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ECC
ECC is based on arithmetic on an elliptic curve.

Curves usually chosen of the form

Char p

�Y2 = X3+aX+b
– Usually a =�3 for efficiency reasons.

Char 2

�Y2+XY = X3+aX2 +b
– Usually a = 1 for efficiency reasons.
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ECC and SPA
There have been a number of proposed methods of protecting elliptic
curves against SPA in the literature:

Main problem is that the double routine and the add routine have
different power profiles.

Various proposed defences:

�Double and add always
– Coron

�Montgomery Form

� Indistinguishable Addition Formulae
– Liardet and Smart, Joye and Quisquater, Brier and Joye

Some of these only apply to ‘special’ elliptic curves.
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ECC and DPA
However SPA defences do not protect against DPA

�DPA only applies in the ECC situation where one computes

Q = [d]P

for fixed d and many different values of P over many protocol runs.

� i.e. we only consider DPA against the ‘curve’ part of the calculation
– May be able to apply DPA to other parts
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ECC and DPA
However SPA defences do not protect against DPA

�DPA only applies in the ECC situation where one computes

Q = [d]P

for fixed d and many different values of P over many protocol runs.

� i.e. we only consider DPA against the ‘curve’ part of the calculation
– May be able to apply DPA to other parts

Hence

�DPA does not apply to
– ECDSA
– Two pass ECDH
– Two pass ECMQV
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ECC and DPA
However SPA defences do not protect against DPA

�DPA only applies in the ECC situation where one computes

Q = [d]P

for fixed d and many different values of P over many protocol runs.

� i.e. we only consider DPA against the ‘curve’ part of the calculation
– May be able to apply DPA to other parts

Hence

�DPA does apply to
– ECIES
– One pass ECDH (i.e. one static Diffie-Hellman secret)
– One pass ECMQV
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ECC and DPA Defences

Coron proposed three possible DPA defences in the ECC arena:

�Randomizing the secret exponent d,

� Adding random points to P to randomize the base point,

�Using a randomized projective representation.
Only the third of these can be done with minimal computational cost.

Joye and Tymen introduced two other cheap randomizations,

�Random curve isomorphisms

�Random field isomorphisms

We now recap on these defences
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ECC and DPA Defences
Let C(X;Y;Z) denote a projective representation of the affine elliptic
curve we are using in our cryptosystem, whose affine form we shall
assume is monic in Y.

There is a map from affine coordinates to projective coordinates

(x;y) 7�! (x;y;1)

and a similar reverse one

(X;Y;Z) 7�! (X=Zs;Y=Zt)

where s and t are the “weights” of the projective representation.
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Randomized Projective Coordinates

Take the affine point P = (x;y)

Map it into a projective representation, using a random r 2 K�,

(x;y) 7�! P0 = (xrs;yrt; r):

Then compute

�Q0 = [d]P0

Map Q0 back into affine the affine form Q.
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Randomized Curve Isomorphism
Take the affine point P = (x;y) 2C

Define P0 = (rsx; rty) for some random r 2 K�.
We then consider P0 as a point on C0 where if C is given by

C = ∑ai; j x
iyj

then C0 is given by
C0 = θv∑a0

i; j x
iyj

with
a0

i; j = ai; j � r

�(si+ jt );

and v chosen so as to make C0 monic in the y.

� The curves C and C0 are isomorphic.

In our cryptographic operation we now compute

�Q0 = (X0;Y0) = [d]P0 2C0.
Then map this back to C via Q = (X;Y) = (X0=rs;Y0=rt).
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Randomized Field Isomorphism
Here we take P2C and apply a random field isomorphism

κ : K ! K 0

to both P and C so as to obtain

� P0 = κ(P)
and

�C0 = κ(C).

We then compute

�Q0 = [d]P

Recover Q via

�Q = κ�1(Q0).

Nigel Smart 9 RHBNC 2002 January 20, 2004



Special Points
Goubin defines a special point P = (x;y) 2C to be one in which

� x = 0
or

� y = 0.

Goubin’s attack works by feeding suitable multiples P0,

� depending on ones guess for a given bit of d,
of a special point into the device.

Then when the smart cards computes [d]P0, the special point will
occur within the computation assuming the guess is correct.

� Existence of the special point will be picked up with a DPA trace
Special points are preserved under the three randomizations above.

�Hence, attack will apply under all three DPA defences above.
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Curve Orders
Elliptic curves in cryptography are usually chosen to have order

� #E(K) = h�q
where

� q is a large prime

� h is a small integer called the cofactor.

In practice one usually has h2 f1;2;3;4;6g.

