

Hyperelliptic Curve Cryptosystems

Closing the Performance Gap to Elliptic Curves

Jan Pelzl, Thomas Wollinger, Jorge Guajardo, Christof Paar

0100

Why use Hyperelliptic Curve Cryptosytems?

- The word "Hyperelliptic Curve Cryptosystem" sounds awesome and impressive!
- Increasing diversity of "secure" PK algorithms
- Shorter bitlengths have implementational advantages compared to RSA or ECC
- Perfectly suited for constraint environments

Prominent PK Schemes:

- RSA
- Diffie-Hellman
- Elliptic Curves

Typical operand bitlength: 1024...2048 bit 1024...2048 bit 160...256 bit

→ Hyperelliptic curves allow for operand lengths 50...80 bit

Mathematical Preliminaries

What is a hyperelliptic curve?

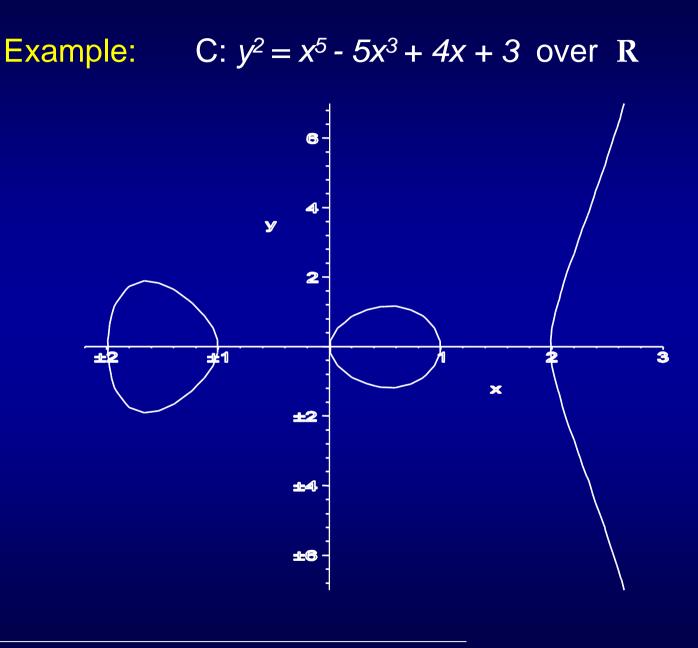
A HEC of genus g over a finite field F is given by the set of solutions $(x,y)_{\epsilon}$ F x F to the equation

 $y^2 + h(x)y = f(x)$

where

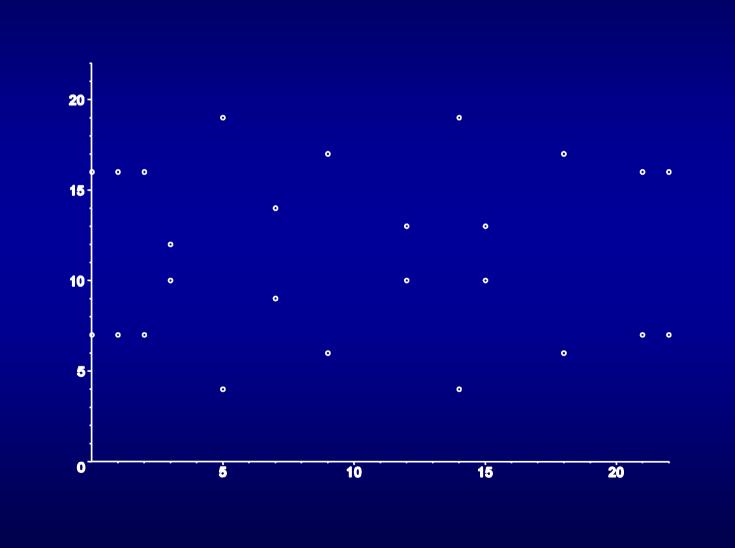
- h(x) is a polynomial of degree $\leq g$ over **F**
 - f(x) is a monic polynomial of degree 2g+1
 over F
 - certain further conditions

Chair for Communication Security Ruhr University of Bochum



Chair for Communication Security Ruhr University of Bochum

Mathematical Preliminaries



The group G:

Groupelement (divisor) ~ function of *g* points:

$$D = f(P_1, ..., P_g) = \sum_{i=1}^g m_{P_i} P_i$$

A divisor class group consisting of all (reduced) divisors forms the Jacobian of the curve $J_C(F_q)$ (abelian group).

