Countermeasures against

Differential Power Analysis for

Hyperelliptic Curve Cryptosystems

Roberto Avanzi
mocenigo@exp-math.uni-essen.de

IEM - University of Duisburg-Essen partially supported by the EU via the AREHCC Project http://www.arehcc.com

Slide index

In full screen mode, click on titles to go to corresponding slide.

- Why HECC
- Group of Divisors
- Divisor Classes and Mumford Representation
- Dangers for HECC
- Simple Side Channel Analysis
- Differential Side Channel Analysis
- Goubin-type attacks and countermeasures
- Typos in Paper
- Conclusions

$$
\text { Roberto Avanzi - Countermeasures against DPA for HECC - p. } 1
$$

Why HECC

- Not wise to put all eggs in one basket.
- hecc close to ecc in performance: $\pm 10 \%$.

See Pelzl, et al., before lunch, for $g=3$ over binary fields, and (in progress) A. for $g=2$ over prime fields.

- Smaller fields might allow use of cheaper hardware (but: put more software on card.)
- For the moment, less patents for hecc than on ecc.

Just a reminder...

Here's how a hyperelliptic curve \mathcal{C} of genus 2 looks like!
$y^{2}=x^{5}-5 x^{4}-\frac{9}{4} x^{3}+\frac{101}{4} x^{2}+\frac{1}{2} x-6$

Group of Divisors

Curve $\mathcal{C}: y^{2}+h(x) y=f(x)$
f monic, $\operatorname{deg} f=2 g+1, \operatorname{deg} h \leqslant g . g=$ genus.
Points on a hyperelliptic curve in general do not form a group!
Use divisors, i.e. "sets of points" with multiplicities:

$$
\sum_{i=1}^{k} m_{i} P_{i}-\left(\sum_{i=1}^{k} m_{i}\right) \infty \quad: \quad m_{i}>0, \quad P_{i} \in \mathcal{C} \backslash\{\infty\}
$$

We show how this works "geometrically".

How to do HECC

Consider the same curve, with two divisors $\left(P_{1}+P_{2}-2 \infty\right)$ and $\left(Q_{1}+Q_{2}-2 \infty\right)$.

Roberto Avanzi - Countermeasures against DPA for HECC - p. 5

How to do HECC

There is a unique cubic which passes through the four given points.

Roberto Avanzi - Countermeasures against DPA for HECC - p. 5

How to do HECC

It intersects C in two more points.

How to do HECC

Mirror them w.r.t. x-axis and form sum:

$$
\begin{aligned}
& \left(P_{1}+P_{2}-2 \infty\right)+\left(Q_{1}+Q_{2}-2 \infty\right)= \\
& \quad=R_{1}+R_{2}-2 \infty
\end{aligned}
$$

Roberto Avanzi - Countermeasures against DPA for HECC - p. 5

Divisor Classes and Mumford Representation

This defines a group, the $\operatorname{Jacobian}$ of $\mathcal{C}, \operatorname{Jac}(\mathcal{C})$.
If $\mathcal{K}=\mathbb{F}_{q}$, then $\# \operatorname{Jac}(\mathcal{C}) \approx q^{g}$.
But working with "point sets" and intersecting curves is very inefficient.

Better:

- Mumford representation and
- Cantor's algorithm \Rightarrow explicit formulæ.

Divisor Classes and Mumford Representation

Curve $\mathcal{C}: y^{2}+h(x) y=f(x)$
Let $D=\sum m_{P} P-\left(\sum m_{P}\right) \infty$ have deg $\sum m_{P} \leqslant g$.

- more precisely: degree of associated effective divisor -
D represented by unique pair of polynomials
$U(t), V(t) \in \mathcal{K}[t]$ with: $g \geqslant \operatorname{deg}_{t} U>\operatorname{deg}_{t} V, U$ monic.

$$
\left\{\begin{array}{l}
U(t)=\prod\left(t-x_{P}\right)^{m_{P}} \\
V\left(x_{P}\right)=y_{P} \text { for all } P \\
U(t) \text { divides } V(t)^{2}+V(t) h(t)-f(t)
\end{array}\right.
$$

Coordinates of D : the coefficients of U and V.

Dangers for HECC

Two categories of attacks:

- mathematical (on structure) and
- hardware-related (on implementation).

Dangers for HECC

Two categories of attacks:

- mathematical (on structure) and
- hardware-related (on implementation).

Mathematical attacks $\Rightarrow g \leqslant 4$.

Dangers for HECC

Two categories of attacks:

- mathematical (on structure) and
- hardware-related (on implementation).

Mathematical attacks $\Rightarrow g \leqslant 4$.
Here we consider Side Channel Analysis.

