext Coefficients
ML-KEM ciphertexts

Vector of polynomials, compressed before returned by Encap

6

Distribution of ML-KEM-768 Ciphertext Coefficients
ML-KEM ciphertexts

Vector of polynomials, compressed before returned by Encap

Compression step in Encap performs rounding which
results in a non-uniform ciphertext distribution.

6

Distribution of ML-KEM-768 Ciphertext Coefficients
ML-KEM ciphertexts

Vector of polynomials, compressed before returned by Encap

Compression step in Encap performs rounding which
results in a non-uniform ciphertext distribution.

Kemeleon encoding for ciphertexts:

1. Decompress and “recover” randomness
from ciphertexts

2. Use same rejection-sampling method as
was used for public keys

6

Distribution of ML-KEM-768 Ciphertext Coefficients
ML-KEM ciphertexts

Vector of polynomials, compressed before returned by Encap

Compression step in Encap performs rounding which
results in a non-uniform ciphertext distribution.

Kemeleon encoding for ciphertexts:

1. Decompress and “recover” randomness
from ciphertexts

2. Use same rejection-sampling method as
was used for public keys

Encoded ciphertexts are 6-15% larger than regular
(109/164/90 bytes for ML-KEM-512/768/1024)

Kemeleon without Rejection

Applying techniques from Tibouchi 2014 (Elligator2):

1. Take the accumulated integer, A (mod qb-1), from the
original encoding with byte length < n

7Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1, msb still biased towards 0)

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Kemeleon without Rejection

Applying techniques from Tibouchi 2014 (Elligator2):

1. Take the accumulated integer, A (mod qb-1), from the
original encoding with byte length < n

7Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1, msb still biased towards 0)

[R = A + r] (r random s.t. R is a number modulo some power of 2)

2. Add random value r such that result, R = A + r, has
byte length n + 32 (or alternative value, depending on
security parameters)

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Kemeleon without Rejection

Applying techniques from Tibouchi 2014 (Elligator2):

1. Take the accumulated integer, A (mod qb-1), from the
original encoding with byte length < n

7Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Decoding: Take the result R modulo qb-1, to recover A, and
decode as usual

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1, msb still biased towards 0)

[R = A + r] (r random s.t. R is a number modulo some power of 2)

2. Add random value r such that result, R = A + r, has
byte length n + 32 (or alternative value, depending on
security parameters)

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Kemeleon without Rejection

Applying techniques from Tibouchi 2014 (Elligator2):

1. Take the accumulated integer, A (mod qb-1), from the
original encoding with byte length < n

7Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Encoded public keys are ~ same size as in
standard ML-KEM.

Likelihood of rejection is 0%

Decoding: Take the result R modulo qb-1, to recover A, and
decode as usual

[A = a1 + a2×q + a3×q3 + ... + ab×qb-1] (A is a number mod qb-1, msb still biased towards 0)

[R = A + r] (r random s.t. R is a number modulo some power of 2)

2. Add random value r such that result, R = A + r, has
byte length n + 32 (or alternative value, depending on
security parameters)

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Overview

- Kemeleon Encoding

- ML-Kemeleon: Obfuscated PQ KEM

- OEINC: Obfuscated KEM Combiner

- Hybrid Applications:

- Obfuscated Key Exchange

- Password Authenticated Key
Exchange (with adaptive security)

Using Kemeleon with ML-KEM: an OKEM

9

ML-KEM can naturally be combined with Kemeleon
(by encoding public keys and ciphertexts) to obtain
an Obfuscated KEM (OKEM) ML-KEM + Kemeleon = ML-Kemeleon

Using Kemeleon with ML-KEM: an OKEM

9

ML-KEM can naturally be combined with Kemeleon
(by encoding public keys and ciphertexts) to obtain
an Obfuscated KEM (OKEM)

OKEM Security Properties:

