Countermeasures against Differential Power Analysis for Hyperelliptic Curve Cryptosystems

> Roberto Avanzi mocenigo@exp-math.uni-essen.de

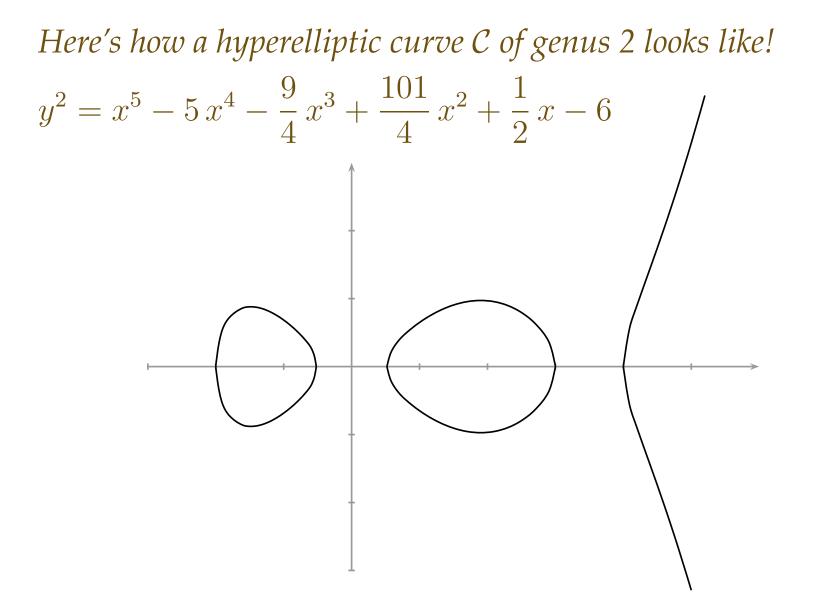
IEM – University of Duisburg–Essen partially supported by the EU via the AREHCC Project http://www.arehcc.com *In full screen mode, click on titles to go to corresponding slide.*

- Why HECC
- Group of Divisors
- Divisor Classes and Mumford Representation
- Dangers for HECC
 - Simple Side Channel Analysis
 - Differential Side Channel Analysis and countermeasures
 - Goubin-type attacks and countermeasures
- Typos in Paper
- Conclusions

Roberto Avanzi – Countermeasures against DPA for HECC – p.1

- Not wise to put all eggs in one basket.
- hecc close to ecc in performance: ±10%.
 See Pelzl, et al., before lunch, for g = 3 over binary fields, and (in progress) A. for g = 2 over prime fields.
- Smaller fields might allow use of cheaper hardware (but: put more software on card.)
- **•** For the moment, less patents for hecc than on ecc.

Just a reminder...



Curve C : $y^2 + h(x)y = f(x)$

$$f$$
 monic, deg $f = 2g + 1$, deg $h \leq g$. g = genus.

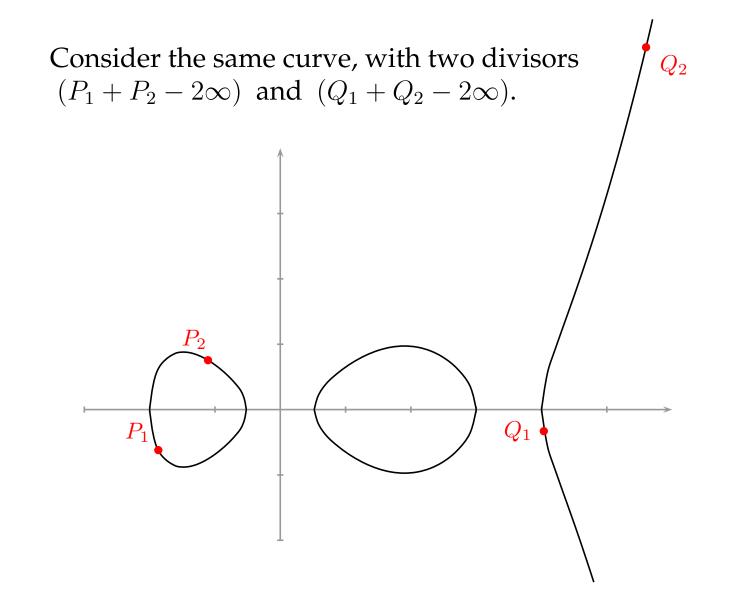
Points on a hyperelliptic curve in general do **not** form a group!

