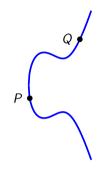
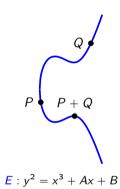
Unconditional foundations for supersingular isogeny-based cryptography

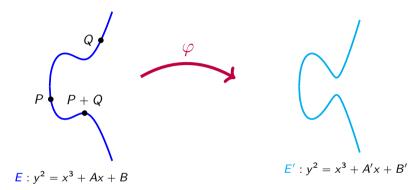
Arthur Herlédan Le Merdy¹ and Benjamin Wesolowski²

¹ENS de Lyon and COSIC, KU LEUVEN ²ENS de Lyon and CNRS

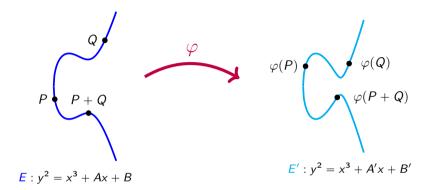
TCC 2025, December 4, 2025, Aarhus, Denmark



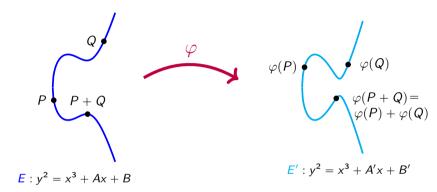




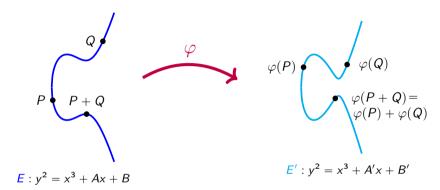
An **Isogeny** is a nice map between elliptic curves.



An **Isogeny** is a nice map between elliptic curves.



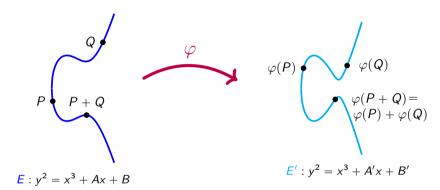
An **Isogeny** is a nice map between elliptic curves.



An **Isogeny** is a nice map between elliptic curves.

The supersingular Isogeny problem

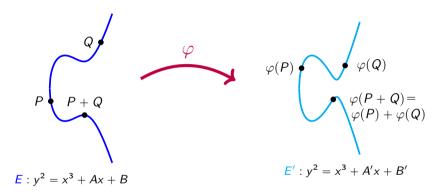
Given two supersingular **elliptic curves** E and E' defined over \mathbb{F}_{p^2} , for a fixed prime p, find an **isogeny** $\varphi: E \to E'$.



An Isogeny is a nice map between elliptic curves.

The supersingular Isogeny problem

Given two supersingular elliptic curves E and E' defined over \mathbb{F}_{p^2} , for a fixed prime p, find an isogeny $\varphi : E \to E'$.



An Isogeny is a nice map between elliptic curves.

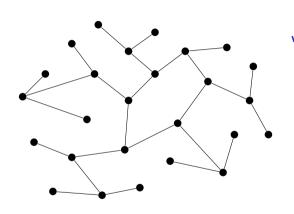
The supersingular Isogeny problem

Given two supersingular elliptic curves E and E' defined over \mathbb{F}_{p^2} , for a fixed prime p, find an isogeny $\varphi: E \to E'$.

Let $\ell \neq p$ be a prime.

Let $\ell \neq p$ be a prime.

Let $\ell \neq p$ be a prime.

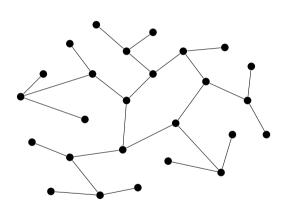


The ℓ -isogeny graph has

vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

Let $\ell \neq p$ be a prime.



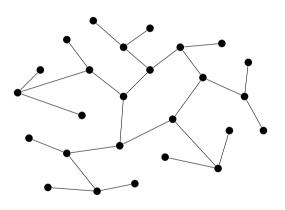
The ℓ -isogeny graph has

vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

Let $\ell \neq p$ be a prime.



