A Practical Countermeasure against Address-bit Differential Power Analysis

Kouichi Itoh, Tetsuya Izu and Masahiko Takenaka

Objective of our Work

A practical countermeasure against address-bit DPA

Evaluation criteria of the power analysis countermeasures

Contents

- What is DPA?
- Address-bit DPA (ADPA)

Our countermeasure against ADPA
Experimental result
Our evaluation criteria of countermeasures
Conclusion

- Practical countermeasure against address-bit DPA

What is Power Analysis (PA)?

Analyze a secret key stored in the cryptographic device by monitoring its power consumption (Kocher, CRYPTO'99)

Plaintexts P_{i} $(i=1,2, \ldots, N)$

Analyze
Secret key K

FUjilisi

Overview of Power Analysis

ADPA in ECC

Itoh-Izu-Takenaka(CHES '02)

Breaks SPA countermeasure + DDPA countermeasure!

Add-and-always method + Randomized Projective Coordinates
$Q[0]=R P C(P), Q[1]=E C D B L(Q[0])$
for $i=n-2$ downto $0\{$
$Q[2]=E C D B L\left(Q\left[d_{i}\right]\right)$
$Q[1]=E C A D D(Q[0], Q[1])$
$Q[0]=Q\left[2-d_{i}\right], Q[1]=Q\left[1+d_{i}\right]$
$\}$
return invRPC$(Q[0])$
$d_{i}=0$

Address	Data
$\mathrm{Q}[0]$	$* * * * * * * *$
$\mathrm{Q}[1]$	$* * * * * * * *$
$\mathrm{Q}[2]$	$* * * * * * * *$

$d_{i}=1$

Address	Data
$\mathrm{Q}[0]$	$* * * * * * *$
$\mathrm{Q}[1]$	$* * * * * * *$
$\mathrm{Q}[2]$	$* * * * * * *$

ADPA in ECC

Itoh-Izu-Takenaka(CHES '02)
 Breaks SPA countermeasure + DDPA countermeasure!

Add-and-always method + Randomized Projective Coordinates

$Q[0]=R P C(P), Q[1]=E C D B L(Q[0])$
for $i=n-2$ downto 0
$Q[2]=E C D B L\left(Q\left[d_{i}\right]\right)$
$Q[1]=E C A D D(Q[0], Q[1])$
$Q[0]=Q\left[2-d_{i}\right], Q[1]=Q\left[1+d_{i}\right]$
ℓ
return invRPC$(Q[0])$

$d_{i}=0$
Address $\mathrm{Q}[0]$
$\mathrm{Q}[1]$
$\mathrm{Q}[2]$

Data copy	
$* * * * * * * *$	
$* * * * * * * *$	
$* * * * * * * *$	

Previous Countermeasures against ADPA in ECC

Exponent splitting(ES) : $d=d_{1}+d_{2}, Q=d_{1} P+d_{2} P,\left(d_{1}, d_{2}\right.$:random
$\rightarrow 2$ times slower than without countermeasures
Randomized Exponent(REXP): $d \Rightarrow d^{\prime}=d+r \times \phi, Q=d^{\prime} P$
(r:random, ф:order)
$\rightarrow 1.125$ times slower than without countermeasures (in 160-bit ECC)

All of them involve overheads!

Jutline of our Countermeasures gainst ADPA in ECC

Randomized Addressing method (RA)
Approach of RA is similar to Random Register Renaming (RRR, May, CHES '01), a hardware countermeasure by randomly mapping between virtual and physical registers.

Advantages of RA to RRR:
\square No special hardware is required
Easily implemented with simple software code and same as RRR, RA involves no overheads!

Basic Idea of RA(our proposal)

Directly blind the address value of registers with the random number.

Vulnerable : $Q[2]=E C D B L(Q[d[i]) \quad$ Ours : $Q[2]=E C D B L(Q[d[i] \oplus 1$-bit random

- No overheads are involved
- Easily implemented with simple program code

SPA- and DPA-countermeasure

```
INPUT: d; P
OUTPUT: dP
1: P'=RPC(P),Q[0] = P'
2: Q[1] = ECDBL(P')
3: for i=m-2 downto 0 {
4: Q[2] = ECDBL(Q[d[i]])
5: Q[1]=ECADD(Q[0],Q[1])
6: Q[0] = Q[2-d[i]]
7: Q[1]=Q[1+d[i]]
8: }
9: return invRPC(Q[0])
```