- IND-CCA: indistinguishability of shared secrets

ML-KEM + Kemeleon = ML-Kemeleon

Using Kemeleon with ML-KEM: an OKEM

9

ML-KEM can naturally be combined with Kemeleon
(by encoding public keys and ciphertexts) to obtain
an Obfuscated KEM (OKEM)

OKEM Security Properties:

- IND-CCA: indistinguishability of shared secrets
- SPR-CCA (strong pseudorandomness):

indistinguishability of shared secrets, random/
simulatable ciphertexts

- implies anonymity (ANO-CCA)

ML-KEM + Kemeleon = ML-Kemeleon

Using Kemeleon with ML-KEM: an OKEM

9

ML-KEM can naturally be combined with Kemeleon
(by encoding public keys and ciphertexts) to obtain
an Obfuscated KEM (OKEM)

OKEM Security Properties:

- IND-CCA: indistinguishability of shared secrets
- SPR-CCA (strong pseudorandomness):

indistinguishability of shared secrets, random/
simulatable ciphertexts

- implies anonymity (ANO-CCA)
- Ciphertext and Public Key Uniformity:

indistinguishable from random bit strings

ML-KEM + Kemeleon = ML-Kemeleon

Using Kemeleon with ML-KEM: an OKEM

9

ML-Kemeleon Properties:

- IND-CCA: IND-CCA of ML-KEM
- SPR-CCA: SPR-CCA of ML-KEM and ciphertext

uniformity
- Ciphertext Uniformity: SPR-CCA of ML-KEM
- Public Key Uniformity: reduces to MLWE

+ small loss from rejection rates in each case

ML-KEM can naturally be combined with Kemeleon
(by encoding public keys and ciphertexts) to obtain
an Obfuscated KEM (OKEM)

OKEM Security Properties:

- IND-CCA: indistinguishability of shared secrets
- SPR-CCA (strong pseudorandomness):

indistinguishability of shared secrets, random/
simulatable ciphertexts

- implies anonymity (ANO-CCA)
- Ciphertext and Public Key Uniformity:

indistinguishable from random bit strings

ML-KEM + Kemeleon = ML-Kemeleon

Using Kemeleon with ML-KEM: an OKEM

9

ML-Kemeleon Properties:

- IND-CCA: IND-CCA of ML-KEM
- SPR-CCA: SPR-CCA of ML-KEM and ciphertext

uniformity
- Ciphertext Uniformity: SPR-CCA of ML-KEM
- Public Key Uniformity: reduces to MLWE

+ small loss from rejection rates in each case

Note: while Elligator is statistically
uniform, Kemeleon relies on MLWE
assumption.

ML-KEM can naturally be combined with Kemeleon
(by encoding public keys and ciphertexts) to obtain
an Obfuscated KEM (OKEM)

OKEM Security Properties:

- IND-CCA: indistinguishability of shared secrets
- SPR-CCA (strong pseudorandomness):

indistinguishability of shared secrets, random/
simulatable ciphertexts

- implies anonymity (ANO-CCA)
- Ciphertext and Public Key Uniformity:

indistinguishable from random bit strings

ML-KEM + Kemeleon = ML-Kemeleon

Using Kemeleon

Dos!

- Consider a constant-time implementation
for big integer arithmetic, if this is in your
threat model (also, consider timing side
channels due to rejection sampling)

10Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Using Kemeleon

Dos!

- Consider a constant-time implementation
for big integer arithmetic, if this is in your
threat model (also, consider timing side
channels due to rejection sampling)

10Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Don’ts!

- Use randomness derived from the KEM
shared secret to seed the encoding
algorithm (i.e., careful with key
separation)

- Reveal randomness used for the
encoding algorithm (i.e., randomness
must be kept secret)

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Using Kemeleon

Dos!

- Consider a constant-time implementation
for big integer arithmetic, if this is in your
threat model (also, consider timing side
channels due to rejection sampling)

10Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Don’ts!