The ℓ -isogeny graph has

vertices: supersingular elliptic curves,

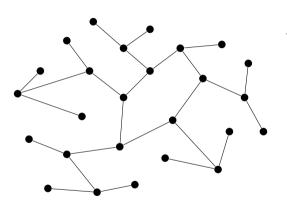
edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

The ℓ -isogeny graph is

lacksquare $(\ell+1)$ -regular,

Let $\ell \neq p$ be a prime.



The ℓ -isogeny graph has

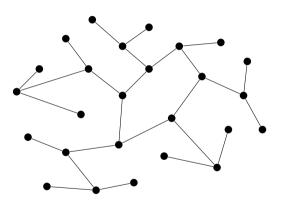
vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

- lacksquare $(\ell+1)$ -regular,
- connected,

Let $\ell \neq p$ be a prime.



The ℓ -isogeny graph has

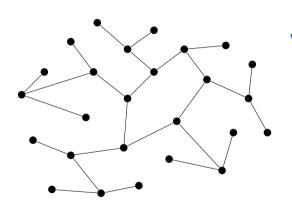
vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

- \bullet $(\ell+1)$ -regular,
- connected,
- rapidly mixing,

Let $\ell \neq p$ be a prime.



The *l*-isogeny graph has

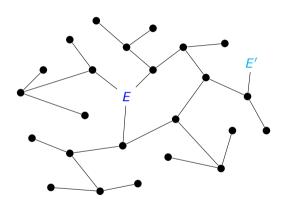
vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

- \bullet $(\ell+1)$ -regular,
- connected,
- rapidly mixing,
- **huge** (around p/12 vertices).

Let $\ell \neq p$ be a prime.



The ℓ -isogeny graph has

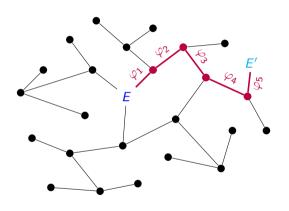
vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

- \bullet $(\ell+1)$ -regular,
- connected,
- rapidly mixing,
- **huge** (around p/12 vertices).

Let $\ell \neq p$ be a prime.



The ℓ -isogeny graph has

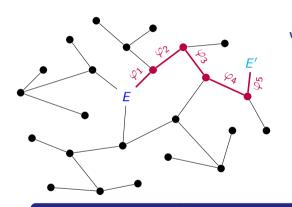
vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

- \bullet $(\ell+1)$ -regular,
- connected,
- rapidly mixing,
- **huge** (around p/12 vertices).

Let $\ell \neq p$ be a prime.



The *ℓ*-isogeny graph has

vertices: supersingular elliptic curves,

edges: isogenies of degree ℓ ,

i.e. an isogeny φ such that $\# \ker \varphi = \ell$.

The ℓ -isogeny graph is

- lacksquare $(\ell+1)$ -regular,
- connected,
- rapidly mixing,
- **huge** (around p/12 vertices).

The ℓ -IsogenyPath Problem

Given two supersingular elliptic curves E and E' defined over \mathbb{F}_{p^2} , and a prime $\ell \neq p$, find a path $\varphi_1 \circ \cdots \circ \varphi_n : E \to E'$ in the ℓ -isogeny graph.

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a **ring**.

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms

$$\alpha_1, \ldots, \alpha_4 : E \to E$$
 such that

$$\operatorname{End}(\underline{E}) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}({\color{red} E}) = \alpha_{1}\mathbb{Z} + \alpha_{2}\mathbb{Z} + \alpha_{3}\mathbb{Z} + \alpha_{4}\mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

$$\operatorname{End}(\underline{\mathcal{E}}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q}$$
 with $i^2=-p$, $j^2=-q_p$ and $ij=-ji$.

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\operatorname{End}(E) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

End(E)	a maximal order $\mathcal O$ in $\left(rac{-p,-q_p}{\mathbb Q} ight)$

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q}$$
 with $i^2=-p$, $j^2=-q_p$ and $ij=-ji$.

