

RUHR-UNIVERSITÄT BOCHUM

HADES – Automated <u>HA</u>rdware <u>Design Exploration for Efficient and Secure Cryptographic Primitives</u>

Fabian Buschkowski, Georg Land, Niklas Höher, Jan-Richter Brockmann, Pascal Sasdrich, Tim Güneysu

intel.

Efficient Cryptography

intel. RUB

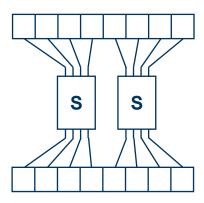
Efficient Cryptography

intel. RUB

Efficient Cryptography

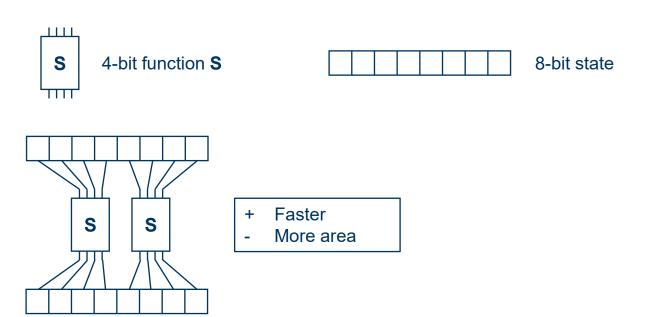
• Efficiency relative to a certain performance metric (e.g., latency, area, delay, ...)

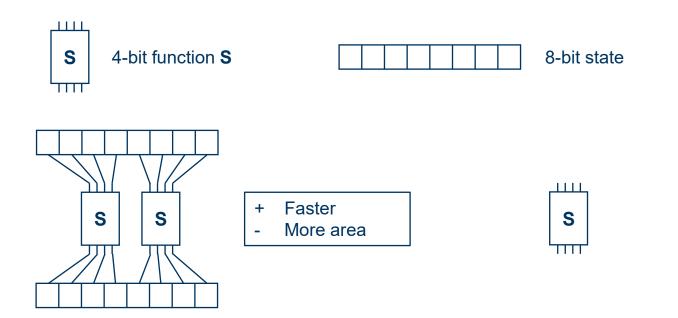
4-bit function S


8-bit state

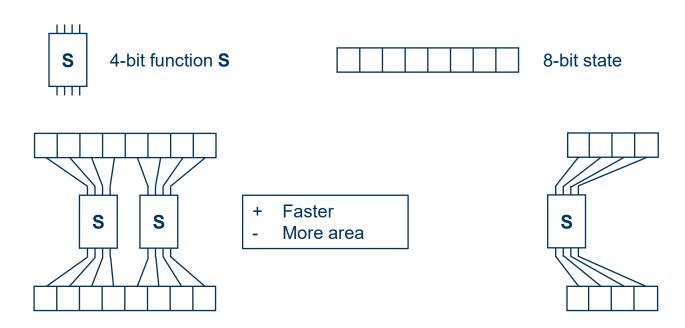
intel. RUB

Efficient Cryptography

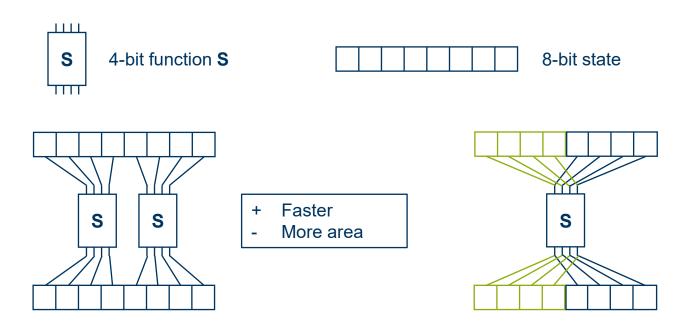



intel. RUB

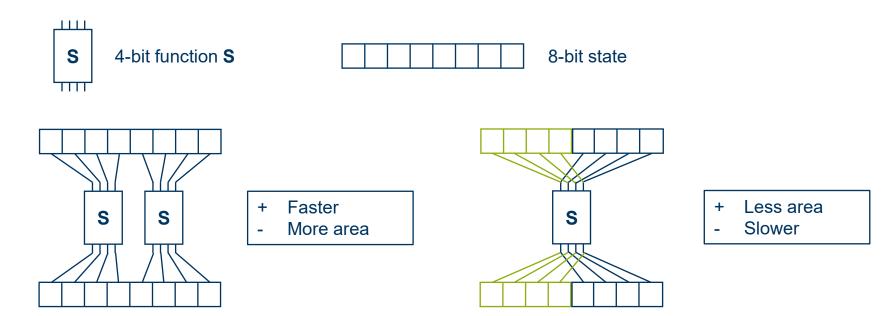
Efficient Cryptography


intel. RUB

Efficient Cryptography


intel. RUB

Efficient Cryptography


intel. RUB

Efficient Cryptography

intel. RUB

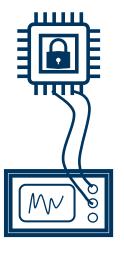
Efficient Cryptography

Secure Cryptography

Secure cryptographic algorithms running on a chip are always secure!

intel.

