Very Compact FPGA Implementations of the AES Algorithm

Pawel Chodowiec and Kris Gaj George Mason University

Why Yet Another AES Implementation?

- Most of the published FPGA implementations target only high-end products
 - Multi-Gigabit throughputs
 - FPGA device costs reach \$1,000 per single unit
 - No regards for power consumption
- AES needs to be deployed in low-end products as well (ATM, pay TV, wireless communication, PDA etc.)
 - Rarely need more than 100Mbps
 - Low cost is a must
 - Low power consumption is very welcome

Low-end Design Objectives

- Support for encryption, decryption and key schedule in one circuit
- Feedback modes of operation supported with no penalty on performance
- Encryption/decryption speed not smaller than 100Mbps
- Minimum FPGA device cost
 - Target low-cost Xilinx Spartan-II family (less than \$10 per unit)
- Minimum power consumption
 - Minimize circuit size
 - Minimize circuit activity

Spartan-II Family Architecture

AES Compact Design Approach

- 1. Start with iterative architecture
- 2. Fold the iterative architecture to minimize circuit area
 - In this case make folded architecture 4 times smaller

AES Encryption Round

What Makes Folding Non-Trivial?

Folding the Register (1)

Note that ShiftRows is executed with no additional routing!

Folding the Register (2)

- Input and output memories are exchanged every fourth clock cycle
 - In practice both memories are the same memory with ability to read and write simultaneously (Dual-Port Memory)
 - Lookup Tables (LUT) inside each CLB can be configured as Dual-Port Memories!
- Note: data get written into consecutive locations in the output memory
 - A shift-register could be used instead...

Folding the Register (3)

• A LUT can be configured as a 16-deep shift-register!

Implementation of SubBytes

- Spartan-II devices contain 4kbit BlockSelect RAMs
 - One SubBytes could be implemented using 2kbit memory
- Each BlockSelect RAM is a Dual-Port Memory with independent access
- Only 2 BlockSelect RAMs are required to implement 4 SubBytes and 4 InvSubBytes

Decomposition of InvMixColumns (1)

Let:

c(x) = MixColumnsd(x) = InvMixColumns

Following property holds:

 $\{01\} = c(x) \cdot d(x)$

Multiply both sides by d(x): $d(x) = c(x) \cdot d^2(x)$

InvMixColumns can be expressed as a product of MixColumns and $d^2(x)$, where $d^2(x) = \{04\}x^2 + \{05\}$

Decomposition of InvMixColumns (2)

Encryption/Decryption Unit

Implementation of Key Schedule

Implementation Results

• The entire design fits in a single Spartan-II XC2S30, second smallest in the Spartan-II family

Comparison with Other Compact Arch.

	Area		Throughput		
	CLB Slices	Block RAMs	[Mbps]		
0.22µm					
Our	222	3	174		
S. McMillan	240	8	250		
0.18µm					
Amphion CS5220	421	4	294		
Helion compact	392 LUTs	3	223		
0.15µm					
Amphion CS5220	403	4	350		

Comparison with Iterative Arch.

	Area		Throughput [Mbps]		
	CLB SIces	Block RAMs			
0.22µm					
Our	222	3	174		
P. Chodowiec	1230	18	577		
A. Dandalis	5673	0	353		
A. Elbirt	3528	0	294.2		
V. Fisher - FLEX	2530 LE	24 EAB	451		
V. Fisher - ACEX	2923 LE	12 EAB	212		
K. Gaj	2507	0	414		
0.18µm					
Amphion CS5230	573	10	1061		
V. Fisher - APEX	2493 LE	50 ESB	612		
Helion fast	2259 LUT	18	1001		
0.15µm					
Amphion CS5230	573	10	1323		
Helion fast	2259 LUT	18	1408		

Conclusions

- We presented a successful method for a compact AES implementation in FPGAs
- The area requirements of the compact design are smaller than the ¼ of the area of the smallest iterative architecture in the same technology
- The speed of our design is higher than the ¼ of the speed of the fastest iterative architecture in the same technology
- The design avoids complicated routing associated with implementation of ShiftRows operation