Use divisors, i. e. "sets of points" with multiplicities:

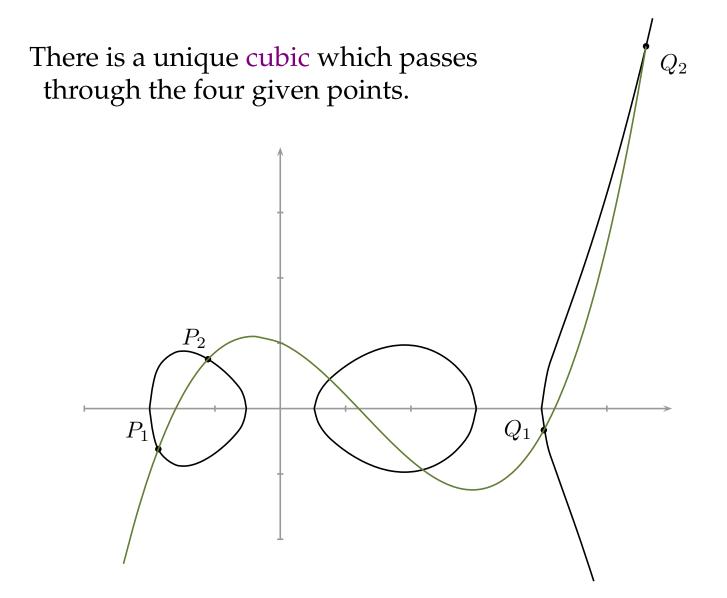
$$\sum_{i=1}^{k} m_i P_i - \left(\sum_{i=1}^{k} m_i\right) \infty \quad : \quad m_i > 0, \quad P_i \in \mathcal{C} \smallsetminus \{\infty\}$$

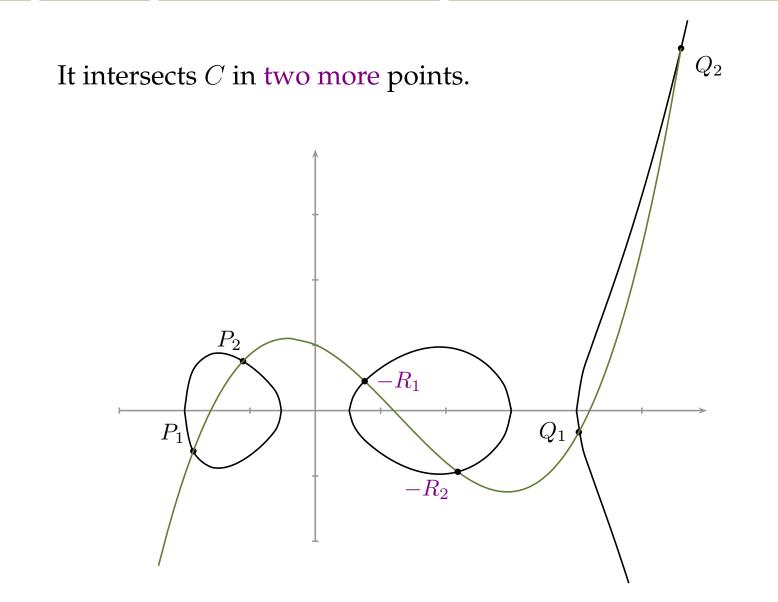
We show how this works "geometrically".