Secure Cryptography


Secure cryptographic al Physical Attacks a chip are always secure!

intel. RUB

Secure Cryptography

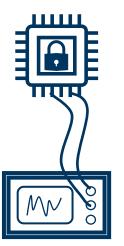
Side-Channel Attacks


intel.

Secure Cryptography

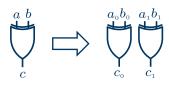
Side-Channel Attacks

Masking


$$x = x_0 \oplus x_1 \oplus ... \oplus x_d$$

intel.

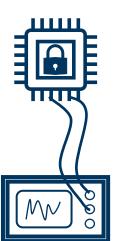
Secure Cryptography


Side-Channel Attacks

Masking

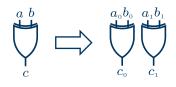
$$x = x_0 \oplus x_1 \oplus ... \oplus x_d$$

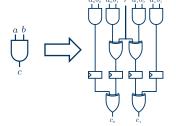
Linear Functions


intel.

Secure Cryptography

Side-Channel Attacks

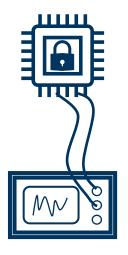



Masking

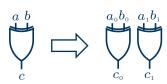
$$x = x_0 \oplus x_1 \oplus ... \oplus x_d$$

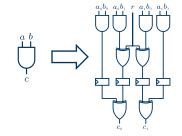
Linear Functions

Non-linear Functions

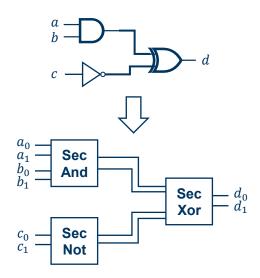

intel.

Secure Cryptography

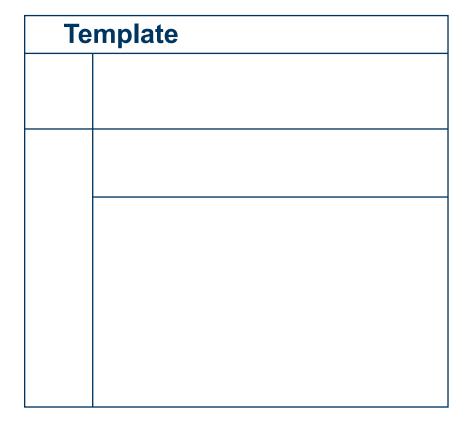

Side-Channel Attacks


Masking

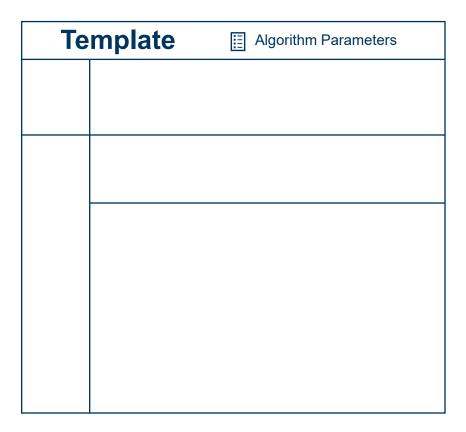
$$x = x_0 \oplus x_1 \oplus ... \oplus x_d$$


Linear Functions

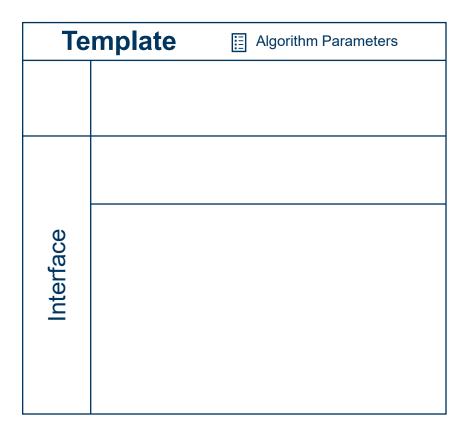
Non-linear Functions



Gadget-based Masking


Templates

Templates



Algorithm Parameters

- Adder width
- AES key size

Templates

Algorithm Parameters

- Adder width
- AES key size

Interface

- Input and output signals
- Control signals

Templates


Template		Algorithm Parameters
	Design Aspects	Options Aspect 1 Aspect 2
Interface		