- Use randomness derived from the KEM
shared secret to seed the encoding
algorithm (i.e., careful with key
separation)

- Reveal randomness used for the
encoding algorithm (i.e., randomness
must be kept secret)

Time for Key Generation (and Encoding)

Constant-time Kemeleon implementation, non-rejection
variant, NIST security level 3

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

Overview

- Kemeleon Encoding

- ML-Kemeleon: Obfuscated PQ KEM

- OEINC: Obfuscated KEM Combiner

- Hybrid Applications:

- Obfuscated Key Exchange

- Password Authenticated Key
Exchange (with adaptive security)

12

Hybrid KEMs: The Parallel Approach

12

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

12

c1|| c2Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

Suffices to distinguish
either ciphertext

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

Suffices to distinguish
either ciphertext

Sometimes c1 is
unconditionally uniform

12

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1

K1

c2

K2

Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

Suffices to distinguish
either ciphertext

Sometimes c1 is
unconditionally uniform

Can we use c1 to encrypt c2?

13

Outer-Encrypts-Inner Nested Combiner (OEINC)

13

Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

PRG

K1e,K1k

13

SE.Enc c2’

Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

PRG

K1e,K1k

13

SE.Enc c2’

c1|| c2’Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

PRG

K1e,K1k

13

SE.Enc c2’

c1|| c2’

PRF K

Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

PRG

K1e,K1k

13

SE.Enc c2’

c1|| c2’

PRF K

Hybrid IND-CCA

Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

PRG

K1e,K1k

13

SE.Enc c2’

c1|| c2’

PRF K

Hybrid IND-CCA Low overhead: 1 PRG + 1 XOR

Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

PRG

K1e,K1k

13

SE.Enc c2’

c1|| c2’

PRF K

Hybrid IND-CCA

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

Low overhead: 1 PRG + 1 XOR

Encap

Encap

pk1

pk2

"outOKEM"

"inOKEM"

c1

K1

c2

K2

Outer-Encrypts-Inner Nested Combiner (OEINC)

Instantiating OEINC

14

Instantiating OEINC
Security Properties

14

Instantiating OEINC
Security Properties

Requires:

14

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Achieves IND-CCA/SPR-CCA, and:

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Achieves IND-CCA/SPR-CCA, and:

- Ciphertext uniformity outOKEM is IND-CCA or inOKEM is ct-unif

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Achieves IND-CCA/SPR-CCA, and:

- Ciphertext uniformity outOKEM is IND-CCA or inOKEM is ct-unif

- Public key uniformity outOKEM is pk-unif and inOKEM is pk-unif

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Achieves IND-CCA/SPR-CCA, and:

- Ciphertext uniformity outOKEM is IND-CCA or inOKEM is ct-unif

- Public key uniformity outOKEM is pk-unif and inOKEM is pk-unif

We don’t get hybrid public key uniformity! (Likely impossible)

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Achieves IND-CCA/SPR-CCA, and:

- Ciphertext uniformity outOKEM is IND-CCA or inOKEM is ct-unif

- Public key uniformity outOKEM is pk-unif and inOKEM is pk-unif

We don’t get hybrid public key uniformity! (Likely impossible)

We also don’t always need hybrid pk-unif

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Achieves IND-CCA/SPR-CCA, and:

- Ciphertext uniformity outOKEM is IND-CCA or inOKEM is ct-unif

- Public key uniformity outOKEM is pk-unif and inOKEM is pk-unif

inOKEM can basically be
any ct-unif KEM

(and pk-unif if you want it)

We don’t get hybrid public key uniformity! (Likely impossible)

We also don’t always need hybrid pk-unif

Instantiating OEINC
Security Properties

Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

14

outOKEM can be DHKEM
sk = x pk = xG

ct = Elligator2(r · pk)

Concrete Instantiation

outOKEM = DHKEM[Ristretto]+Elligator2

inOKEM = ML-Kemeleon/Saber/Frodo

Achieves IND-CCA/SPR-CCA, and:

