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IntroductionIntroduction

WhyWhy useuse HyperellipticHyperelliptic CurveCurve CryptosytemsCryptosytems??

The word „Hyperelliptic Curve Cryptosystem“ sounds
awesome and impressive!

Increasing diversity of „secure“ PK algorithms

Shorter bitlengths have implementational advantages
compared to RSA or ECC

Perfectly suited for constraint environments
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IntroductionIntroduction

Prominent PK Prominent PK SchemesSchemes::

RSA
Diffie-Hellman
Elliptic Curves

Typical operand bitlength:
1024…2048 bit
1024…2048 bit
160…256 bit

Hyperelliptic curves allow for operand lengths 50…80 bit
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MathematicalMathematical PreliminariesPreliminaries

A HEC of genus g over a finite field F is given by the set
of solutions (x,y)� F x F to the equation

y2 + h(x)y = f(x)

where - h(x) is a polynomial of degree ≤ g over F
- f(x) is a monic polynomial of degree 2g+1
over F

- certain further conditions

What is a hyperelliptic curve?
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Example: C: y2 = x5 - 5x3 + 4x + 3 over R
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MathematicalMathematical PreliminariesPreliminaries

Example: C: y2 = x5 - 5x3 + 4x + 3 over F23
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Groupelement (divisor) ~ function of g points:

i

g

i
Pg PmPPfD

i∑
=

==
1

1 ),...,(

A divisor class group consisting of all (reduced) divisors
forms the Jacobian of the curve JC(Fq) (abelian group).

TheThe groupgroup GG::
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MathematicalMathematical PreliminariesPreliminaries

CardinalityCardinality of of thethe groupgroup GG::

Assuming HEC of genus g over Fq, where q=pn,

have ~qg possible divisors since ),...,( 1 gPPfD =

The cardinality of JC(Fq) is given by Hasse-Weil:

E.g. want |JJC(FFqq)| ~ 2160

� for g=1 (EC) use FF2160

� for g=2 use FF280

� for g=3 use FF253

� for g=4 use FF240

Do not choose genus ≥ 5 because of certain
attacks and index calculus
[Frey Rück, Gaudry, Thériault…]

   g
qC

g qFJq 22 )1()()1( +≤≤−
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MathematicalMathematical PreliminariesPreliminaries

TheThe groupgroup lawlaw (Cantor):(Cantor):

Use polynomial representation [Mumford] of divisors:
D = div(a,b) with polynomials a(x), b(x),
s.th. deg(b) ≤ deg(a) ≤ g

Input: D1 = div(a1,b1),   D2 = div(a2,b2)

Output: D3 = D1 + D2 = div(a3,b3)

Composition step: d = gcd(a1,a2,b1+b2+h)=s1a1+s2a2+s3(b1+b2+h)

a‘3 = a1a2/d

b‘3 = [s1a1b2+s2a2b1+s3(b1b2+f)]/f   mod a‘3

Reduction step: WHILE deg(a‘k) > g, DO

a‘k = f – b‘k-1 mod a‘k

b‘k = (-h-b‘k-1)  mod a‘k

END WHILE

a3 = a‘k

b3 = b‘k

Cantor‘s Algorithm:

Need
polynomial

gcd, division, 
multiplication

and 
reduction!
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Observation:Observation:

Cantor‘s Algorithm slow due to polynomial arithmetic

Solution:Solution:

Transform polynomial operations into field operations
(explicit formulae) by considering most frequent case
(occurs with probability ~ 1-O(1/q) ) [Harley 2000]
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Brief Brief HistoryHistory of HECC:of HECC:

1988 Use of HEC as a cryptosystem first suggested
[Koblitz 1988]

1994- Explicit formulae suggested for genus-2 HECC
[Spallek 1994; Harley 2000]

2001- Efficient explicit formulae for genus-2 HECC 
[Matsuo et al. 2001; Miyamoto et al. 2002; Lange 2002]

2002- Efficient explicit formulae for genus-3 HECC
[Kuroki et al. 2002; P. 2002; this work]