- Simple.
- Differential.
- Goubin type.

I will not describe them for the umpteenth time here...
Not interested in fault analysis in this paper.

Simple Side Channel Analysis

Solution: make sequence of elementary ops regular.

- Make sequence of group ops homogeneous (e.g. Coron's double-and-add-always).
- Make the group ops indistinguishable (e.g. Hess or Jacobi form for ecc, Brier-Joye, insertion of dummy ops: latter easy with Lange's genus 2 formulae); or split the group ops into blocks which can be made regular (Ciet-Joye).

From now assume hecc immunised against SPA.

Differential Side Channel Analysis

Applies to computations $n \cdot D$ in the group G, n fixed.
Exploits knowledge of internal representation of operands.
\Rightarrow internal data must be unpredictably scrambled:
Some techniques for previous cryptosystems:
き Joye-Tymen (ecc): Compute in isomorphic curve.
© Coron's 2nd and 3rd (ecc): Randomise D.
』 Coron's 1rst: Randomise scalar n.

- Joye-Tymen: Use isomorphic binary field.

Which countermeasures for hecc?

First Countermeasure: Curve Randomisation

hecc analogue of Joye-Tymen's ecc curve randomisation.
$\phi: \mathcal{C} \rightarrow \tilde{\mathcal{C}}=$ a \mathcal{K}-isomorphism of hyperelliptic curves.
$\Rightarrow \mathcal{K}$-isomorphism $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}(\tilde{\mathcal{C}})$.
Assume ϕ and ϕ^{-1} can be computed "quickly".

First Countermeasure: Curve Randomisation

hecc analogue of Joye-Tymen's ecc curve randomisation.
$\phi: \mathcal{C} \rightarrow \tilde{\mathcal{C}}=$ a \mathcal{K}-isomorphism of hyperelliptic curves.
$\Rightarrow \mathcal{K}$-isomorphism $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}(\tilde{\mathcal{C}})$.
Assume ϕ and ϕ^{-1} can be computed "quickly".
Instead of $Q=n \cdot D$ in $\operatorname{Jac}(\mathcal{C})(\mathcal{K})$, we compute

$$
Q=\phi^{-1}(n \cdot \phi(D))
$$

First Countermeasure: Curve Randomisation

hecc analogue of Joye-Tymen's ecc curve randomisation.
$\phi: \mathcal{C} \rightarrow \tilde{\mathcal{C}}=$ a \mathcal{K}-isomorphism of hyperelliptic curves.
$\Rightarrow \mathcal{K}$-isomorphism $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}(\tilde{\mathcal{C}})$.
Assume ϕ and ϕ^{-1} can be computed "quickly".
Instead of $Q=n \cdot D$ in $\operatorname{Jac}(\mathcal{C})(\mathcal{K})$, we compute

$$
Q=\phi^{-1}(n \cdot \phi(D))
$$

Transfer all points of D over \mathcal{C} to $\tilde{\mathcal{C}}$ "simultaneously" by manipulating coordinates of divisor.

First Countermeasure: Curve Randomisation

$$
\begin{aligned}
& D \in \operatorname{Jac}(\mathcal{C})(\mathcal{K}) \xrightarrow{\text { multiplication by } n} \operatorname{Jac}(\mathcal{C})(\mathcal{K}) \ni n \cdot D \\
& \phi \downarrow \\
& \phi(D) \in \operatorname{Jac}(\tilde{\mathcal{C}})(\mathcal{K}) \xrightarrow[\text { multiplication by } n]{ } \operatorname{Jac}(\tilde{\mathcal{C}})(\mathcal{K}) \ni n \cdot \phi(D)
\end{aligned}
$$

Details in the paper. Two types of isomorphisms:
Using only multiplications: All coefficients of \mathcal{C} and of D are multiplied by different powers of a randomly chosen $s \in \mathcal{K}$. Total \# field muls LESS than in one group op!
Using also additions: everything can become slower. (work with more general curves).

Second Countermeasure: Divisor Randomisation

On embedded hardware, field inversion is very slow.
This prompted the introduction of projective coordinates. They do not require inversions.
A group element has many different representations.
For ecc: two triples (X, Y, Z) and $(s X, s Y, s Z)$ represent the same point if $s \in \mathcal{K}^{\times}$.

Coron uses them to randomise the base point: replaces (X, Y, Z) with $(s X, s Y, s Z)$ for a random $s \in \mathcal{K}^{\times}$.