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}(\underline{E}) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

End(E)	a maximal order $\mathcal O$ in $\left(rac{- ho,-q_p}{\mathbb Q} ight)$
$\varphi: E_1 \to E_2$	

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q} \text{ with } i^2=-p,\,j^2=-q_p \text{ and } ij=-ji.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{ρ^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}({\color{red} E}) = \alpha_{1}\mathbb{Z} + \alpha_{2}\mathbb{Z} + \alpha_{3}\mathbb{Z} + \alpha_{4}\mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_1,\dots,lpha_4$$
 in $\left(rac{-p,-q_p}{\mathbb{Q}}
ight)^*$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

End(E)	a maximal order $\mathcal O$ in $\left(rac{- ho,-q_ ho}{\mathbb Q} ight)$
$\varphi: E_1 \to E_2$	I_{arphi} left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q} \text{ with } i^2=-p,\,j^2=-q_p \text{ and } ij=-ji.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $End(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, End(E) is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{ρ^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}({\color{red} E}) = \alpha_{1}\mathbb{Z} + \alpha_{2}\mathbb{Z} + \alpha_{3}\mathbb{Z} + \alpha_{4}\mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

$$\mathsf{End}(E) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

End(E)	a maximal order $\mathcal O$ in $\left(rac{-p,-q_p}{\mathbb Q} ight)$
$\varphi: E_1 \to E_2$	I_{arphi} left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal
$deg\varphi$	

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q} \text{ with } i^2=-p,\,j^2=-q_p \text{ and } ij=-ji.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}({\color{red} E}) = \alpha_{1}\mathbb{Z} + \alpha_{2}\mathbb{Z} + \alpha_{3}\mathbb{Z} + \alpha_{4}\mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

$End({\it E})$	a maximal order $\mathcal O$ in $\left(rac{-p,-q_p}{\mathbb Q} ight)$
$\varphi: E_1 \to E_2$	I_{arphi} left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal
$deg\varphi$	norm of I

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q} ext{ with } i^2=-p,\,j^2=-q_p ext{ and } ij=-ji.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}(\mathbf{E}) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

$End({\it E})$	a maximal order $\mathcal O$ in $\left(rac{-p,-q_p}{\mathbb Q} ight)$
$\varphi: E_1 \to E_2$	I_{arphi} left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal
$deg\varphi$	norm of I
$\varphi \circ \psi$	

$$*: \left(\frac{-p, -q_p}{\mathbb{Q}}\right) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + ij\mathbb{Q} \text{ with } i^2 = -p, \ j^2 = -q_p \text{ and } ij = -ji.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $End(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, End(E) is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{ρ^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}(\underline{E}) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_1,\dots,lpha_4$$
 in $\left(rac{-p,-q_p}{\mathbb{Q}}
ight)^*$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

End(E)	a maximal order ${\mathcal O}$ in $\left(rac{- ho,-q_ ho}{\mathbb Q} ight)$
$\varphi: E_1 \to E_2$	I_{arphi} left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal
$deg\varphi$	norm of I
$\varphi \circ \psi$	$I_{\varphi \circ \psi} = I_{\psi} \cdot I_{\varphi}$

$$*: \left(\frac{-p, -q_p}{\mathbb{Q}}\right) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + ij\mathbb{Q} \text{ with } i^2 = -p, \ j^2 = -q_p \text{ and } ij = -ji.$$

An **endomorphism** is an isogeny from a curve to itself or the zero morphism.

 $\operatorname{End}(E):=\{\alpha:E o E\}$ forms a ring. When E is supersingular, $\operatorname{End}(E)$ is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\mathsf{End}({\color{red} E}) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_1,\dots,lpha_4$$
 in $\left(rac{-p,-q_p}{\mathbb{Q}}
ight)^*$ such that

$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

$$*:\left(rac{-p,-q_p}{\mathbb{Q}}
ight)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q}$$
 with $i^2=-p$, $j^2=-q_p$ and $ij=-ji$.

An endomorphism is an isogeny from a curve to itself or the zero morphism.

 $End(E) := \{\alpha : E \to E\}$ forms a ring. When E is supersingular, End(E) is a lattice of dimension 4.