Cardinality of the group G:

- Assuming HEC of genus g over \mathbf{F}_q , where $q=p^n$,
- ▶ have ~ q^g possible divisors since $D = f(P_1, ..., P_g)$

The cardinality of $J_C(F_q)$ is given by Hasse-Weil:

$$\left[\left(\sqrt{q}-1\right)^{2g}\right] \leq \left|J_{C}(F_{q})\right| \leq \left|\left(\sqrt{q}+1\right)^{2g}\right|$$

E.g. want $|J_C(F_q)| \sim 2^{160}$

- → for g=1 (EC) use $\mathbf{F}_{2^{160}}$
- \rightarrow for *g*=2 use **F**_{2⁸⁰}
- \rightarrow for g=3 use $\mathbf{F}_{2^{53}}$

→ for g=4 use $F_{2^{40}}$ **Do not choose genus** ≥ 5 because of certain attacks and index calculus

[Frey Rück, Gaudry, Thériault...]

The group law (Cantor):

Use polynomial representation [Mumford] of divisors: D = div(a,b) with polynomials a(x), b(x), s.th. deg(b) \leq deg(a) \leq g

Cantor's Algorithm:

Input:	$D_1 = div(a_1, b_1), D_2 = div(a_2, b_2)$	
Output:	$D_3 = D_1 + D_2 = div(a_3, b_3)$	
Composition step:	$d = gcd(a_1, a_2, b_1 + b_2 + h) = s_1a_1 + s_2a_2 + s_3(b_1 + b_2 + h)$ $a_3^{'} = a_1a_2/d$	
	$b_{3}^{\prime} = [s_{1}a_{1}b_{2}+s_{2}a_{2}b_{1}+s_{3}(b_{1}b_{2}+f)]/f \mod a_{3}^{\prime}$	
Reduction step:	WHILE deg(aʻ _k) > g, DO	
	aʻ _k = f – bʻ _{k-1} mod aʻ _k	
	bʻ _k = (-h-bʻ _{k-1}) mod aʻ _k	
	END WHILE	
	$a_{3} = a'_{k}$	
	$\mathbf{b}_3 = \mathbf{b'}_k$	

Need polynomial gcd, division, multiplication and reduction!

Improvements

Observation:

Cantor's Algorithm slow due to polynomial arithmetic

Solution:

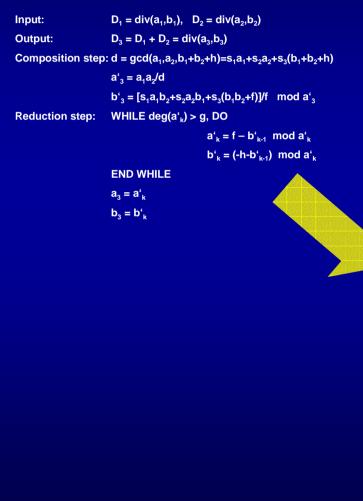
Transform polynomial operations into field operations (explicit formulae) by considering most frequent case (occurs with probability ~ 1-O(1/q)) [Harley 2000]

Brief History of HECC:

- 1988 Use of HEC as a cryptosystem first suggested [Koblitz 1988]
- 1994- Explicit formulae suggested for genus-2 HECC [Spallek 1994; Harley 2000]
- 2001- Efficient explicit formulae for genus-2 HECC [Matsuo et al. 2001; Miyamoto et al. 2002; Lange 2002]
- 2002- Efficient explicit formulae for genus-3 HECC [Kuroki et al. 2002; P. 2002; this work]
- 2003- Efficient explicit formulae for genus-4 HECC [P. et al. 2003]

Example: Adding divisors on HEC of genus 3

Polynomial arithmetic:



Explicit formulae (field arithmetic only):

t3 = b*f: $t4 = c^*e;$ t5 = a*ft6 = c*d:t7 = sqr(c+f);t8 = sqr(b+e);t9 = (a+d)*(t3+t4)t10=(a+d)*(t5+t6);r = (f+c+t1+t2)*(t7+t9) + t10*(t5+t6) + t8*(t3+t4);t11 = (b+e)*(c+f): inv2 = (t1+t2+c+f)*(a+d)+t8;inv1 = inv2*d + t10 + t11; $inv0 = inv2^*e + d^*(t10+t11) + t9 + t7;$ t12 = (inv1+inv2)*(k+n+l+o);t13 = (l+o)*inv1;t14 = (inv0+inv2)*(k+n+m+p);t15 = (m+p)*inv0;t16 = (inv0+inv1)*(l+o+m+p);t17 = (k+n)*inv2;rs0 = t15: rs1 = t13 + t15 + t16;rs2 = t13+t14+t15+t17;rs3 = t12+t13+t17;rs4 = t17;t18 = rs3 + rs4 * d;s0s = rs0 + f*t18;s1s = rs1 + rs4*f + e*t18;s2s = rs2 + rs4*e + d*t18;w1 = inv(r*s2s); $w^2 = r^* w^1;$ w3 = w1*sqr(s2s); $w4 = r^*w2;$ w5 = sqr(w4);