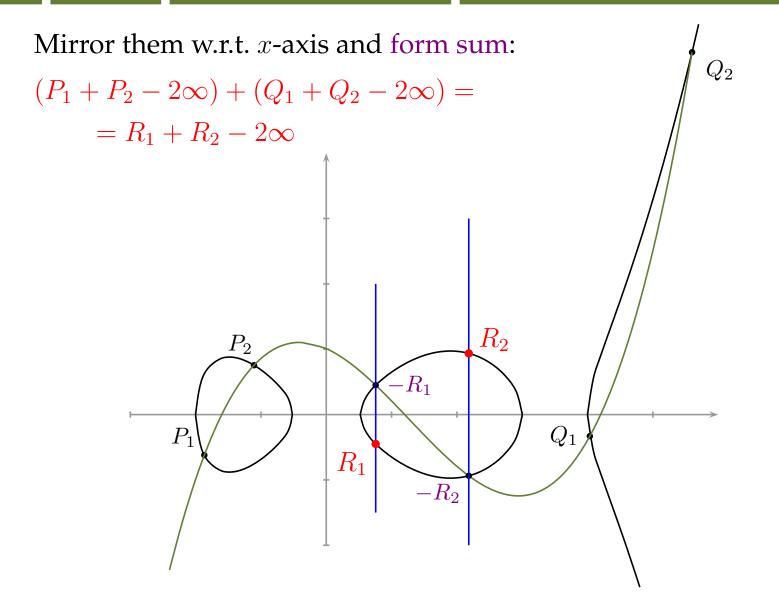
[⇐]



 $[\Leftarrow]$







This defines a group, the Jacobian of C, Jac(C).

If $\mathcal{K} = \mathbb{F}_q$, then $\# \operatorname{Jac}(\mathcal{C}) \approx q^g$.

But working with "point sets" and intersecting curves is very inefficient.

Better:

- Mumford representation and
- Cantor's algorithm \Rightarrow explicit formulæ.

Curve C : $y^2 + h(x)y = f(x)$

[⇐]

Let $D = \sum m_P P - (\sum m_P) \infty$ have deg $\sum m_P \leq g$. - more precisely: degree of associated effective divisor –

D represented by unique pair of polynomials $U(t), V(t) \in \mathcal{K}[t]$ with: $g \ge \deg_t U > \deg_t V$, *U* monic.

$$\begin{cases} U(t) = \prod (t - x_P)^{m_P} \\ V(x_P) = y_P \text{ for all } P \\ U(t) \text{ divides } V(t)^2 + V(t)h(t) - f(t) \end{cases}$$

Coordinates of D: the coefficients of U and V.

Dangers for HECC

Two categories of attacks:

- *mathematical* (on structure) and
- *hardware-related* (on implementation).

Dangers for HECC

Two categories of attacks:

[⇐]

- *mathematical* (on structure) and
- *hardware-related* (on implementation).

Mathematical attacks $\Rightarrow g \leq 4$.

Dangers for HECC

Two categories of attacks:

- *mathematical* (on structure) and
- *hardware-related* (on implementation).

Mathematical attacks $\Rightarrow g \leq 4$.

Here we consider *Side Channel Analysis*.

Simple.

[⇐]

- Differential.
- Goubin type.

I will **not** *describe them for the umpteenth time here... Not interested in fault analysis in this paper.*

```
Roberto Avanzi – Countermeasures against DPA for HECC – p.8
```

Solution: make sequence of elementary ops regular.

- Make sequence of group ops homogeneous (e.g. Coron's double-and-add-always).
- Make the group ops indistinguishable (e.g. Hess or Jacobi form for ecc, Brier-Joye, insertion of dummy ops: latter easy with Lange's genus 2 formulae); or split the group ops into blocks which can be made regular (Ciet-Joye).

From now assume hecc immunised against SPA.