The Endomorphism Ring Problem (EndRing)

Given E/\mathbb{F}_{p^2} , find four endomorphisms $\alpha_1, \ldots, \alpha_4 : E \to E$ such that

$$\operatorname{End}(\underline{E}) = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

The Maximal Order Problem (MaxOrder)

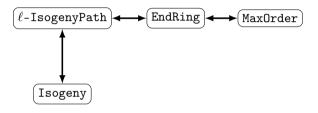
Given E/\mathbb{F}_{p^2} , find four quaternions

$$lpha_{\mathbf{1}},\ldots,lpha_{\mathbf{4}}$$
 in $\left(rac{-p,-q_{p}}{\mathbb{Q}}
ight)^{*}$ such that

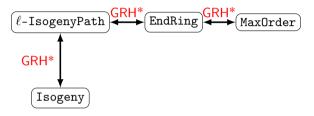
$$\operatorname{End}(\underline{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

$$*:\left(\frac{-p,-q_p}{\mathbb{Q}}\right)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+ij\mathbb{Q}$$
 with $i^2=-p,\,j^2=-q_p$ and $ij=-ji$.

Previous state-of-the-art

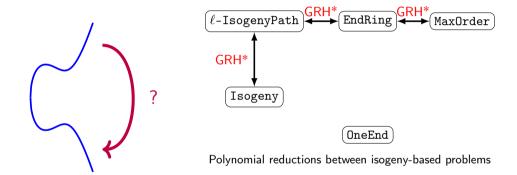


Polynomial reductions between isogeny-based problems

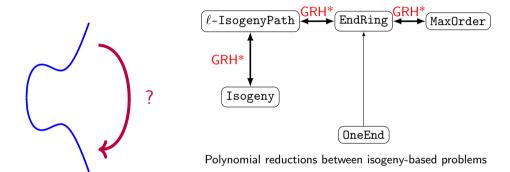


Polynomial reductions between isogeny-based problems

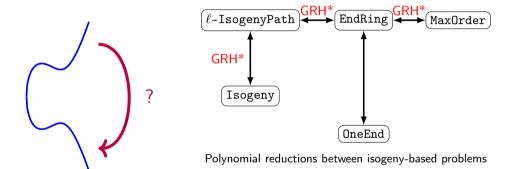
*: Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



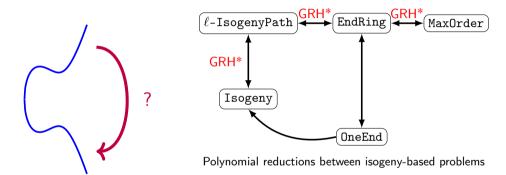
^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



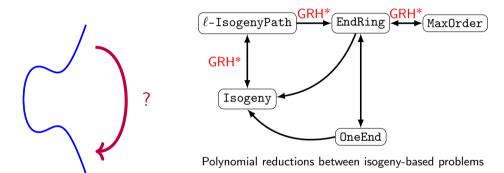
^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



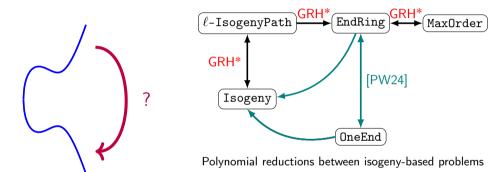
^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



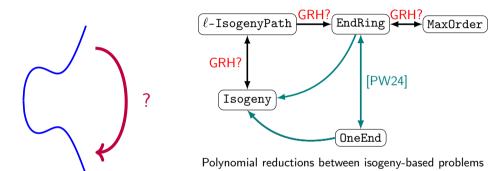
^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



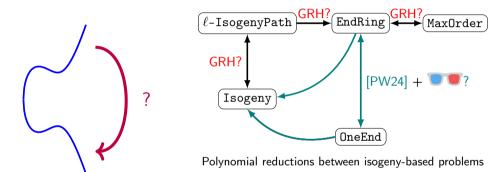
^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



^{*:} Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].



- *: Proven under heuristics [Eis+18] then under the Generalised Riemann Hypothesis [Wes22].
- : higher dimensional results following SIDH's attacks [CD23; Mai+23; Rob23]

OneEnd

EndRing

Good for security proofs
OneEnd

EndRing

Good for security proofs
OneEnd

Good for attacks
[EndRing]