Second Countermeasure: Divisor Randomisation

For genus 2 hecc: Projective and New coordinates (Lange).
Projective: a divisor $D \equiv[U(t), V(t)]$ is represented as a quintuple $\left[U_{1}, U_{0}, V_{1}, V_{0}, Z\right] \in \mathcal{K}^{5}$ where

$$
U(t)=t^{2}+\frac{U_{1}}{Z} t+\frac{U_{0}}{Z} \quad \text { and } \quad V(t)=\frac{V_{1}}{Z} t+\frac{V_{0}}{Z} .
$$

The randomisation consists in picking a random $s \in \mathcal{K}^{\times}$ and by performing the following replacement

$$
\left[U_{1}, U_{0}, V_{1}, V_{0}, Z\right] \mapsto\left[s U_{1}, s U_{0}, s V_{1}, s V_{0}, s Z\right] .
$$

For New coordinates the method is entively similar.

Goubin type attacks: Context

Remark: randomisation of zero by multiplication by a random value, or by random isomorphism, is... zero!

Definition: context of Goubin-type attacks:
Let H be a small subset of the group G s.t.:

- The elements of H possess properties which makes their processing detectable by side-channel analysis - for example, zeros in the internal representation - and
- are invariant under a given randomisation procedure R.
$H:=$ set of special points/divisors.

Goubin type attacks: Description

Suppose most significant digits $n_{r}, n_{r-1}, \ldots, n_{j+1}$ of n known; we want to find n_{j}.

Goubin type attacks: Description

Suppose most significant digits $n_{r}, n_{r-1}, \ldots, n_{j+1}$ of n known; we want to find n_{j}.

Assume that a chosen message attack can be set up to obtain an element of H as a partial result in a specific step of the scalar multiplication - if n_{j} has been guessed correctly.

Goubin type attacks: Description

Suppose most significant digits $n_{r}, n_{r-1}, \ldots, n_{j+1}$ of n known; we want to find n_{j}.
Assume that a chosen message attack can be set up to obtain an element of H as a partial result in a specific step of the scalar multiplication - if n_{j} has been guessed correctly.
This element may be $t \cdot D$ where D is the chosen message and $t=$ number represented by ($n_{r}, n_{r-1}, \ldots, n_{j+1}, n_{j}$). In this case the specific step of the scalar multiplication would be an addition or doubling involving $t \cdot D$. For other value(s) of n_{j} elements of H should be avoided.

Goubin type attacks: Description

Suppose most significant digits $n_{r}, n_{r-1}, \ldots, n_{j+1}$ of n known; we want to find n_{j}.
Assume that a chosen message attack can be set up to obtain an element of H as a partial result in a specific step of the scalar multiplication - if n_{j} has been guessed correctly.
This element may be $t \cdot D$ where D is the chosen message and $t=$ number represented by ($n_{r}, n_{r-1}, \ldots, n_{j+1}, n_{j}$). In this case the specific step of the scalar multiplication would be an addition or doubling involving $t \cdot D$. For other value(s) of n_{j} elements of H should be avoided.
Then, statistical correlation of side-channel traces may reveal if the guess was correct even if R is used.

Goubin type attacks: The bad news

Such sets H exist. Examples:

- $H=$ Points with a zero coordinate of an elliptic curve.
- $H=$ Divisors on a hyperelliptic curve with a zero coordinate (e.g. of $\operatorname{deg}<g$).

Preserved by above randomisations.
Probability random point/divisor $\in H$ is $O\left(q^{-1}\right), q=\# \mathcal{K}$, so set is small.

On ecc it is easy to avoid such points (remember Nigel Smart's talk). But for hecc?

Goubin type attacks: The good news

Scalar randomization: ok (but: slow).
Message blinding: hecc analogue of Coron's 2nd method.
$R=$ secret divisor, with $S=n \cdot R$ known.
Compute $n \cdot(D+R)-S$ in place of $n \cdot D$.
If R belongs to the group generated by D (normal case), equivalent to isogeny of random degree:
if $R=m \cdot D$ then $D+R=(m+1) \cdot D$.
An isogeny is not an isomorphism with probability
$1-O\left(q^{-1}\right) \Rightarrow$ images of "special" divisors are not special.

Typos

Page 378 , line 7 .
Errata: ... $\operatorname{deg}(t(D+R))=g$ also with probability $O\left(q^{-1}\right) \ldots$

Corrige: ... $\operatorname{deg}(t(D+R))<g$ also with probability $O\left(q^{-1}\right)$...

Conclusions

- Two methods to prevent basic DPA for hecc.
- Curve randomisation (generic).
- Divisor randomisation (specific).
- Cheaper than a single group operation!
- Serious Goubin-type attacks on hecc discovered.
- Suitable divisor randomisation to thwart them.
- Costs as few group operations.

Ditto for trace-zero varieties (Frey, Naumann, Lange, Lange-A.).
Now one can really start deploying hecc on embedded devices!
?? ?

