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Why Yet Another AES Implementation?

• Most of the published FPGA implementations 
target only high-end products
• Multi-Gigabit throughputs
• FPGA device costs reach $1,000 per single unit
• No regards for power consumption

• AES needs to be deployed in low-end products 
as well (ATM, pay TV, wireless communication, 
PDA etc.)
• Rarely need more than 100Mbps
• Low cost is a must
• Low power consumption is very welcome
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Low-end Design Objectives

• Support for encryption, decryption and key 
schedule in one circuit

• Feedback modes of operation supported with no 
penalty on performance

• Encryption/decryption speed not smaller than 
100Mbps

• Minimum FPGA device cost
• Target low-cost Xilinx Spartan-II family (less than $10 

per unit)
• Minimum power consumption

• Minimize circuit size
• Minimize circuit activity
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Spartan-II Family Architecture

Configurable
Logic
Block

• 0.22µm CMOS process
• Up to 2352 Slices
• Up to 14 4kbit 

BlockRAMs
• Cost per unit < $10

BlockSelect RAM

I/O
Block
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AES Compact Design Approach

One round
128

1. Start with iterative 
architecture

2. Fold the iterative 
architecture to minimize 
circuit area
• In this case make 

folded architecture 4 
times smaller

¼
round

32
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AES Encryption Round

ShiftRows

SubBytes
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What Makes Folding Non-Trivial?

ShiftRows

0 1 2 3 4 5 6 7 8 9 A B C D E F Data Bytes

SubBytes

MixColumns

AddRoundKey
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Folding the Register (1)
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Note that ShiftRows is executed with no additional routing!
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Folding the Register (2)

• Input and output memories are exchanged every 
fourth clock cycle
• In practice both memories are the same memory with 

ability to read and write simultaneously (Dual-Port 
Memory)

• Lookup Tables (LUT) inside each CLB can be 
configured as Dual-Port Memories!

• Note: data get written into consecutive locations 
in the output memory
• A shift-register could be used instead…
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Folding the Register (3)

• A LUT can be configured as a 16-deep 
shift-register!

address

LUT

D Q D Q D Q D Q

output1

input 1

clock
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Implementation of SubBytes
Address space0H

FFH
100H

1FFH

SubBytes

InvSubBytes

• Spartan-II devices contain 
4kbit BlockSelect RAMs
• One SubBytes could be 

implemented using 2kbit 
memory

• Each BlockSelect RAM is 
a Dual-Port Memory with 
independent access

WEA
ENA
RSTA
CLKA
ADDRA[8: 0]
DIA[7 : 0]

DOA[7 : 0]

WEB
ENB
RSTB
CLKB
ADDRB[8 : 0]
DIB[7 : 0]

DOB[7 : 0]

• Only 2 BlockSelect RAMs 
are required to implement 
4 SubBytes and 4 
InvSubBytes
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Decomposition of InvMixColumns (1)

Let:
c(x) = MixColumns

d(x) = InvMixColumns

Following property holds:
{01} = c(x) • d(x)

Multiply both sides by d(x):
d(x) = c(x) • d2(x)

InvMixColumns can be expressed as a product of 
MixColumns and d2(x), where

d2(x) = {04}x2 + {05}
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Decomposition of InvMixColumns (2)

InvMixColumnsc(x) d2(x)

MixColumns

Implementation of d2(x) requires
even smaller area than c(x)!
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Encryption/Decryption Unit

d2(x)

Input

Folded
register

SubBytes/
InvSubBytes c(x)

Output
Subkey

Subkeyforwarding

Encryption paths Decryption paths
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Implementation of Key Schedule

rot

SubBytes

Rcon 3-deep
shift

register

input output

32

SubBytes shares BlockSelect RAM
with encryption/decryption unit

Implemented
On LUTs
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Implementation Results

• The entire design fits in a single Spartan-II 
XC2S30, second smallest in the Spartan-II family

432 6available

222 3
required
for AES

• Nearly 50% of the 
device available for 
other logic

• Throughput: 
174Mbps at 60MHz 
clock frequency

Area

CLB Slices BlockRAMs
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Comparison with Other Compact Arch.

3504403Amphion CS5220

0.15µm

2233392 LUTsHelion compact

2944421Amphion CS5220

0.18µm

2508240S. McMillan

1743222Our
0.22µm

Block RAMsCLB Slices

Throughput
[Mbps]

Area
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Comparison with Iterative Arch.

1408182259 LUTHelion fast

132310573Amphion CS5230

0.15µm

1001182259 LUTHelion fast

61250 ESB2493 LEV. Fisher - APEX

106110573Amphion CS5230
0.18µm

41402507K. Gaj

21212 EAB2923 LEV. Fisher - ACEX

45124 EAB2530 LEV. Fisher - FLEX

294.203528A. Elbirt

35305673A. Dandalis

577181230P. Chodowiec

1743222Our
0.22µm

Block RAMsCLB Slces
Throughput [Mbps]Area
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Conclusions

• We presented a successful method for a compact 
AES implementation in FPGAs

• The area requirements of the compact design  
are smaller than the ¼ of the area of the smallest 
iterative architecture in the same technology

• The speed of our design is higher than the ¼ of 
the speed of the fastest iterative architecture in 
the same technology

• The design avoids complicated routing 
associated with implementation of ShiftRows 
operation
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