- Applies to computations $n \cdot D$ in the group G, n fixed. Exploits knowledge of internal representation of operands. \Rightarrow internal data must be unpredictably scrambled: Some techniques for previous cryptosystems:

Slower

[⇐]

- Joye-Tymen (ecc): Compute in isomorphic curve.
 Coron's 2nd and 3rd (ecc): Randomise D.
 - Coron's 1rst: Randomise scalar *n*.
 - Joye-Tymen: Use isomorphic binary field.

Which countermeasures for hecc?

hecc analogue of Joye-Tymen's ecc curve randomisation.

- $\phi : \mathcal{C} \to \tilde{\mathcal{C}} = a \mathcal{K}$ -isomorphism of hyperelliptic curves.
- $\Rightarrow \mathcal{K}\text{-isomorphism } \phi : \operatorname{Jac}(\mathcal{C}) \to \operatorname{Jac}(\tilde{\mathcal{C}}).$
- Assume ϕ and ϕ^{-1} can be computed "quickly".

hecc analogue of Joye-Tymen's ecc curve randomisation. $\phi : C \to \tilde{C} = a \mathcal{K}$ -isomorphism of hyperelliptic curves. $\Rightarrow \mathcal{K}$ -isomorphism $\phi : \operatorname{Jac}(\mathcal{C}) \to \operatorname{Jac}(\tilde{\mathcal{C}})$. Assume ϕ and ϕ^{-1} can be computed "quickly". Instead of $Q = n \cdot D$ in $\operatorname{Jac}(\mathcal{C})(\mathcal{K})$, we compute

 $Q = \phi^{-1} \big(n \cdot \phi(D) \big)$

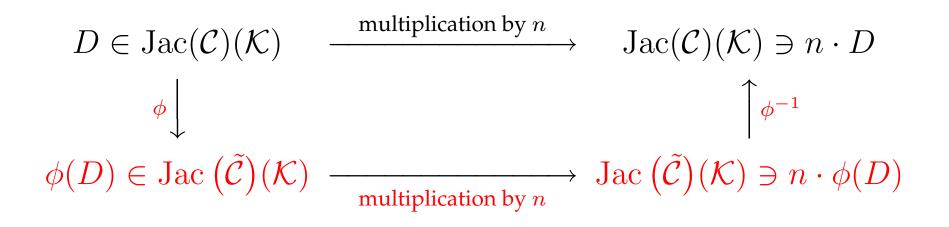
[⇐]

hecc analogue of Joye-Tymen's ecc curve randomisation. $\phi : C \to \tilde{C} = a \mathcal{K}$ -isomorphism of hyperelliptic curves. $\Rightarrow \mathcal{K}$ -isomorphism $\phi : \operatorname{Jac}(\mathcal{C}) \to \operatorname{Jac}(\tilde{\mathcal{C}})$. Assume ϕ and ϕ^{-1} can be computed "quickly". Instead of $Q = n \cdot D$ in $\operatorname{Jac}(\mathcal{C})(\mathcal{K})$, we compute

 $Q = \phi^{-1} \big(n \cdot \phi(D) \big)$

Transfer all points of *D* over *C* to \tilde{C} "simultaneously" by manipulating coordinates of divisor.

First Countermeasure: Curve Randomisation



Details in the paper. Two types of isomorphisms:

Using only multiplications: All coefficients of C and of D are multiplied by different powers of a randomly chosen $s \in K$. **Total** # **field muls LESS than in one group op!**

Using also additions: everything can become slower. (work with more general curves).

On embedded hardware, field inversion is very slow.

This prompted the introduction of projective coordinates. They do not require inversions. *A group element has many different representations.*

For ecc: two triples (X, Y, Z) and (sX, sY, sZ) represent the same point if $s \in \mathcal{K}^{\times}$.

Coron uses them to randomise the base point: replaces (X, Y, Z) with (sX, sY, sZ) for a random $s \in \mathcal{K}^{\times}$. For genus 2 hecc: Projective and New coordinates (Lange).