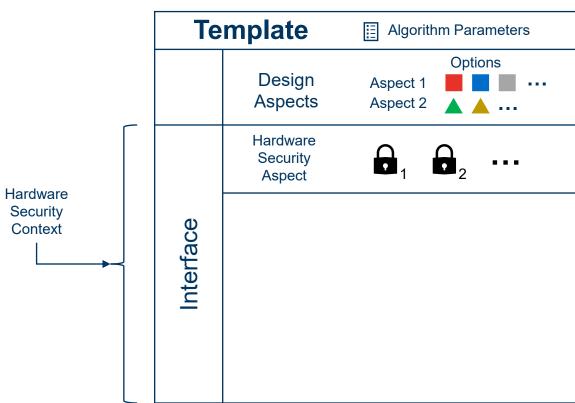
Design Aspects

- Do not change external template functionality
- Adder type
- SBox type
- Parallelism

intel. **RU**B

Templates

Design Aspects


- Do not change external template functionality
- Adder type
- SBox type
- Parallelism

Hardware Security Context

- Defines security goals
- Masking degree

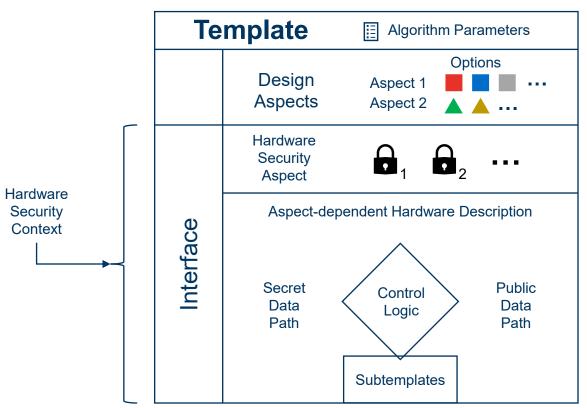
intel.

Templates

Design Aspects

- Do not change external template functionality
- Adder type
- SBox type
- Parallelism

Hardware Security Context


- Defines security goals
- Masking degree

Hardware Security Aspects

- Different options to achieve desired security
- Gadget type (HPC2 vs. HPC3)

intel. **RU**B

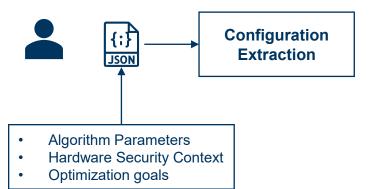
Templates

Hardware Description

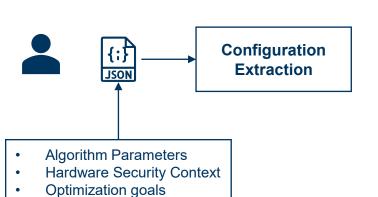
- Calculation of outputs based on inputs (using subtemplates)
- Relative to design aspects
- Secret data path (with protection)
- Public data path