SPA- and DPA-countermeasure + RA

```
INPUT: d; P
OUTPUT: dP
1: P'=RPC(P),Q[r[m-1]] = P'
2: Q[1-r[m-1]] = ECDBL(Q[r[m-1]])
3: for i=m-2 downto 0{
4: }Q[2]=ECDBL(Q[d[i]\oplusr[i+1]
5: Q[1] = ECADD(Q[0],Q[1])
6: Q[0]=Q[2-(d[i]\oplusr[i])]
7: }Q[1]=Q[1+(d[i]\oplusr[i])
8: )
9: return invRPC(Q[r[0]])
```

FUJIITSI

Experımental result tor ADPA

Attack
Without RA $\left(d_{a} \neq d_{b}\right)$
(loading $Q\left[d_{a}\right] 10000$ times) - (loading $Q\left[d_{b}\right] 10000$ times)

Some spikes are observed
With RA $\left(d_{a} \neq d_{b}\right)$
(loading $Q\left[d_{a} \oplus r_{a}\right] 10000$ times) - (loading $Q\left[d_{b} \oplus r_{b}\right] 10000$ times)
\square
No spikes are observed
\rightarrow Experimental result showed RA is secure against ADPA attack.

Summary of RA

RA has following merits:

- No overheads are involved
\square Special hardware is never required
\square Easily implemented with simple program codes
\square And It also can be applied to:
Window method(s)
RSA
RA is best solution to prevent ADPA, but for preventing other
PA attacks, it should be combined with other countermeasures.

We study for the combination of the countermeasures

- Evaluation Criteria for Countermeasures

Background

Question :
 What is the best choice of the countermeasures?

ecurity evaluation o†

 Eountermeasures

 Eountermeasures}

Security is attained by the combination of the countermeasures, e.g.:

Add-and-double-always
SPA:immune, DDPA: vulnerable, ADPA:vulnerable
Randomized Projective Coordinates (RPC)
SPA:vulnerable, DDPA:immune, ADPA:vulnerable
Add-and-double-always + RPC
SPA:immune, DDPA: immune, ADPA:vulnerable

Goal of our criteria

Choose the best combination of countermeasures to attain the security within the system requirement, that is, performance and memory size

Dverview of Our Criteria

Evaluates a combination of the countermeasures for following points :

- Security
- Performance
- Memory size

Assumption :

\square Use 160-bit ECC parameters on prime field
\square PA are SPA, DDPA and ADPA (In the current result, RPA is not included)
\square Evaluation is limited to software countermeasures \rightarrow We do not deal RRR

jecurity Evaluation in Our Criteria

Security Evaluation with attenuation ratio (AR) (Itoh-Yajima-Takenaka-Torii CHES'02)

Without countermeasure

A : size of the spikes without countermeasure
B : size of the spikes with countermeasure
$A R$ is evaluated by $B / A(0 \leq A R \leq 1)$.
\rightarrow As $A R$ is lower, security is higher.
Note : AR is not RA!

Evaluation Parameters in

ur Criteria

Security ($\left.A R_{s}, A R_{d}, A R_{a}\right)$
It is evaluated by the AR in SPA $\left(\mathrm{AR}_{\mathrm{s}}\right)$, DDPA $\left(\mathrm{AR}_{\mathrm{d}}\right)$ and $\operatorname{ADPA}\left(\mathrm{AR}_{\mathrm{a}}\right)$
Performance (D, A)
It is evaluated by the number of EC doublings (D) and EC additions (A)
Memory size ($\mathbf{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{S}}$)
It is evaluated by the number of registers for EC points (R_{P}) and scalar value $\left(R_{S}\right)$

asic Idea for evaluating the =ombination (1)

How to evaluate the AR of CM1+CM2=???