 $t1 = a^*e;$

t2 = b*d;

s0 = w2*s0s;s1 = w2*s1s: s2 = w2*s2s:z0 = s0*c: z1 = s1*c+s0*b; z2 = s0*a+s1*b+c;z3 = s1*a+s0+b: $z5 = to_GF2E(1L);$ t1 = w4*h2; $t^2 = w^{4*h^3}$: u3s = d + z4 + s1;u2s = d*u3s + e + z3 + s0 + t2 + s1*z4; $u_{1s} = d^{*}u_{2s} + e^{*}u_{3s} + f + z_{2} + t_{1} + s_{1}^{*}(z_{3}+t_{2}) + s_{0}^{*}z_{4} + w_{5};$ u0s = d*u1s + e*u2s + f*u3s + z1 + w4*h1 + s1*(z2+t1) $+ s0^{*}(z3+t2) + w5^{*}(a+f6);$ t1 = u3s + z4: v0s = w3*(u0s*t1 + z0) + h0 + m; $v1s = w3^{*}(u1s^{*}t1 + u0s + z1) + h1 + l;$ $v2s = w3^{*}(u2s^{*}t1 + u1s + z2) + h2 + k;$ v3s = w3*(u3s*t1 + u2s + z3) + h3; $a3 = f6 + u3s + v3s^{*}(v3s+h3);$ b3 = u2s + a3*u3s + f5 + v3s*h2 + v2s*h3;c3 = u1s + a3*u2s + b3*u3s + f4 + v2s*(v2s+h2) + v3s*h1 + v1s*h3;k3 = v2s + (v3s+h3)*a3 + h2;l3 = v1s + (v3s+h3)*b3 + h1;m3 = v0s + (v3s+h3)*c3 + h0;

Achieved speed-up for group operations on genus-3 curves:

	Туре	# (inversion)	# (mult./squ.)
Adding	Polynomial Cantor ¹⁾	4	200
	Explicit	1	76
Doubling	Polynomial Cantor ¹⁾	4	207
	Explicit		71

<u> </u>		2
Sa	V/In	lgs ²
ou		90

64%

67%

All numbers refer to formulas for curves over odd characteristic

1) Cantor's Algorithm implemented by [Nagao 2000]

2) one inversion costs approx. 8 multiplications

In special cases 80% less computational cost!

Required field operations per group addition compared to ECC:

Genus	# (inversion)	# (mult./squ.)
1 ¹⁾ (ECC)		16
2 ²⁾	1	25
3 ²⁾	1	76
4 ²)	2	164

1) ECC with projective coordinates GF(p)

2) HEC over fields of arbitrary characteristic

Can HECC be faster than ECC?

Theoretical Analysis:

Given: - Microprocessor (wordsize w) - Field library (ratio of multiplications per inversion = *MI*-ratio)

determine if ECC or HECC will be faster, Goal: i.e., find accurate metric for practical purposes

Theoretical Analysis (cont.):

Methodology:

- 1. Express all computational expensive operations in terms of atomic operations (AOP).
- 2. Consider fields \mathbf{F}_{2^n} .
- 3. Use fast field multiplication algorithm [Lopez and Dahab 2000]. (Requires [*w*/2+(*n*/4+27)[*n*/*w*]-7] AOPs per field multiplication)
- 4. Express cost of field inversion in terms of field multiplications (MI-ratio).

Theoretical Analysis (cont.):

	ECC		HECC		
	affine	projective	genus-2	genus-3	genus-4
			h(x)=x	h(x)=1	h(x)=x
Addition	(2+m)T	15T	(22+m)T	(65+m)T	(148+2m)T
Doubling	(2+m)T	5T	(17+m)T	(14+m)T	(75+2m)T

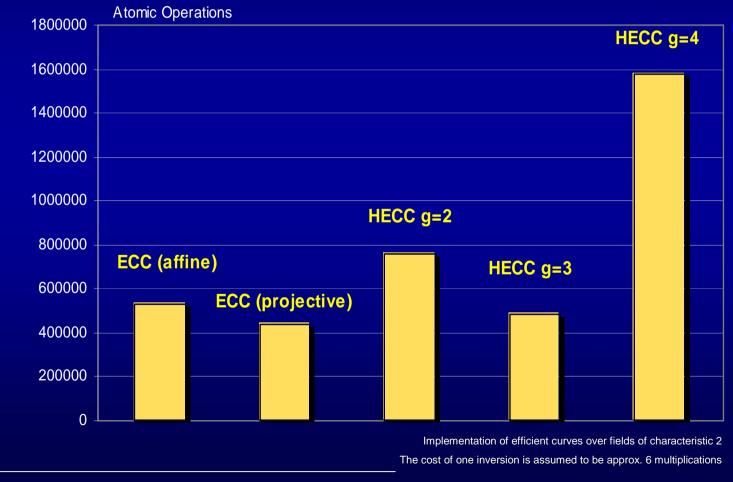
T := [w/2 + (n/4 + 27)s-7]

m := *MI*-*ratio* of field library

Total numbers depend on processor type and field library!