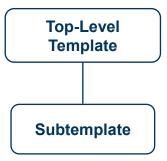


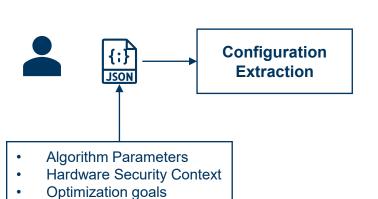
Workflow

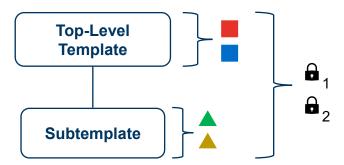

- Algorithm Parameters
- Hardware Security Context
- Optimization goals

Workflow

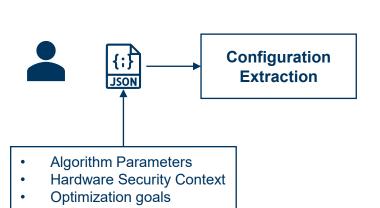


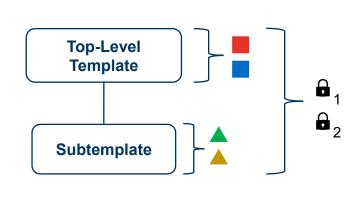

Workflow

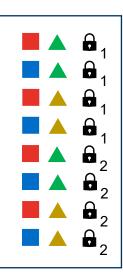



Workflow

Workflow

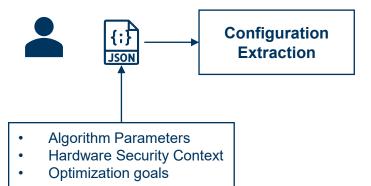


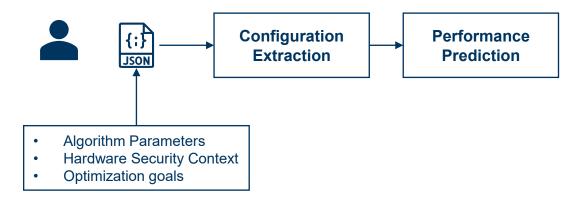




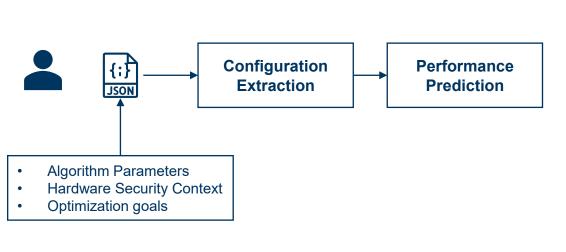
Template Library

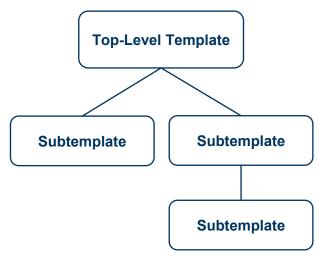
List of configurations

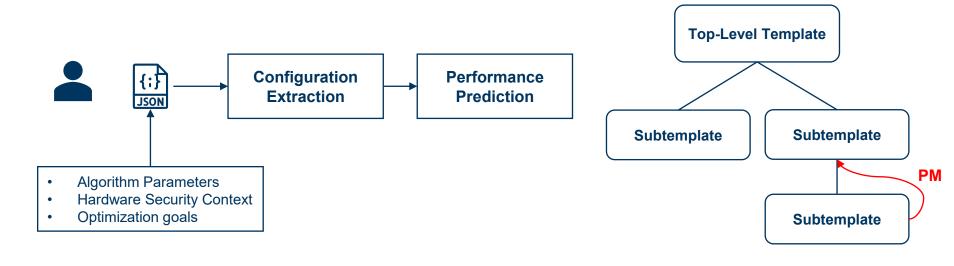




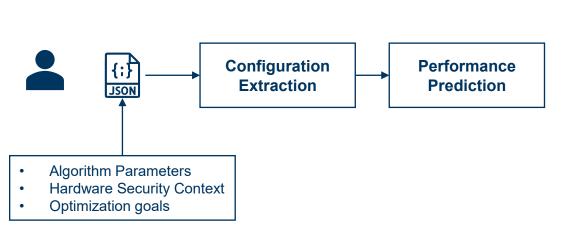
Workflow

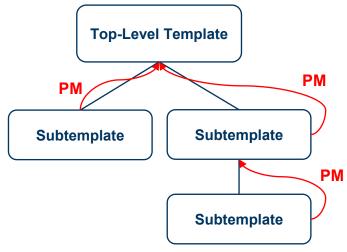


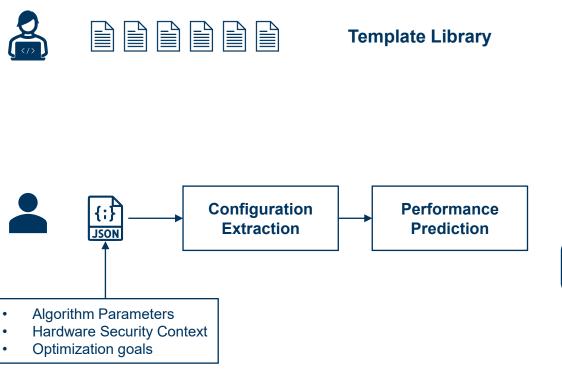

Workflow

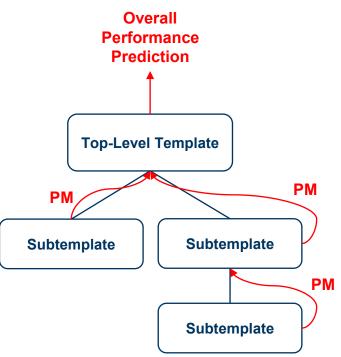


Workflow

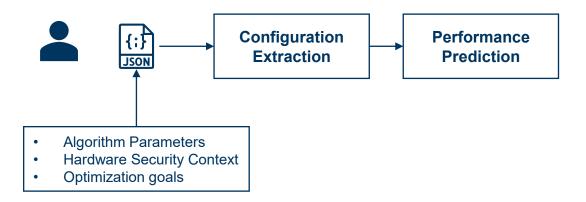



Workflow