2003- Efficient explicit formulae for genus-4 HECC
[P. et al. 2003]
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t1 = a*e;t1 = a*e;
t2 = b*d;t2 = b*d;
t3 = b*f;t3 = b*f;
t4 = c*e;t4 = c*e;
t5 = a*f;t5 = a*f;
t6 = c*d;t6 = c*d;
t7 = sqr(c+f);t7 = sqr(c+f);
t8 = sqr(b+e);t8 = sqr(b+e);
t9 = (a+d)*(t3+t4);t9 = (a+d)*(t3+t4);
t10= (a+d)*(t5+t6);t10= (a+d)*(t5+t6);
r =(f+c+t1+t2)*(t7+t9) + t10*(t5+t6) + t8*(t3+t4);r =(f+c+t1+t2)*(t7+t9) + t10*(t5+t6) + t8*(t3+t4);
t11 = (b+e)*(c+f);t11 = (b+e)*(c+f);
inv2 = (t1+t2+c+f)*(a+d)+t8;inv2 = (t1+t2+c+f)*(a+d)+t8;
inv1 = inv2*d + t10 + t11;inv1 = inv2*d + t10 + t11;
inv0 = inv2*e + d*(t10+t11) + t9 + t7;inv0 = inv2*e + d*(t10+t11) + t9 + t7;
t12 = (inv1+inv2)*(k+n+l+o);t12 = (inv1+inv2)*(k+n+l+o);
t13 = (l+o)*inv1;t13 = (l+o)*inv1;
t14 = (inv0+inv2)*(k+n+m+p);t14 = (inv0+inv2)*(k+n+m+p);
t15 = (m+p)*inv0;t15 = (m+p)*inv0;
t16 = (inv0+inv1)*(l+o+m+p);t16 = (inv0+inv1)*(l+o+m+p);
t17 = (k+n)*inv2;t17 = (k+n)*inv2;
rs0 = t15;rs0 = t15;
rs1 = t13+t15+t16;rs1 = t13+t15+t16;
rs2 = t13+t14+t15+t17;rs2 = t13+t14+t15+t17;
rs3 = t12+t13+t17;rs3 = t12+t13+t17;
rs4 = t17;rs4 = t17;
t18 = rs3+rs4*d;t18 = rs3+rs4*d;
s0s = rs0 + f*t18;s0s = rs0 + f*t18;
s1s = rs1 + rs4*f + e*t18;s1s = rs1 + rs4*f + e*t18;
s2s = rs2 + rs4*e + d*t18;s2s = rs2 + rs4*e + d*t18;
w1 = inv(r*s2s);w1 = inv(r*s2s);
w2 = r*w1;w2 = r*w1;
w3 = w1*sqr(s2s);w3 = w1*sqr(s2s);
w4 = r*w2;w4 = r*w2;
w5 = sqr(w4);w5 = sqr(w4);

ImprovementsImprovements

Example: Adding divisors on HEC of genus 3

Input: D1 = div(a1,b1),   D2 = div(a2,b2)

Output: D3 = D1 + D2 = div(a3,b3)

Composition step: d = gcd(a1,a2,b1+b2+h)=s1a1+s2a2+s3(b1+b2+h)

a‘3 = a1a2/d

b‘3 = [s1a1b2+s2a2b1+s3(b1b2+f)]/f   mod a‘3

Reduction step: WHILE deg(a‘k) > g, DO

a‘k = f – b‘k-1 mod a‘k

b‘k = (-h-b‘k-1)  mod a‘k

END WHILE

a3 = a‘k

b3 = b‘k

s0 = w2*s0s;s0 = w2*s0s;
s1 = w2*s1s;s1 = w2*s1s;
s2 = w2*s2s;s2 = w2*s2s;
z0 = s0*c;z0 = s0*c;
z1 = s1*c+s0*b;z1 = s1*c+s0*b;
z2 = s0*a+s1*b+c;z2 = s0*a+s1*b+c;
z3 = s1*a+s0+b;z3 = s1*a+s0+b;
z4 = a+s1;z4 = a+s1;
z5 = to_GF2E(1L);z5 = to_GF2E(1L);
t1 = w4*h2;t1 = w4*h2;
t2 = w4*h3;t2 = w4*h3;
u3s = d + z4 + s1;u3s = d + z4 + s1;
u2s = d*u3s + e + z3 + s0 + t2 + s1*z4;u2s = d*u3s + e + z3 + s0 + t2 + s1*z4;
u1s = d*u2s + e*u3s + f + z2 + t1 + s1*(z3+t2) + s0*z4 + w5;u1s = d*u2s + e*u3s + f + z2 + t1 + s1*(z3+t2) + s0*z4 + w5;
u0s = d*u1s + e*u2s + f*u3s + z1 + w4*h1 + s1*(z2+t1)u0s = d*u1s + e*u2s + f*u3s + z1 + w4*h1 + s1*(z2+t1)