The values of h correspond to the orders of the small subgroups
of E(K).

We say that a special point has small order if it has order dividing
h, otherwise we say it has large order.
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Special Point Orders
Curve Special

Equation Char Point Order
y2 +xy= x3+ax2+b 2 (0;θ) 2
y2 +xy= x3+ax2+b 2 (θ;0) ?

y2 = x3+ax+b > 3 (θ;0) 2
y2 = x3+ax+b > 3 (0;θ) ?

x3+y3 +1 =Dxy ? (θ;0) 3
x3+y3 +1 =Dxy ? (0;θ) 3
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“Special Points” of Small Order
Goubin’s attack can be prevented for Special Points of small order by
implementors actually implementing protocols which prevent other
well known attacks.

One Pass Diffie-Hellman Protocol

� Alice has the long term key a

� Bob sends her the ephemeral public key P

� Alice will compute Q = [a]P
– Followed by the (optional) postprocessing of [h]Q.
– If the cofactor is used then one calls the protocol

cofactor-Diffie–Hellman.

� Should insist on using the cofactor variant of Diffie–Hellman
– Avoid Goubin’s attack by swaping the order of use of a and h.
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“Special Points” of Small Order
Goubin’s attack can be prevented for Special Points of small order by
implementors actually implementing protocols which prevent other
well known attacks.

Protected One Pass Diffie-Hellman Protocol

� Alice has the long term key a

� Bob sends her the ephemeral public key P

� Alice computes G = [h]P

� If G 6= O
– Alice comptues Q = [a]G.

� The resulting key is the same as the original version
– But we protect against Goubin’s attack.
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“Special Points” of Small Order
Goubin’s attack can be prevented for Special Points of small order by
implementors actually implementing protocols which prevent other
well known attacks.

Other Protocols

� Similar considerations apply to other protocols which have
cofactor variants

– One pass ECMQV
– ECIES, as defined in X9.63 and SECG

� In these cases we have to alter the order of operations from the
standard

– This is done without affecting the results
– Hence, can be done without affecting other parties
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New-ECIES
There is a newer version of ECIES, as proposed in a draft ISO
standard

A quick look at the new ECIES reveals that the new version processes
the cofactor before the secret key multiplication as we recommend,
hence the new version is already protected against Goubin’s attack
for special points of small order.
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Recap on Isogenies
To defend against Special Points of large order we propose to make
use of isogenies.

Let E1 and E2 be curves over K of characteristic p.
An isogeny

ψ : E1�! E2

is a non-constant rational map which respects the group structure.

� Every isogeny has a finite kernel
– Size of kernel is the degree of the isogeny

� If E1 and E2 are isogenous then #E1(K) = #E2(K).

� If j1 and j2 are the j-invariants of the two curves then an isogeny
of degree l exists over K if and only if

φl( j1; j2) = 0:
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Recap on Isogenies
Given E1 we can deteremine

φl(X; j1)

and if a root exists we can determine the curve E2 and the map

ψ :

(
E1 �! E2

(x;y) 7�!
�

f1(x)
g(x)2

; y� f2(x)
g(x)3

�

where

� f1 has degree 2d+1

� f2 has degree 3d+1

� g has degree d

and d = (l �1)=2.
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“Special Points” of Large Order
The existence of special points of large order is due to the equation

y2 = x3+ax+b

being such that b is a square in F
�

p.

We propose to transfer the cryptographic protocol over to an
isomorphic group (but not an isomorphic curve) via an isogeny

ψ : E1�! E2:

Note, the curve E2 and the isogeny we will use are all defined over the
base field F p.

Only the isogeny and the isogenous curve itself needs to be stored.

� They can be precomputed.

Nigel Smart 17 RHBNC 2002 January 20, 2004



Evaluating an Isogeny
To apply the isogeny defence it would be better to alter the standards
so that the curves are replaced with isogenous ones.

However, since this is unlikely to be an option the smart card needs to
convert the input point to the isogenous curve.

If the isogeny is of degree l we need to evaluate three polynomials of
degree 2d+1, 3d+1 and d, where d = (l �1)=2.

Using Horner’s rule this implies a maximum number of field
multiplications of

(2d+1)+ (3d+1)+d = 6d+2� 3l :

This is low in comparison to other possible defences.
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Conclusion
We have shown how Goubin’s attack can be prevented

�When the special point is of small order, using an implementation
trick compatible with the standards.

�When the special point is of large order, using an isogenous curve.

There is a generalisation of Goubin’s attack by Akishita and Takagi to
appear ISC 03.

�We have not yet investigated whether our techniques will defend
against this generalisation.
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