$\mathrm{B}_{\mathrm{CM} 1+\mathrm{CM} 2}=\mathrm{B}_{\mathrm{CM} 1} \times \mathrm{AR}_{\mathrm{CM} 2}$

$\mathrm{AR}_{\mathrm{CM} 1+\mathrm{CM} 2}=\mathrm{B}_{\mathrm{CM} 1+\mathrm{CM} 2} / \mathrm{A}=\mathrm{AR}_{\mathrm{CM} 1} \times \mathrm{AR}_{\mathrm{CM} 2}$

3asic Idea for evaluating the combination (2)

Performance : A (or D)

$$
\mathrm{A}_{\mathrm{CM} 1+\mathrm{CM} 2}=\mathrm{A}_{\mathrm{CM} 1} \times \mathrm{A}_{\mathrm{CM} 2} \quad\left(+\mathrm{Ae}_{\mathrm{CM} 2} \text { in some cases }\right)
$$

Memory size : \mathbf{R}

$$
\mathrm{R}_{\mathrm{CM} 1+\mathrm{CM} 2}=\mathrm{R}_{\mathrm{CM} 1}+\mathrm{R}_{\mathrm{CM} 2}
$$

Dur Evaluation for Combination of Countermeasures

Parameters

Security:AR ${ }_{s}$ (vs. SPA), AR ${ }_{\mathrm{d}}\left(\right.$ vs.DDPA), AR $_{\mathrm{a}}($ vs.ADPA)

- Performance : D (ECDBLs), A(ECADDs)
\square memory size : \mathbf{R}_{p} (Number of EC Points), \mathbf{R}_{s} (Number of Scalars)
e.g. "Montgomery Ladder" + "Randomized Curve"=?????
$\left(A R_{s}, A R_{d}, A R_{a}\right)=\left((0,1,1),\left(\times 1, \times 2^{-160}, \times 1\right)\right)$
$=\left(0 \times 1,1 \times 2^{-160}, 1 \times 1\right)=\left(0,2^{-160}, 1\right) \quad \int($ SPA,DDPA,ADPA $)$
(D,A)
$=((160,160),(\times 1, \times 1))$
$=(160 \times 1,160 \times 1)=(160,160)$
) Number of
\} (ECDBL,ECADD)
$\left.\left(R_{P}, R_{s}\right) \quad=((3,0),(+0,+3))=(3+0,0+3)=(3,3)\right\}$ Register number for
\rightarrow Combination is easily evaluated!

3asic Data Table of our Evaluation Criteria (Binary-method

	Security (SPA,DDPA,ADPA)			Performance (ECDBL,ECADD)		Registers (Point, Scalar		
Method	AR_{S}	AR_{d}	AR_{a}	D	A	R_{P}	R_{s}	
Binary method (from MSB)	1	1	1	160	80	1	0	
Binary method (from LSB)	1	1	1	160	80	2	0	
Add-and-double-always	$\times 0$	$\times 1$	$\times 1$	$\times 1$	$\times 2$	+1	+0	
Montgomery ladder	0	1	1	160	160	3	0	
Randomized projective coordinate (RPC)	$\times 1$	$\times 2^{-160}$	$\times 1$	$\times 1$	$\times 1$	+1	+1	
Randomized curve (RC)	$\times 1$	$\times 2^{-160}$	$\times 1$	$\times 1$	$\times 1$	+0	+3	
Randomized base point	$\times 1$	$\times 2^{-160}$	$\times 1$	$\times 2$	$\times 2$	+2	+0	
Randomized exponent (\|r	= 20)	$\times 1$	$\times 2^{-20}$	$\times 2^{-20}$	$\times 1.13$	$\times 1.13$	+0	+1
Randomized start point	$\times 1$	$\times 2^{-7.3}$	$\times 2^{-7.3}$	$\times 1$	$\times 1$	+0	+0	
Exponent splitting	$\times 1$	$\times 2^{-160}$	$\times 2^{-160}$	$\times 2$	$\times 2+1$	+1	+2	
Randomized addressing (RA)	$\times 1$	$\times 1$	$\times 2{ }^{-160}$	$\times 1$	$\times 1$	+0	+2	
							UJITS	

hoosing the best combination

 f the countermeasures
Case1 (Slower encryption)

"Binary method (from MSB)" +
"Add-and-double-always" +
"RPC" +"Randomized Exponent"
$\left(\mathrm{AR}_{\mathrm{S}}, \mathrm{AR}_{\mathrm{d}}, \mathrm{AR}_{\mathrm{a}}\right)=\left(0,2^{-180}, 2^{-180}\right)$
$(\mathrm{D}, \mathrm{A})=(180,180)$
$\left(R_{p}, R_{s}\right)=(3,2)$
Case2 (Lager memory size)
"Montgomery Ladder" +
"RPC"+ "RA"

$$
\begin{aligned}
& \left(A R_{S}, A R_{d}, A R_{a}\right)=\left(0,2^{-160}, 2^{-160}\right) \\
& (D, A)=(160,160) \\
& \left(R_{P}, R_{s}\right)=(4,3)
\end{aligned}
$$