Theoretical Analysis (result):

Number of atomic operations for 160-bit scalar multiplication over \mathbf{F}_{2^m} , no special automorphisms used:



Implementation

Embedded performance (ARM7@80MHz):

Genus	Group order	Field	Divisor multiplication in ms
	2191	\mathbf{F}_{2} 191	100.01
2	2190	F 295	121.49
3	2 ¹⁸⁹	F ₂ 63	72.09
4	2 ¹⁸⁸	${f F}_{2^{47}}$	201.89

Implementation of special curves over fields of characteristic 2, no special endomorphisms used;

parts of the library by Koç et al. were used [Koç 2000]

Desktop performance (P4@1.8GHz):

Genus	Group order	Field	Divisor multiplication in ms
1	2 ¹⁹¹	\mathbf{F}_{2} 191	2.78
2	2 ¹⁹⁰	F ₂ 95	4.47
3	2 ¹⁸⁹	F ₂ 63	3.01
4	2 ¹⁸⁸	F ₂ 47	8.05

Implementation of special curves over fields of characteristic 2, no special endomorphisms used

C C C

Summary:

- Improved explicit formulae for genus-3 HECC
- First implementation on embedded µP
- On embedded processors, genus-3 HECC can outperform ECC and other HECC (g=2,4)
- Proposed new accurate metric for practical purposes

Further Research:

- Further optimization of genus-3 formulae (?)
- High-speed implementations for GF(p)
- Standardization of HECC/ curves
- Parallalization of HECC operations

Additional information, newest results and source code available at:

http://www.hecc.rub.de

Questions?

References

Harley, R. 2000. Fast Arithmetic on Genus Two Curves. Available at http://cristal.inria.fr/harley/hyper/.adding.txt and .doubling.c

- Koblitz, N. 1988. A Family of Jacobians Suitable for Discrete Log Cryptosystems. In *Advances in Cryptology Crypto '88*, Shafi Goldwasser, Ed. Lecture Notes in Computer Sciences, vol. 403. Springer-Verlag, Berlin, 94-99.
- Koç, Ç., and Saldamli, G. 2002. Support for field arithmetic library and elliptic curve routines.
- Kuroki, J., Gonda, M., Matsuo, K., Chao, J., and Tsuji, S. 2002. Fast Genus Three Hyperelliptic Curve Cryptosystems. In *The 2002* Symposium on Cryptography and Information Security, Japan – SCIS 2002.
- Lange, T. 2002. Efficient Arithmetic on Genus Two Hyperelliptic Curves over Finite Fields via Explicit Formulae. Cryptology ePrint Archive, Report 2002/121. http://eprint.iacr.org/

Lopez, J., and Dahab, R. 2000. High-speed software multiplication in F₂m. In *INDOCRYPT 2000, 203-212*.

Matsuo, K., Chao, J., and Tsuji, S. 2001. Fast Genus Two Hyperelliptic Cryptosystems. In ISEC2001-31, IEICE.

- Miyamoto, Y., Doi, H., Matsuo, K., Chao, J., and Tsuji, S. 2002. A Fast Addition Algorithm of Genus Two Hyperelliptic Curve. In *The 2002 Symposium on Cryptography and Information Security SCIS 2002, IEICE Japan.* 497-502, in Japanese.
- Nagao, K. 2002. Improving Group Law Algorithms for Jacobians of Hyperelliptic Curves. In ANTS IV, W. Bosma, Ed. Lecture Notes in Computer Science, vol. 1838. Springer-Verlag, Berlin, 439-448.
- Pelzl, J. 2002. Hyperelliptic Cryptosystems on Embedded Processors. M.S. thesis, Department of Electrical Engineering and Information Sciences, Ruhr-Universität Bochum, Bochum, Germany.
- Pelzl, J., Wollinger, T., Guajardo, J., and Paar, C. 2003. Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves. In Workshop on Cryptographic Harware and Embedded Systems 2003 - CHES 2003.
- Pelzl, J., Wollinger, and Paar, C. 2003. Low Cost Security: Explicit Formulae for Genus-4 Hyperelliptic Curves. In Selected Areas in Cryptography 2003 SAC 2003.
- Spallek, A.M. 1994. Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, 1994. PhD Thesis. Universität Gesamthochschule Essen.

Thériault, N. 2003. Index calculus attack for hyperelliptic curves of small genus, preprint 2003. University of Toronto.