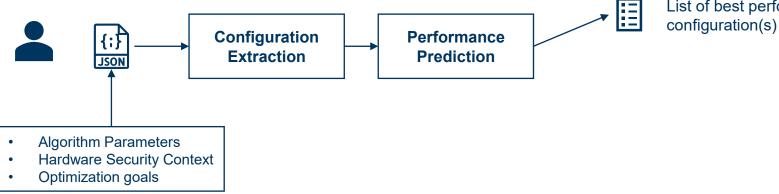




Workflow

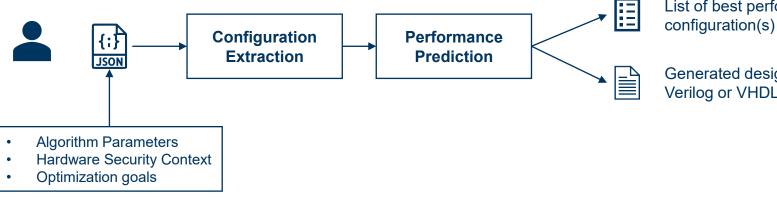


Workflow

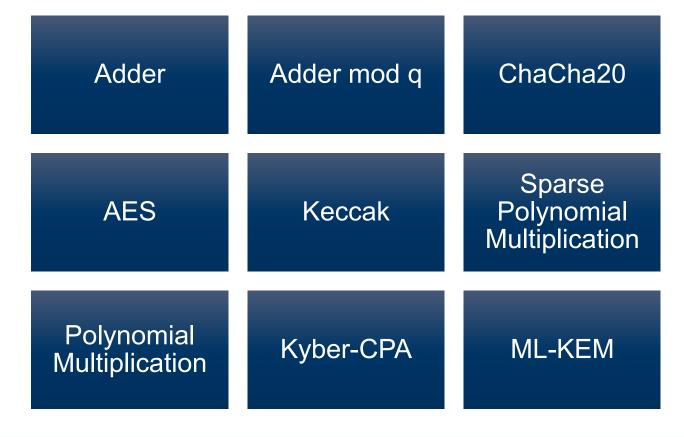

Workflow

Template Library

List of best performing

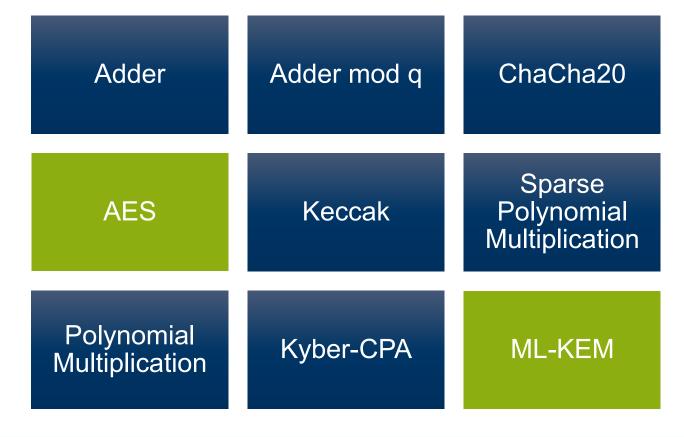

Workflow

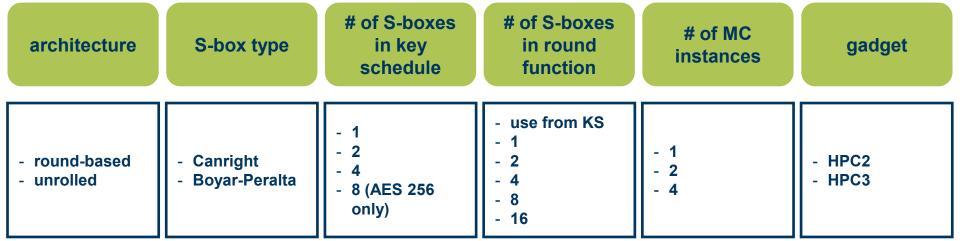
Template Library



List of best performing

Generated design(s) in Verilog or VHDL


Overview


Overview

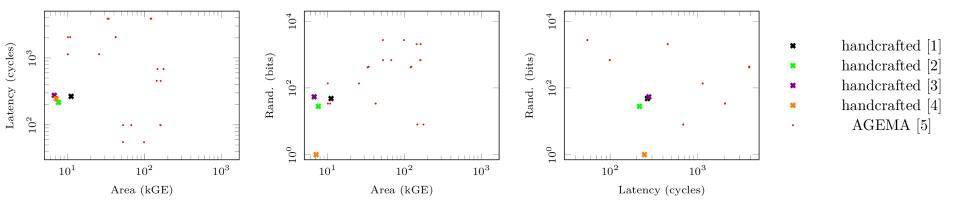
Design Space



Case Study: First-order Masked AES-128

intel. RUB

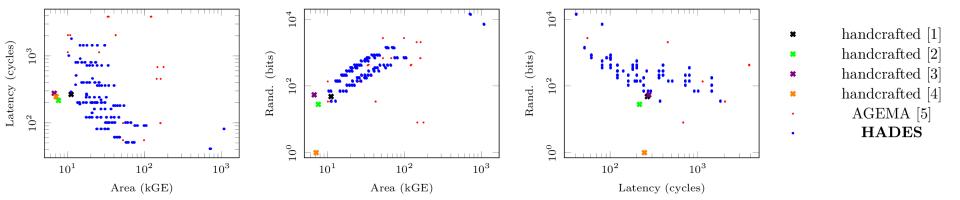
Comparison



- [1] Pushing the limits: A very compact and a threshold implementation of AES. Moradi et al., Eurocrypt '11
- [2] Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order. Groß et al., TIS '16
- [3] Masking AES with d+1 Shares in Hardware. De Cnudde et al., CCS '16
- [4] Re-consolidating first-order Masking Schemes. Shahmirzadi and Moradi, CHES '21