Good for security proofs

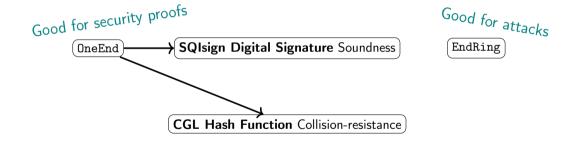
OneEnd

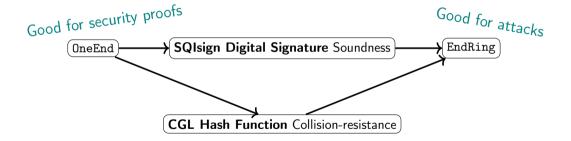
SQIsign Digital Signature Soundness

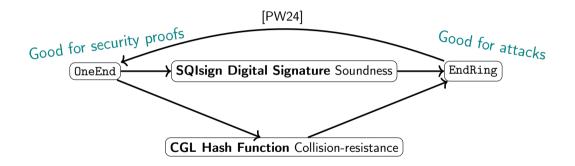
Good for attacks

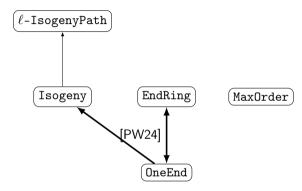
EndRing

CGL Hash Function Collision-resistance

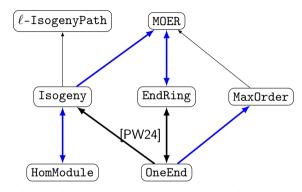








Polynomial reductions between isogeny-based problems without GRH

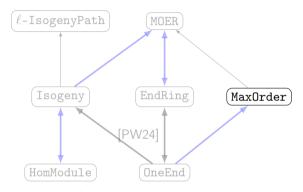


Polynomial reductions between isogeny-based problems without $\ensuremath{\mathsf{GRH}}$

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions α_1,\ldots,α_4 in $(\frac{-\rho,-q_p}{\mathbb{O}})$ such that

$$\operatorname{End}(E) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

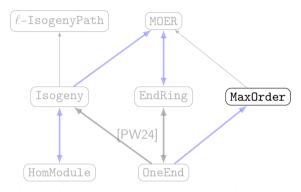


Polynomial reductions between isogeny-based problems without GRH

The Maximal Order Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , find four quaternions α_1,\ldots,α_4 in $(\frac{-p,-q_p}{\mathbb{O}})$ such that

$$\mathsf{End}(E) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

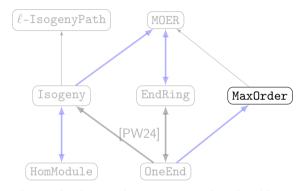


Polynomial reductions between isogeny-based problems without GRH

The MaxOrder Problem (MaxOrder)

Given E/\mathbb{F}_{p^2} , compute two integers $a,b\in\mathbb{Z}_{>0}$ and four quaternions α_1,\ldots,α_4 in $(\frac{-a,-b}{\mathbb{Q}})$ such that

$$\mathsf{End}(\mathbf{E}) \simeq \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

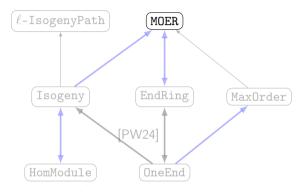


Polynomial reductions between isogeny-based problems without GRH

The MaxOrder + EndRing Problem (MOER)

Given E/\mathbb{F}_{p^2} , compute two integers $a,b\in\mathbb{Z}_{>0}$ and four quaternions α_1,\ldots,α_4 in $(\frac{-a,-b}{\mathbb{Q}})$ and an isomorphism

$$\varepsilon : \operatorname{End}(\underline{\mathcal{E}}) \xrightarrow{\sim} \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$

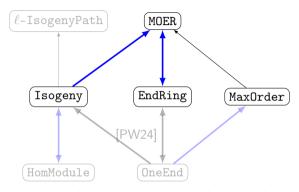


Polynomial reductions between isogeny-based problems without GRH

The MaxOrder + EndRing Problem (MOER)

Given E/\mathbb{F}_{p^2} , compute two integers $a,b\in\mathbb{Z}_{>0}$ and four quaternions α_1,\ldots,α_4 in $(\frac{-a,-b}{\mathbb{Q}})$ and an isomorphism

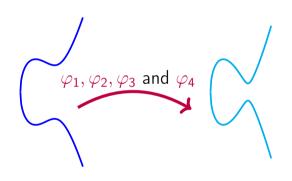
$$\varepsilon : \mathsf{End}(\underline{\mathcal{E}}) \xrightarrow{\sim} \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}.$$