Projective: a divisor $D \equiv [U(t), V(t)]$ is represented as a quintuple $[U_1, U_0, V_1, V_0, Z] \in \mathcal{K}^5$ where

$$U(t) = t^2 + \frac{U_1}{Z}t + \frac{U_0}{Z}$$
 and $V(t) = \frac{V_1}{Z}t + \frac{V_0}{Z}$

The randomisation consists in picking a random $s \in \mathcal{K}^{\times}$ and by performing the following replacement

 $[U_1, U_0, V_1, V_0, Z] \mapsto [sU_1, sU_0, sV_1, sV_0, sZ]$.

For New coordinates the method is entirely similar.

[⇐]

Remark: randomisation of zero by multiplication by a random value, or by random isomorphism, is... zero!

Definition: context of Goubin-type attacks:

Let H be a small subset of the group G s.t.:

- The elements of H possess properties which makes their processing detectable by side-channel analysis for example, zeros in the internal representation and
- \bullet are invariant under a given randomisation procedure R.

H := set of special points/divisors.

Assume that a *chosen message attack* can be set up to obtain *an element of* H as a partial result in a specific step of the scalar multiplication – if n_j has been guessed correctly.

Assume that a *chosen message attack* can be set up to obtain *an element of* H as a partial result in a specific step of the scalar multiplication – if n_j has been guessed correctly.

This element may be $t \cdot D$ where D is the chosen message and t = number represented by $(n_r, n_{r-1}, \dots, n_{j+1}, n_j)$. In this case the specific step of the scalar multiplication would be an addition or doubling involving $t \cdot D$. *For other value(s) of* n_j *elements of* H *should be avoided*.

Assume that a *chosen message attack* can be set up to obtain *an element of* H as a partial result in a specific step of the scalar multiplication – if n_j has been guessed correctly.

This element may be $t \cdot D$ where D is the chosen message and t = number represented by $(n_r, n_{r-1}, \dots, n_{j+1}, n_j)$. In this case the specific step of the scalar multiplication would be an addition or doubling involving $t \cdot D$. *For other value(s) of* n_j *elements of* H *should be avoided*.

Then, statistical correlation of side-channel traces may reveal if the guess was correct even if *R* is used.

Such sets *H* exist. Examples:

- H = Points with a zero coordinate of an elliptic curve.
- H = Divisors on a hyperelliptic curve with a zero coordinate (e.g. of deg < g).

Preserved by above randomisations.

Probability random point/divisor $\in H$ is $O(q^{-1})$, $q = \#\mathcal{K}$, so set is small.

On ecc it is easy to avoid such points (remember Nigel Smart's talk). But for hecc?

- Scalar randomization: ok (but: slow).
- Message blinding: hecc analogue of Coron's 2nd method.
- R = secret divisor, with $S = n \cdot R$ known.
- Compute $n \cdot (D+R) S$ in place of $n \cdot D$.

If *R* belongs to the group generated by *D* (normal case), equivalent to isogeny of random degree: if $R = m \cdot D$ then $D + R = (m + 1) \cdot D$.

An isogeny is *not* an isomorphism with probability $1 - O(q^{-1}) \Rightarrow$ images of "special" divisors are not special.

Page 378, line 7.

[⇐]

- ERRATA: ... $\deg(t(D+R)) = g$ also with probability $O(q^{-1})$...
- CORRIGE: ... $\deg(t(D + R)) < g$ also with probability $O(q^{-1})$...

- Two methods to prevent basic DPA for hecc.
 - Curve randomisation (generic).
 - Divisor randomisation (specific).
 - Cheaper than a single group operation!
- Serious Goubin-type attacks on hecc discovered.
 - Suitable divisor randomisation to thwart them.
 - Costs as few group operations.

 $[\Leftarrow]$

Ditto for trace-zero varieties (Frey, Naumann, Lange, Lange-A.). Now one can really start deploying hecc *on embedded devices!*

Any questions?