Case Study: First-order Masked AES-128

Comparison


- [1] Pushing the limits: A very compact and a threshold implementation of AES. Moradi et al., Eurocrypt '11
- [2] Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order. Groß et al., TIS '16
- [3] Masking AES with d+1 Shares in Hardware. De Cnudde et al., CCS '16
- [4] Re-consolidating first-order Masking Schemes. Shahmirzadi and Moradi, CHES '21
- [5] Automated Generation of Masked Hardware. Knichel et al., CHES '22

Case Study: First-order Masked AES-128

intel.

Comparison

- [1] Pushing the limits: A very compact and a threshold implementation of AES. Moradi et al., Eurocrypt '11
- [2] Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order. Groß et al., TIS '16
- [3] Masking AES with d+1 Shares in Hardware. De Cnudde et al., CCS '16
- [4] Re-consolidating first-order Masking Schemes. Shahmirzadi and Moradi, CHES '21
- [5] Automated Generation of Masked Hardware. Knichel et al., CHES '22

Case Study: ML-KEM Decapsulation

Basic Idea

- Boolean-masked Schoolbook multiplication to enable gadget-based masking (Land et al., CHES '24):
 - 1) compute all potential results of public-times-secret multiplication
 - 2) multiplex the correct one (masked)
 - 3) accumulate the result to perform polynomial multiplication (masked)
- Inverse NTT on \widehat{A}
- FO transform: "decompressed comparison" idea by Bos et al., CHES '21

Design Space

of singlecoefficient multipliers

adder type (3 different)

of χ step modules in Keccak

of Compress₁ modules

gadget

all numbers $i \in [1,256]$ such that $\left\lceil \frac{256}{i} \right\rceil$ is unique and appears for the first time (31 total options)

- serial ripple-carry
- pipelined ripplecarry
- Sklansky
- Kogge-Stone

- 1 - 2 - 4 - 8 - 16 - 32 - 64 all numbers $i \in [1,256]$ such that $\left\lceil \frac{256}{i} \right\rceil$ is unique and appears for the first time (31 total options)

- HPC2 - HPC3

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	490	-	-	19,612
0	Α	75	316	-	19,960,068
1	L	7,869	-	105,922	69,220
1	Α	259	447	326	36,368,922
1	ALP	505	668	3,880	138,441
2	L	18,095	-	317,766	69,220
2	Α	544	575	978	36,368,922
2	ALP	1,113	1,013	11,640	138,441

intel. RUB

Results

<u>d</u>	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	490	-	-	19,612
0	А	75	316	-	19,960,068
1	L	7,869	-	105,922	69,220
1	Α	259	447	326	36,368,922
1	ALP	505	668	3,880	138,441
2	L	18,095	-	317,766	69,220
2	Α	544	575	978	36,368,922
2	ALP	1,113	1,013	11,640	138,441

intel. RUB

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	490	-	-	19,612
0	Α	75	316	-	19,960,068
1	L	7,869	-	105,922	69,220
1	Α	259	447	326	36,368,922
_1	ALP	505	668	3,880	138,441
2	L	18,095	-	317,766	69,220
2	А	544	575	978	36,368,922
2	ALP	1,113	1,013	11,640	138,441

intel. RUB

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	490	-	-	19,612
0	Α	75	316	-	19,960,068
1	L	7,869	-	105,922	69,220
1	Α	259	447	326	36,368,922
1	ALP	505	668	3,880	138,441
2	L	18,095	-	317,766	69,220
2	Α	544	575	978	36,368,922
2	ALP	1,113	1,013	11,640	138,441

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	490	-	-	19,612
0	А	75	316	-	19,960,068
1	L	7,869	-	105,922	69,220
1	Α	259	447	326	36,368,922
1	ALP	505	668	3,880	138,441
2	L	18,095	-	317,766	69,220
2	А	544	575	978	36,368,922
2	ALP	1,113	1,013	11,640	138,441

intel. RUB

Discussion

Q: Why is even the area-optimized configuration so big?

A: The tool cannot enhance non-optimal templates.