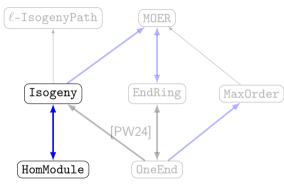
Polynomial reductions between isogeny-based problems without $\ensuremath{\mathsf{GRH}}$

Adding a new problem

Homomorphism Module Problem



$$\mathsf{Hom}(\zeta',\zeta') = \varphi_1 \mathbb{Z} + \varphi_2 \mathbb{Z} + \varphi_3 \mathbb{Z} + \varphi_4 \mathbb{Z}$$



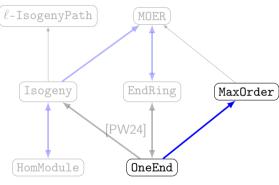
Polynomial reductions between isogeny-based problems without GRH

Adding a new problem

Homomorphism Module Problem



$$\mathsf{Hom}(\mathbf{\zeta}',\mathbf{\zeta}') = \varphi_1 \mathbb{Z} + \varphi_2 \mathbb{Z} + \varphi_3 \mathbb{Z} + \varphi_4 \mathbb{Z}$$



Polynomial reductions between isogeny-based problems without **GRH**

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Goal: Compute a non-scalar endomorphism $\alpha \in \operatorname{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: $\mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(\mathbf{\textit{E}})$

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(\underline{\textbf{\textit{E}}})$

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(\underline{E})$ and compute $\alpha = \varepsilon(\beta)$.

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(\boldsymbol{E})$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

Goal: Compute a non-scalar endomorphism $\alpha \in \operatorname{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

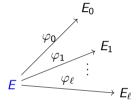
Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

Step 1: Compute a "local" correspondence between isogenies and ideals for a small prime ℓ .

Ε

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

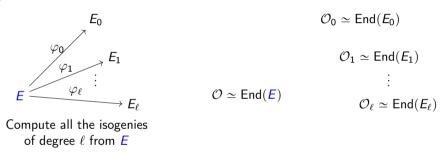
Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...



Compute all the isogenies of degree ℓ from E

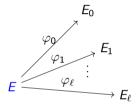
Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

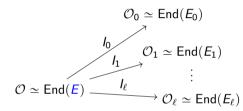


Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...



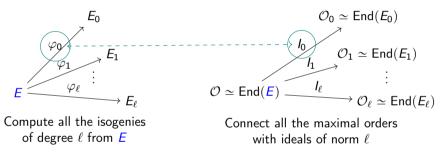
Compute all the isogenies of degree ℓ from E



Connect all the maximal orders with ideals of norm ℓ

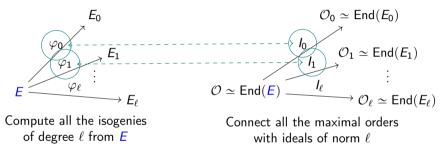
Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...



Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

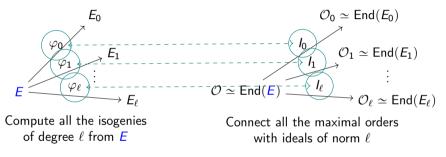
Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...



Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

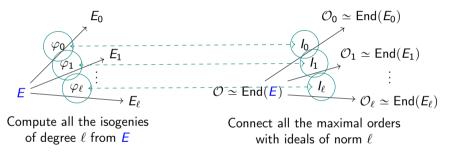
 $\underline{\textbf{Step 1:}} \ \, \textbf{Compute a "local" correspondence between isogenies and ideals for a small prime ℓ.}$



Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

Step 1: Compute a "local" correspondence between isogenies and ideals for a small prime ℓ .

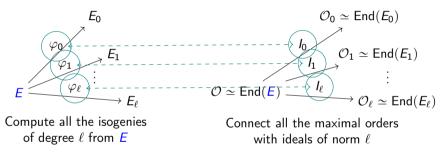


Step 2: Compute a "local" isomorphism $\varepsilon_{\ell} : \mathcal{O}/\ell\mathcal{O} \xrightarrow{\sim} \operatorname{End}(\boldsymbol{E}[\ell])$.

