Using Formally Verified
Post-Quantum Algorithms at Scale

Karthikeyan Bhargavan, Andres Erbsen, Lucas Franceschino,
Franziskus Kiefer, Thyla van der Merwe

Real World Cryptography Symposium
March 27, 2025

CRYSPEY” Google

A Collaboration is Born

Why PQC?

Quantum Computers soon? Transition now!
o Attack: store now, decrypt later
Industry standards, government customers
o By ~2026!

1st Priority: Key Exchange in SSH/TLS/...
Next: digital signatures

Many products (some OSS), industry-wide effort — Open Source

Why Verify Lattice-Crypto Implementations?

e (Goal: no implementation vulnerabilities in optimized code

e Experience from Elliptic-Curve Cryptography
o Auditing code is important but challenging
o Subtle bugs missed in high-profile implementations

e Simpler than ECC? (No carry chains, standard representations)
o Yes, in reference implementations

e Tricky optimizations: vectorization, deferred reductions, decoding

The Technical Detalls

FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based
Key-Encapsulation Mechanism Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory (—/\ ~

National Institute of Standards and Technology

This publication is available free of charge from: this standard.
https://doi.org/10.6028/NIST.FIPS.203 _ Y,

Published August 13, 2024

Implementing ML-KEM in

Pure Rust code: 16 KLOC

Optimized for multiple platforms

o Portable + AVX2 + AArch64

o 2 KLOC for SIMD optimizations (using intrinsics)
Easy to integrate and deploy

o Cargo crate: libcrux-ml-kem

o PQCA’s official Rust implementation

Rust

Mathematics Low-Level Formats Algorithms

High-Level APIs

Field, polynomial, matrix (de)serialization Sampling, IND-CPA, IND-CCA ML-KEM 512/768/1024

3k lines 3k lines 6k lines

4k lines

https://crates.io/crates/libcrux-ml-kem

Verifying crypto code
written in Rust
using hax and F~*

NIST FIPS 203

Writing Crypto Code in Rust

pub fn barrett_reduce(input: 132) -> 132 {
let t = (input as 164 * 20159) + (0x4_000_000 >> 1);
let quotient = (t >> 26) as 132;
let result = input - (quotient * 3329);
result

Signed Barrett Reduction: with modulus 3329
(in constant time, so cannot directly use %)

Specifying Correctness

#[requires(input <= 0x4_000_000 && input >= -0x4_000_000)]
#[ensures(|result| result <= 3328 && result >= -3328 &&

modulo(result, 3329) == modulo(input, 3329))]
pub fn barrett_reduce(input: 132) -> 132 {

}

Expected behaviour: compute a signed representative of the
input field element (modulo 3329)

10

Preventing Panics in Rust Code

#[requires(input <= 0x4_000_000 && input >= -0x4_000_000)]
#[ensures(...)]
pub fn barrett_reduce(input: 132) -> 132 {
let t = (input as 164 * 20159)(*) (0x4_000_000 >> 1);
let quotient = (t >> 26) as 132;
let result = input(:>(quotient 3329);
result

These arithmetic operations may overflow or underflow
causing the code to panic at run-time

11

Verifying (De-)Serialization Automatically

116 116

Serialize 12 Deserialize 12

[N J [N J % J
Y Y

24 hand-optimized variants!

12 bits 11 bits 10 bits 5 bits 4 bits 1 bits

perinteger perinteger perinteger perinteger perinteger perinteger

6 variants 2 variants 2 variants

serialize deserialize portable avx2

A new F* tactic that can prove every variant automatically!

12

Enforcing Secret Independence

Type-based static analysis enforces a “constant-time” discipline

e arithmetic operations with input-dependent timing
(e.g. division) over secret integers

e comparison over secret values
e branching over secret values

e array or vector accesses at secret indices

Prevents a large class of remote timing attacks (at source level).

Does not prevent compiler-induced leaks, micro-architectural attacks, ...

13

KyberSlash: a new timing vulnerability

void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly x*a)

{
unsigned int i,j; Bug found in our
uintl6_t t; Rust code during
formal verification
for(i=0;i<KYBER_N/8;i++) {
msg[i] = @; Bug also present in
for(j=0;j<8;j++) { PQ-Crystals,
t = a—>coeffs[8xi+jl; PQ_CIean
t += ((int16_t)t >> 15) & KYBER_Q; (Used in production)
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
msgl[i] |= t << j;
}
KyberSlash: Exploiting secret-dependent division timings in Kyber Implementations.
by IACR Transactions on Cryptographic Hardware and Embedded Systems, 2025(2),
} 209-234. Bernstein, D. J., Bhargavan, K., Bhasin, S., Chattopadhyay, A., Chia, T. K.,
Kannwischer, M. J., Kiefer, F,, Paiva, T. B, Ravi, P, & Tamvada, G.

14

Scaling the Proof Effort

e Full formal verification of a large code-base
o Source Rust code: 16 KLOC
o Generated F* model: 28 KLOC (Portable + AVX2)
e Multiple automation strategies
o SMT-based automation for low-level mathematics
o Tactic-based automation for serialization
o Type-based secret independence analysis
e Still needs many manual F* proofs + annotations for the full proof

Mathematics Low-Level Formats Algorithms High-Level APIs

Field, polynomial, matrix (de)serialization Sampling, IND-CPA, IND-CCA ML-KEM 512/768/1024

ok lines of F* 5k lines of F* ok lines of F* 4k lines of F*

Verified PQC at Scale

(Rust)

verified Rust :

to C code [N intend J

C O m p I I I n g E)ptimized Implementatiorﬂ [R : 3 j
ust libraries

[Eurydice j
/ L]
Many mainstream crypto y
libraries need C code
NSS, BoringSSL, C code Rust / C glue library
OpenSSH, OpenSSL, ...

N Voo
(o) (occ) [Tmsve) .

Integration Challenges

C code size is larger than Rust

o From monomorphizing ML-KEM variants from Rust

o ~40KB optimized for speed

Match existing APIls in the crypto library

o QOpaque secret keys, Alignment, Strict aliasing

C++ toolchain compatibility (yes, even iOS, MSVC, ARM, bigendian...)

Scale: ~100 build configurations, and evolving

18

Maintainability and Performance

e Establishing speciality tooling
o Change workflow: modify Rust code, re-prove, re-generate C
o Review specs, not code — but computer-check proofs!
o Continuous integration for tools (ARM/Intel x Debian/MacOS)
o Long-term support from Cryspen

o AVX2: ~2x faster than BoringSSL reference implementation

o A great argument for at-scale deployment!

19

Takeaways

PQC is coming, verification is important

o Demonstrated with ML-KEM and KyberSlash

o Deployments in OpenSSH, NSS, PQCA, Signal, Dropbear
Many challenges need solving between

o Formally verified fast code

o At-scale deployment

Next up: ML-DSA

README Code of conduct Apache-2.0 license More ~ =

libcrux - the formally verified
crypto library

Try our Rust or C code today!

libcrux is a formally verified cryptographic library in Rust.