- In this case: there are always two different Keccak states: an unmasked Keccak submodule and a masked Keccak module ($\geq 1600(d+1)$ registers always instantiated).
- An iNTT module is required nevertheless to perform an inverse transformation on \widehat{A} .

Q: Why is there such a big discrepancy between estimated area and synthesized area?

A: In the PoC, we only estimate the secret data path, which is usually the largest factor in masked implementations.

Conclusion + Future Work

Our work:

- Novel approach to model, design, describe security-aware cryptographic hardware
- Proof-of-concept implementation of this approach
- Wide range of case studies

Conclusion + Future Work

Our work:

- Novel approach to model, design, describe security-aware cryptographic hardware
- Proof-of-concept implementation of this approach
- Wide range of case studies

Future work:

Arithmetic masking

- Conversion methods
- Area-duplicating vs. time-duplicating

Optimization

- Reduction of randomness consumption
- Gadget mixing

Formal verification

- Security
- Correctness
- Equality with a blueprint or standard

intel.

RUB

Case Studies

DSE Performance

Algorithm	# Configurations	Time
Keccak	14	$0.5\mathrm{s}$
$\operatorname{AdderModQ}$	42	$0.7\mathrm{s}$
Sparse Polynomial Multiplication	372	1.2s
$\operatorname{ChaCha20}^{\circ}$	1080	3.2s
AES	1440	$5.4\mathrm{s}$
Polynomial Multiplication	1302	$7.9\mathrm{s}$
ML-KEM-CPA	40362	196.5s
ML-KEM-CCA	1148364	36h

intel. RUB

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	8.6	9.8	-	11
0	Α	2.1	4.2	-	656
1	L	1057.4	707.9	14,400	41
1	Α	9.5	10.3	72	1,011
1	ALP	28.9	23.7	360	81
2	L	2375.6	1426.1	43,200	41
2	Α	20.9	17.2	204	1,011
2	ALP	64.7	44.6	1,080	81

intel. RUB

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	8.6	9.8	-	11
0	Α	2.1	4.2	-	656
1	L	1057.4	707.9	14,400	41
1	А	9.5	10.3	72	1,011
1	ALP	28.9	23.7	360	81
2	L	2375.6	1426.1	43,200	41
2	А	20.9	17.2	204	1,011
2	ALP	64.7	44.6	1,080	81

intel. RUB

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	8.6	9.8	-	11
0	Α	2.1	4.2	-	656
1	L	1057.4	707.9	14,400	41
1	Α	9.5	10.3	72	1,011
1	ALP	28.9	23.7	360	81
2	L	2375.6	1426.1	43,200	41
2	Α	20.9	17.2	204	1,011
2	ALP	64.7	44.6	1,080	81

Results

d	Opt.	Area [est. kGE]	Area [kGE]	Rand. [bit]	Latency [cycles]
0	L	8.6	9.8	-	11
0	А	2.1	4.2	-	656
1	L	1057.4	707.9	14,400	41
1	А	9.5	10.3	72	1,011
1	ALP	28.9	23.7	360	81
2	L	2375.6	1426.1	43,200	41
2	А	20.9	17.2	204	1,011
2	ALP	64.7	44.6	1,080	81

intel. RUB

Kyber with Local Optimizations

ALP

Depth	# Configurations	DSE Time	Area [est. kGE]	Rand. [bit]	Latency [Cycles]
1	110	7s (L)	504	4,420	2,385,918
2	662	35s (L)	2,142	29,240	315,401
4	1,148,364	36h (S)	505	3,880	138,441

ALRP

	Depth	# Configurations	DSE Time	Area [est. kGE]	Rand. [bit]	Latency [Cycles]	
	1	110	7s (L)	266	163	52,707,120	
	2	662	35s (L)	287	273	26,492,720	
	4	1,148,364	36h (S)	399	162	164,874	