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

Step 1: Compute a "local" correspondence between isogenies and ideals for a small prime ℓ .



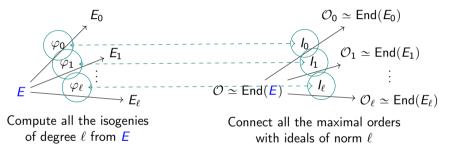
Step 2: Compute a "local" isomorphism $\varepsilon_{\ell} : \mathcal{O}/\ell\mathcal{O} \xrightarrow{\sim} \operatorname{End}(\boldsymbol{\mathcal{E}}[\ell])$.

$$\forall \gamma \in \mathcal{O}, \forall P \in \mathcal{E} \text{ of order } \ell, \text{we have that } \varepsilon_{\ell}(\gamma)(P) = \varepsilon(\gamma)(P).$$

Goal: Compute a non-scalar endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ given a MaxOrder oracle.

Idea: Choose a non-scalar $\beta \in \mathcal{O} \stackrel{\varepsilon}{\simeq} \operatorname{End}(E)$ and compute $\alpha = \varepsilon(\beta)$. We don't know ε ...

Step 1: Compute a "local" correspondence between isogenies and ideals for a small prime ℓ .

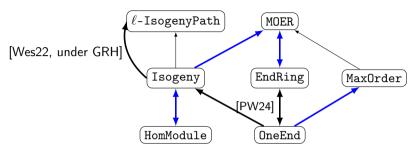


Step 2: Compute a "local" isomorphism $\varepsilon_{\ell} : \mathcal{O}/\ell\mathcal{O} \xrightarrow{\sim} \operatorname{End}(\boldsymbol{E}[\ell])$.

$$\forall \gamma \in \mathcal{O}, \forall P \in \mathcal{E}$$
 of order ℓ , we have that $\varepsilon_{\ell}(\gamma)(P) = \varepsilon(\gamma)(P)$.

Step 3: Interpolate $\alpha = \varepsilon(\beta)$ from its evaluations on many small points.

New state-of-the-art



Polynomial reductions between isogeny-based problems.

Theorem (This paper)

The **Isogeny**, **EndRing**, **MaxOrder**, **OneEnd**, **MOER** and **HomModule** problems are equivalent under classical probabilistic polynomial reductions.

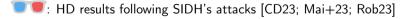
New state-of-the-art



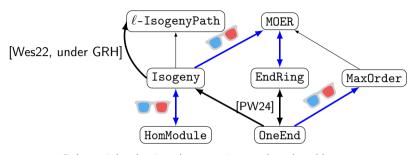
Polynomial reductions between isogeny-based problems.

Theorem (This paper)

The **Isogeny**, **EndRing**, **MaxOrder**, **OneEnd**, **MOER** and **HomModule** problems are equivalent under classical probabilistic polynomial reductions.



New state-of-the-art



Polynomial reductions between isogeny-based problems.

Theorem (This paper)

The **Isogeny**, **EndRing**, **MaxOrder**, **OneEnd**, **MOER** and **HomModule** problems are equivalent under classical probabilistic polynomial reductions.

HD results following SIDH's attacks [CD23; Mai+23; Rob23] including IsogenyInterpolation [Rob24], IdealToIsogeny [PR23] and IsogenyDivision[Rob22; HW25] algorithms.

Worst-case to average-case reductions

Theorem (This paper)

For any pair of problems (P,Q) chosen from the problems

Isogeny, ℓ-IsogenyPath, EndRing, OneEnd, MaxOrder, MOER and HomModule,

there exists an unconditional probabilistic polynomial time reduction

P worst-case $\longrightarrow Q$ average-case,

Worst-case to average-case reductions

Theorem (This paper)

For any pair of problems (P, Q) chosen from the problems

Isogeny, ℓ-IsogenyPath, EndRing, OneEnd, MaxOrder, MOER and HomModule,

there exists an unconditional probabilistic polynomial time reduction

$$P$$
 worst-case $\longrightarrow Q$ average-case,

except if
$$\begin{cases} P = \ell\text{-}\mathbf{IsogenyPath} \\ or Q = \mathbf{MaxOrder} \text{ and } p \equiv 1 \mod 8 \end{cases}$$
 then one needs to assume GRH.

