
Using Formally Verified 
Post-Quantum Algorithms at Scale

Karthikeyan Bhargavan, Andres Erbsen, Lucas Franceschino, 
Franziskus Kiefer, Thyla van der Merwe 

Real World Cryptography Symposium 
March 27, 2025



A Collaboration is Born



Why PQC?

● Quantum Computers soon? Transition now!

○ Attack: store now, decrypt later

● Industry standards, government customers

○ By ~2026!

● 1st Priority: Key Exchange in SSH/TLS/…

● Next: digital signatures

● Many products (some OSS), industry-wide effort → Open Source

3



Why Verify Lattice-Crypto Implementations?

● Goal: no implementation vulnerabilities in optimized code

● Experience from Elliptic-Curve Cryptography

○ Auditing code is important but challenging

○ Subtle bugs missed in high-profile implementations

● Simpler than ECC? (No carry chains, standard representations)

○ Yes, in reference implementations

● Tricky optimizations: vectorization, deferred reductions, decoding

4



The Technical Details 



6

We implement and verify 
this standard.



Implementing ML-KEM in Rust

● Pure Rust code: 16 KLOC
● Optimized for multiple platforms

○ Portable + AVX2 + AArch64 
○ 2 KLOC for SIMD optimizations (using intrinsics)

● Easy to integrate and deploy
○ Cargo crate: libcrux-ml-kem
○ PQCA’s official Rust implementation

Mathematics Low-Level Formats Algorithms High-Level APIs

Field, polynomial, matrix (de)serialization Sampling, IND-CPA, IND-CCA ML-KEM 512/768/1024

3k lines 3k lines 6k lines 4k lines 7

https://crates.io/crates/libcrux-ml-kem


8

Verifying crypto code
written in Rust
using hax and F*



Writing Crypto Code in Rust

9

Signed Barrett Reduction: with modulus 3329
(in constant time, so cannot directly use %)



Expected behaviour: compute a signed representative of the
    input field element (modulo 3329)

     
10

Specifying Correctness



11

Preventing Panics in Rust Code

These arithmetic operations may overflow or underflow
causing the code to panic at run-time



Verifying (De-)Serialization Automatically
i16 i16

u8u8u8

Serialize 12 Deserialize 12

12 bits 11 bits 10 bits 5 bits 4 bits 1 bits
per integer per integer per integer per integer per integer per integer

serialize deserialize portable avx2

6 variants 2 variants 2 variants

24 hand-optimized variants!

A new F* tactic that can prove every variant automatically!
12



Enforcing Secret Independence

Type-based static analysis enforces a “constant-time” discipline

● arithmetic operations with input-dependent timing 
(e.g. division) over secret integers

● comparison over secret values

● branching over secret values

● array or vector accesses at secret indices

Prevents a large class of remote timing attacks (at source level).

Does not prevent compiler-induced leaks, micro-architectural attacks, …

13



KyberSlash: a new timing vulnerability

14

Bug also present in 
PQ-Crystals, 
PQ-Clean, …

(used in production)

Bug found in our 
Rust code during 
formal verification 

KyberSlash: Exploiting secret-dependent division timings in Kyber Implementations. 
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2025(2), 
209-234.  Bernstein, D. J., Bhargavan, K., Bhasin, S., Chattopadhyay, A., Chia, T. K., 
Kannwischer, M. J., Kiefer, F., Paiva, T. B., Ravi, P., & Tamvada, G.



Scaling the Proof Effort
● Full formal verification of a large code-base

○ Source Rust code: 16 KLOC
○ Generated F* model: 28 KLOC   (Portable + AVX2)

● Multiple automation strategies
○ SMT-based automation for low-level mathematics
○ Tactic-based automation for serialization
○ Type-based secret independence analysis

● Still needs many manual F* proofs + annotations for the full proof

Mathematics Low-Level Formats Algorithms High-Level APIs

Field, polynomial, matrix (de)serialization Sampling, IND-CPA, IND-CCA ML-KEM 512/768/1024

 6k lines of F* 5k lines of F* 6k lines of F* 4k lines of F*

Identifying patterns to automate

The right tool for the right job (backends serve this story as well)

Rust is a good input language (VS C, Low*)

15



Verified PQC at Scale 



17

Compiling 
verified Rust 
to C code

Many mainstream crypto 
libraries need C code

NSS, BoringSSL,
OpenSSH, OpenSSL, …



Integration Challenges

● Support application environment (language, compiler, platform)
○ Integration with C and C++, multiple compilers (GCC, MSVC), multiple platforms

● Integration with PKCS#11 (NSS) and FIPS (BoringSSL)
○ Implement API requirements for PKCS#11, FIPS self tests

● Provide optimized APIs for production libraries
○ Store unpacked keys for better performance (not defined in FIPS 203)

● Respect internal formats for keys
○ Adapt and extend Rust APIs to implement the internal formats 

● Track a moving target
○ Provide support and continuous integration as code and application evolves

● C code size is larger than Rust

○  From monomorphizing ML-KEM variants from Rust

○ ~40KB optimized for speed

● Match existing APIs in the crypto library

○ Opaque secret keys, Alignment, Strict aliasing

● C++ toolchain compatibility (yes, even iOS, MSVC, ARM, bigendian…)

● Scale: ~100 build configurations, and evolving

18



Maintainability and Performance

Focus on Rust code size
Large Rust -> Large F*

Processes for Google to accept
Code size ©
Maintability (install tools)

API integration

● Key requirements before verified code can be deployed
● Adequate run-time performance

○ Our verified portable code is as fast as (or faster than) hand-written C code
○ Our verified AVX2 code is at least 2X faster than portable code

● Modest code size
○ When compiled, our portable + AVX2 code increased binary size by XXX bytes

● Maintainability
○ All our tools run on a standard Arm/Intel machine with Debian/Ubuntu/MacOS
○ Long-term support provided by Cryspen
○ C compilation and verification are run with every check-in on a Continuous Integration server
○ Google engineers can run our tools themselves
○ Possible to superficially modify the code and rerun the tools
○ For more complex changes, verification engineers will need to fix the proofs

● Establishing speciality tooling

○ Change workflow: modify Rust code, re-prove, re-generate C

○ Review specs, not code – but computer-check proofs!

○ Continuous integration for tools (ARM/Intel × Debian/MacOS)

○ Long-term support from Cryspen

● AVX2: ~2x faster than BoringSSL reference implementation

○ A great argument for at-scale deployment!

19



Takeaways

● PQC is coming, verification is important 
○ Demonstrated with ML-KEM and KyberSlash
○ Deployments in OpenSSL, NSS, PQCA

● Moving from a formally verified implementation to deployment at scale 
is hard!

● Next up 
○ Integration into BoringSSL
○ ML-DSA 

Try our Rust or C code today! 

● PQC is coming, verification is important 

○ Demonstrated with ML-KEM and KyberSlash

○ Deployments in OpenSSH, NSS, PQCA, Signal, Dropbear

● Many challenges need solving between

○ Formally verified fast code

○ At-scale deployment

● Next up: ML-DSA