- Ciphertext uniformity outOKEM is IND-CCA or inOKEM is ct-unif

- Public key uniformity outOKEM is pk-unif and inOKEM is pk-unif

inOKEM can basically be
any ct-unif KEM

(and pk-unif if you want it)

We don’t get hybrid public key uniformity! (Likely impossible)

We also don’t always need hybrid pk-unif

Overview

- Kemeleon Encoding

- ML-Kemeleon: Obfuscated PQ KEM

- OEINC: Obfuscated KEM Combiner

- Hybrid Applications:

- Obfuscated Key Exchange

- Password Authenticated Key
Exchange (with adaptive security)

Hybrid Obfuscated Key Exchange

16

- All handshake traffic should appear
indistinguishable from random (or simulatable).

101001..

011010..

Hybrid Obfuscated Key Exchange

16

- All handshake traffic should appear
indistinguishable from random (or simulatable).

- Honest clients assumed to know server public key. 101001..

011010..

skS pkSKnows: pkS

Hybrid Obfuscated Key Exchange

16

- All handshake traffic should appear
indistinguishable from random (or simulatable).

- Honest clients assumed to know server public key.

- Applications in censorship circumvention:

- obfs4 as a Tor pluggable transport

- Traffic does not match any blocklists

101001..

011010..

skS pkSKnows: pkS

Hybrid Obfuscated Key Exchange

16

- All handshake traffic should appear
indistinguishable from random (or simulatable).

- Honest clients assumed to know server public key.

- Applications in censorship circumvention:

- obfs4 as a Tor pluggable transport

- Traffic does not match any blocklists

101001..

011010..

skS pkSKnows: pkS

Existing KEM-based protocol requires
hybrid public key uniformity

Hybrid Obfuscated Key Exchange
Drivel: A Hybrid Obfuscated Key Exchange Protocol
 (O)KEM-based AKE

17

Client Server skS pkS

pke

c2

Hybrid Obfuscated Key Exchange
Drivel: A Hybrid Obfuscated Key Exchange Protocol
 (O)KEM-based AKE

17

(ske, pke) := KEM.Keygen()

Client Server skS pkS

K2 := KEM.Decap(ske, c2)

Ephemeral and static
hybrid (O)KEM
encapsulations

(c2, K2) := KEM.Encap(pke)

pke

c2

Hybrid Obfuscated Key Exchange
Drivel: A Hybrid Obfuscated Key Exchange Protocol
 (O)KEM-based AKE

17

(ske, pke) := KEM.Keygen()

Client Server skS pkS

K2 := KEM.Decap(ske, c2)

Ephemeral and static
hybrid (O)KEM
encapsulations

(c1, K1) := OKEM.Encap(pkS)

K1 := OKEM.Decap(skS, c1)

(c2, K2) := KEM.Encap(pke)

c1

pke

c2

Hybrid Obfuscated Key Exchange
Drivel: A Hybrid Obfuscated Key Exchange Protocol
 (O)KEM-based AKE

17

(ske, pke) := KEM.Keygen()

Client Server skS pkS

K2 := KEM.Decap(ske, c2)
return H(K1, K2)return H(K1, K2)

Ephemeral and static
hybrid (O)KEM
encapsulations

(c1, K1) := OKEM.Encap(pkS)

K1 := OKEM.Decap(skS, c1)

(c2, K2) := KEM.Encap(pke)

c1

ec2

epke

Hybrid Obfuscated Key Exchange
Drivel: A Hybrid Obfuscated Key Exchange Protocol
 (O)KEM-based AKE

17

(ske, pke) := KEM.Keygen()

Client Server skS pkS

pke := SE.DecK1(epke)

K2 := KEM.Decap(ske, c2)

No public key uniformity
necessary

return H(K1, K2)return H(K1, K2)