Corollary Isogeny worst-case hardness \Longrightarrow Isogeny, ℓ -IsogenyPath, MOER, OneEnd, EndRing, HomModule, average-case hardness. (MaxOrder if $p \not\equiv 1 \mod 8$)

Corollary Isogeny worst-case hardness \Longrightarrow Isogeny, ℓ -IsogenyPath, MOER, OneEnd, EndRing, HomModule, average-case hardness. (MaxOrder if $p \not\equiv 1 \mod 8$)

Open questions:

Corollary

Isogeny, ℓ-IsogenyPath, MOER,

Isogeny worst-case hardness \Longrightarrow **OneEnd**, **EndRing**, **HomModule**, average-case hardness. (MaxOrder if $p \not\equiv 1 \mod 8$)

Open questions:

- Can we reduce ℓ -IsogenyPath to another problem?
- Can we reduce a problem to MaxOrder in the average case when $p \equiv 1 \mod 8$?

Corollary

Isogeny, \(\ell - \text{IsogenyPath} \), MOER.

Isogeny worst-case hardness \Longrightarrow **OneEnd**, **EndRing**, **HomModule**, average-case hardness. (MaxOrder if $p \not\equiv 1 \mod 8$)

Open questions:

- Can we reduce ℓ-IsogenyPath to another problem?
- Can we reduce a problem to MaxOrder in the average case when $p \equiv 1 \mod 8$?
- What are the problems to consider in higher dimensions? Are these problems equivalent?

Corollary

Isogeny, ℓ -IsogenyPath, MOER,

Isogeny worst-case hardness \Longrightarrow **OneEnd**, **EndRing**, **HomModule**, average-case hardness. (MaxOrder if $p \not\equiv 1 \mod 8$)

Open questions:

- Can we reduce ℓ-IsogenyPath to another problem?
- Can we reduce a problem to MaxOrder in the average case when $p \equiv 1 \mod 8$?
- What are the problems to consider in higher dimensions? Are these problems equivalent?

Thank you for your attention!

Bibliography I

- [CD23] Wouter Castryck and Thomas Decru. "An Efficient Key Recovery Attack on SIDH". In: 2023, pp. 423–447. doi: 10.1007/978-3-031-30589-4_15.
- [Eis+18] Kirsten Eisenträger et al. "Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solutions". In: 2018, pp. 329–368. doi: 10.1007/978-3-319-78372-7_11.
- [HW25] Arthur Herlédan Le Merdy and Benjamin Wesolowski. "The supersingular endomorphism ring problem given one endomorphism". In:

 IACR Communications in Cryptology 2.1 (Apr. 8, 2025). issn: 3006-5496. doi: 10.62056/akgyivrzn.
- [Mai+23] Luciano Maino et al. "A Direct Key Recovery Attack on SIDH". In: 2023, pp. 448–471. doi: 10.1007/978-3-031-30589-4_16.
- [PR23] Aurel Page and Damien Robert.
 Introducing Clapoti(s): Evaluating the isogeny class group action in polynomial time.
 Cryptology ePrint Archive, Report 2023/1766. 2023. url:
 https://eprint.iacr.org/2023/1766.

Bibliography II

- [PW24] Aurel Page and Benjamin Wesolowski. "The Supersingular Endomorphism Ring and One Endomorphism Problems are Equivalent". In: 2024, pp. 388–417. doi: 10.1007/978-3-031-58751-1_14.
- [Rob22] Damien Robert.
 Some applications of higher dimensional isogenies to elliptic curves (overview of results).
 Cryptology ePrint Archive, Report 2022/1704. 2022. url:
 https://eprint.iacr.org/2022/1704.
- [Rob23] Damien Robert. "Breaking SIDH in Polynomial Time". In: 2023, pp. 472–503. doi: 10.1007/978-3-031-30589-4_17.
- [Rob24] Damien Robert. On the efficient representation of isogenies (a survey). Cryptology ePrint Archive, Report 2024/1071. 2024. url: https://eprint.iacr.org/2024/1071.
- [Wes22] Benjamin Wesolowski. "The supersingular isogeny path and endomorphism ring problems are equivalent". In: 2022, pp. 1100–1111. doi: 10.1109/F0CS52979.2021.00109.