Ref.	Opt.	d	Area	Rand.	Lat.	Delay	T.put	Technology
nei.	Opt.		[kGE]	[bit]	[cycles]	[ns]	[Gb/s]	recimology
$[MPL^+11]$		0	2.6	_	226			UMCL18G212T3
[SKS12]*		0	58.4	_			1.6	180 nm
$[AR18]^*$		0	29.4	_	46	39	13.130	65 nm
[AR18]*		0	29.4	_	46	58	8.904	65 nm
[KMMS22]		0	3.3	_	227	188	0.679	NanGate 45 nm
[KMMS22]		0	9.9	_	11	20	6.290	NanGate 45 nm
HADES	${ m L}$	0	85.5	_	11	23	61.000	NanGate 45 nm
HADES	\mathbf{A}	0	4.2	_	211	597		NanGate 45 nm
HADES	ALP	0	9.8	_	11	25	5.195	NanGate 45 nm
[MPL+11]		1	11.1	48	266			UMCL18G212T3
[GMK16]		1	7.6	28	216			UMC 180 nm
[CRB+16]		1	6.7	54	276			NanGate 45 nm
[SM21]		1	7.1	1	246	1537	0.083	UMC 180 nm
[SM21]		1	7.7	0	246	1537	0.083	UMC 180 nm
KMMS22]		1	33.1	414	3859	9879	0.013	NanGate 45 nm
KMMS22		1	10.0	34	2043	4310	0.030	NanGate 45 nm
KMMS22		1	52.6	680	99	202	0.634	NanGate 45 nm
HADES	L	1	707.9	14400	41	60	87.070	NanGate 45 nm
HADES	\mathbf{A}	1	10.3	72	1011	1446	0.088	NanGate 45 nm
HADES	${ m R}$	1	11.2	34	1811	2608	0.049	NanGate 45 nm
HADES	ALRP	1	12.7	34	371	575	0.226	NanGate 45 nm
HADES	ALP	1	23.7	360	81	151	0.847	NanGate 45 nm
[CBR ⁺ 15]		2	18.6	126	276			NanGate 45 nm
[GMK16]		2	12.8	84	216			UMC 180 nm
[KMMS22]		2	17.6	102	2043	5434	0.023	NanGate 45 nm
[KMMS22]		2	131.6	2040	99	237	0.540	NanGate 45 nm
HADES	L	2	1426.1	43200	41	64	82.580	NanGate 45 nm
HADES	\mathbf{A}	2	17.2	204	1011	1526		NanGate 45 nm
HADES	${ m R}$	2	19.3	102	1811	2898		NanGate 45 nm
HADES	ALRP	2	21.5	102	371	545		NanGate 45 nm
HADES	ALP	2	44.6	1080	81	134	0.955	NanGate 45 nm
	* Thes	ер	apers re	port gate	counts	instead	of GE.	

intel.

Ref.	Opt.	d	Area	Rand.	Lat.	Delay	Technology
			[kGE]	[bit]	[cycles]	[ns]	
$[BDN^+13]$		1	116.6	4	25	42.2	NanGate $45\mathrm{nm}$
$[BDN^+13]$		1	39.0	4	1625	2561.2	NanGate 45 nm
[GSM17]		1	18.7	0	3160	3690.7	$UMC 130 \mu m$
[GSM17]		1	22.3	0	1648	2028.8	$UMC 130 \mu m$
[GSM17]		1	108.0	0	25	28.2	$UMC 130 \mu m$
[SM21]		1	129.3	0	72	92.9	$UMC 130 \mu m$
HADES	${f L}$	1	149.4	3200	120	40.8	NanGate 45 nm
HADES	A	1	30.1	50	3144	1792.5	NanGate 45 nm
HADES	R/ALRP	1	34.6	25	4680	3744.0	NanGate 45 nm
HADES	ALP	1	61.6	800	264	198.1	NanGate 45 nm
[GSM17]		2	28.8	75	3160	3706.7	UMC 130 μm
[GSM17]		2	34.6	75	1648	1951.2	$UMC 130 \mu m$
[GSM17]		2	232.3	4800	25	29.8	$UMC 130 \mu m$
[SM21]		2	231.5	0	72	108.0	$UMC 130 \mu m$
HADES	${ m L}$	2	325.9	9600	120	40.8	NanGate 45 nm
HADES	\mathbf{A}	2	52.2	150	3144	2954.9	NanGate 45 nm
HADES	R/ALRP	2	54.1	75	4680	2901.4	NanGate 45 nm
HADES	ALP	2	117.7	2400	264	211.2	NanGate 45 nm

d	Scheme	Area	\mathbf{SRAM}	Rand.	Latency	Delay
a	Scheme	[kGE]	[bit]	[bit]	[cycles]	μ s
	sNTRUp-761	201	189440	310	1870049	9034
	Kyber-512	447	28608	326	36368922	136213
	Kyber-512	454	28608	163	52707120	205887
	Kyber-512	485	28608	211	931632	3741
1	Kyber-512	668	28608	3880	138441	541
	Kyber-768	433	35776	250	66103166	250391
	Kyber-768	439	35776	125	95698594	359769
	Kyber-768	469	35776	173	1557154	6254
	Kyber-768	797	35776	3956	209081	791
	sNTRUp-761	373	246272	930	1870049	11334
	Kyber-512	575	30400	978	36368922	137241
	Kyber-512	590	30400	489	52707120	198895
	Kyber-512	635	30400	633	931632	3516
2	Kyber-512	1013	30400	11640	138441	543
	Kyber-768	553	38336	750	66103166	265475
	Kyber-768	564	38336	375	95698594	359769
	Kyber-768	609	38336	519	1557154	6155
	Kyber-768	1179	38336	11868	209081	795