Ephemeral and static
hybrid (O)KEM
encapsulations

(c1, K1) := OKEM.Encap(pkS)

epke := SE.EncK1(pke)
K1 := OKEM.Decap(skS, c1)

(c2, K2) := KEM.Encap(pke)
ec2 := SE.EncK1(c2)c2 := SE.DecK1(ec2)

c1

Overview

- Kemeleon Encoding

- ML-Kemeleon: Obfuscated PQ KEM

- OEINC: Obfuscated KEM Combiner

- Hybrid Applications:

- Obfuscated Key Exchange

- Password Authenticated Key
Exchange (with adaptive security)

Applications of OEINC: Hybrid PAKE

19

Password authenticated key exchange (PAKE)

Applications of OEINC: Hybrid PAKE

19

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

Applications of OEINC: Hybrid PAKE

19

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

Applications of OEINC: Hybrid PAKE

19

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

Applications of OEINC: Hybrid PAKE

19

CAKE

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

- Needs ciphertext and public key uniformity

Applications of OEINC: Hybrid PAKE

19

CAKE

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

- Needs ciphertext and public key uniformity

Applications of OEINC: Hybrid PAKE

19

CAKE

- LWE schemes only fail this bc of an optimization

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

- Needs ciphertext and public key uniformity

Applications of OEINC: Hybrid PAKE

19

We can instantiate CAKE with
OEINC[DHKEM+Elligator, StatFrodoKEM]

CAKE

- LWE schemes only fail this bc of an optimization

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

- Needs ciphertext and public key uniformity

- First hybrid PAKE with security against adaptive
corruptions

Applications of OEINC: Hybrid PAKE

19

We can instantiate CAKE with
OEINC[DHKEM+Elligator, StatFrodoKEM]

CAKE

- LWE schemes only fail this bc of an optimization

This is 2 rounds. Other PAKEs are 3 rounds
or inefficient (350x slowdown).

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

- Needs ciphertext and public key uniformity

- First hybrid PAKE with security against adaptive
corruptions

Applications of OEINC: Hybrid PAKE

19

We can instantiate CAKE with
OEINC[DHKEM+Elligator, StatFrodoKEM]

CAKE

- LWE schemes only fail this bc of an optimization

This is 2 rounds. Other PAKEs are 3 rounds
or inefficient (350x slowdown).

Password authenticated key exchange (PAKE)

- Parties w/ low-entropy password want to establish a high-
entropy shared secret:

- Active adversary has 1 pw guess per protocol
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, EKE-PRF, CAKE, OCAKE, …)

- CAKE proven secure in the UC model with adaptive
corruptions (adversaries can corrupt any user at any time)

- Needs ciphertext and public key uniformity

- First hybrid PAKE with security against adaptive
corruptions

Applications of OEINC: Hybrid PAKE

19

We can instantiate CAKE with
OEINC[DHKEM+Elligator, StatFrodoKEM]

7.5x comms overhead compared to 3-round
PAKEs

CAKE

- LWE schemes only fail this bc of an optimization

20

Thanks! Questions?

References:
- Günther, Stebila, Veitch. Obfuscated Key Exchange.

CCS 2024. ia.cr/2024/1086
- Günther, Stebila, Veitch. Kemeleon Encodings.

Internet-Draft. https://datatracker.ietf.org/doc/
draft-veitch-kemeleon/ <— send us your feedback!

- Günther, Rosenberg, Stebila, Veitch. Hybrid
Obfuscated KEMs and Key Exchange. ia.cr/2025/408

We made:
- an encoding for ML-KEM
- an OKEM from ML-KEM
- an OKEM combiner

We got:
- Hybrid obfuscated key exchange
- Hybrid PAKE

Kemeleon: Elligator-like Obfuscation for Post-Quantum Cryptography

http://ia.cr/2024/1086
https://datatracker.ietf.org/doc/draft-veitch-kemeleon/
https://datatracker.ietf.org/doc/draft-veitch-kemeleon/
https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