Case3 (Best combination)

"Binary method (from MSB)" +
"Add-and-double-always" +
"RPC" + RA

$$
\begin{aligned}
& \left(\mathrm{AR}_{\mathrm{S}}, \mathrm{AR}_{\mathrm{d}}, \mathrm{AR}_{\mathrm{a}}\right)=\left(0,2^{-160}, 2^{-160}\right) \\
& (\mathrm{D}, \mathrm{~A})=(160,160) \\
& \left(\mathrm{R}_{\mathrm{P}}, \mathrm{R}_{\mathrm{s}}\right)=(3,3)
\end{aligned}
$$

hoosing the best combination f the countermeasures

Case1 (Slower encryption)
"Binary method (from MSB)" +
"Add-and-double-always" +
"RPC" +"Randomized Exponent"

$$
\begin{aligned}
& \left(A R_{s}, A R_{d}, A R_{a}\right)=\left(0,2^{-180}, 2^{-180}\right) \\
& (D, A)=(180,180) \\
& \left(R_{P}, R_{s}\right)=(3,2)
\end{aligned}
$$

Case2 (Lager memory size)

"Montgomery Ladder" + "RPC"+ "RA"

$$
\begin{aligned}
& \left(A R_{S}, A R_{d}, A R_{a}\right)=\left(0,2^{-160}, 2^{-160}\right) \\
& (D, A)=(160,160) \\
& \left(R_{P}, R_{s}\right)=(4,3)
\end{aligned}
$$

Case3 (Best combination)

"Binary method (from MSB)" +
"Add-and-double-always" +
"RPC" + RA

$$
\begin{aligned}
& \left(\mathrm{AR}_{\mathrm{s}}, \mathrm{AR}_{\mathrm{d}}, A R_{\mathrm{a}}\right)=\left(0,2^{-160}, 2^{-160}\right) \\
& (\mathrm{D}, \mathrm{~A})=(160,160) \\
& \left(\mathrm{R}_{\mathrm{P}}, \mathrm{R}_{\mathrm{s}}\right)=(3,3)
\end{aligned}
$$

remarks and summary ot our
Eriteria

Enables to choose the best combination of the countermeasures within the system requirement
With our criteria, RA is estimated to be the best solution against ADPA
Security against RPA can be also evaluated, by expanding the basic data table

Conclusions

We proposed an ADPA countermeasure (RA), which
\square involves no overhead

- and implemented easily with simple software code.
- We showed its security against ADPA experimentally

We proposed an evaluation criteria of the
countermeasures, which
\square enables to chose an optimal countermeasures within the system requirement
\square can be applied to other countermeasures and analysis than those in our paper
By our criteria, RA is the best solution to the ADPA attac

FUJITSU

THE POSSIBILITIES ARE INFINITE

Basic Idea of More Efficient Software Implementation

Single-bit RA

Multiple-bit RA

More Efficient Software Implementation

- Plurality of address-bits are randomized at once \rightarrow Effective in software implementation

Single-bit RA

```
INPUT: d; P
OUTPUT: dP
1: P'=RPC(P),Q[r[m-1]] = P'
2: Q[1-r[m-1]] = ECDBL(Q[r[m-1]])
3: for i=m-2 downto 0 {
4: Q[2] = ECDBL(Q[d[i]\oplusr[i+1])
5: Q[1]=ECADD(Q[0],Q[1])
6: }Q[0]=Q[2-(d[i]\oplusr[i])
7: Q[1]=Q[1+(d[i]\oplusr[i])]
8: }
9: return invRPC(Q[r[0]])
```

Multiple-bit RA

```
INPUT: d; P
OUTPUT: dP
1: P'=RPC(P),Q[r[m-1]] = P'
2: d'=d\oplus(r>> 1), d" = = }\oplus
3: Q[1-r[m-1]] = ECDBL(Q[r[m-1]])
4: for i=m-2 downto 0 {
5: Q[2] = ECDBL(Q[d'[i]])
6: Q[1]=ECADD(Q[0],Q[1])
7: Q[0]=Q[2-d"[i]]
8: Q[1]=Q[1+d"[i]]
9: }
10: return invR\PC(Q[r[0]])
```