+ s0*(z3+t2) + w5*(a+f6);+ s0*(z3+t2) + w5*(a+f6);
t1 = u3s+z4;t1 = u3s+z4;
v0s = w3*(u0s*t1 + z0) + h0 + m;v0s = w3*(u0s*t1 + z0) + h0 + m;
v1s = w3*(u1s*t1 + u0s + z1) + h1 + l;v1s = w3*(u1s*t1 + u0s + z1) + h1 + l;
v2s = w3*(u2s*t1 + u1s + z2) + h2 + k;v2s = w3*(u2s*t1 + u1s + z2) + h2 + k;
v3s = w3*(u3s*t1 + u2s + z3) + h3;v3s = w3*(u3s*t1 + u2s + z3) + h3;
a3 = f6 + u3s + v3s*(v3s+h3);a3 = f6 + u3s + v3s*(v3s+h3);
b3 = u2s + a3*u3s + f5 + v3s*h2 + v2s*h3;b3 = u2s + a3*u3s + f5 + v3s*h2 + v2s*h3;
c3 = u1s + a3*u2s + b3*u3s + f4 + v2s*(v2s+h2) + v3s*h1 + v1s*h3c3 = u1s + a3*u2s + b3*u3s + f4 + v2s*(v2s+h2) + v3s*h1 + v1s*h3;;
k3 = v2s + (v3s+h3)*a3 + h2;k3 = v2s + (v3s+h3)*a3 + h2;
l3 = v1s + (v3s+h3)*b3 + h1;l3 = v1s + (v3s+h3)*b3 + h1;
m3 = v0s + (v3s+h3)*c3 + h0;m3 = v0s + (v3s+h3)*c3 + h0;

PolynomialPolynomial arithmeticarithmetic::

ExplicitExplicit formulaeformulae
((fieldfield arithmeticarithmetic onlyonly):):
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711Explicit

2074Polynomial Cantor1)Doubling

761Explicit

2004Polynomial Cantor1)Adding

# (mult./squ.)# (inversion)Type

All All numbersnumbers referrefer to to formulasformulas forfor curvescurves overover oddodd characteristiccharacteristic

1) 1) Cantor‘sCantor‘s AlgorithmAlgorithm implementedimplemented byby [[NagaoNagao 2000]2000]

67%

64%

Savings2)

2)2) oneone inversioninversion costscosts approxapprox. 8 . 8 multiplicationsmultiplications

In In specialspecial casescases 80%80% lessless computationalcomputational costcost!!

AchievedAchieved speedspeed--upup forfor groupgroup operationsoperations
onon genusgenus--3 3 curvescurves::
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CanCan HECC HECC bebe fasterfaster thanthan ECC?ECC?

164242)

76132)

25122)

16-11) (ECC)

# (mult./squ.)# (inversion)Genus

1)1) ECC ECC withwith projectiveprojective coordinatescoordinates GF(pGF(p))

2)2) HEC HEC overover fieldsfields of of arbitraryarbitrary characteristiccharacteristic

RequiredRequired fieldfield operationsoperations per per groupgroup additionaddition
comparedcompared to ECC:to ECC:
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TheoreticalTheoretical Analysis:Analysis:

Goal: determine if ECC or HECC will be faster,
i.e., find accurate metric for practical purposes

Given: - Microprocessor (wordsize w)
- Field library (ratio of multiplications per
inversion = MI-ratio)
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ImprovementsImprovements

TheoreticalTheoretical Analysis (Analysis (contcont.):.):

Methodology:

1. Express all computational expensive operations
in terms of atomic operations (AOP).

2. Consider fields FF2n.

3. Use fast field multiplication
algorithm [Lopez and Dahab 2000]. 
(Requires [w/2+(n/4+27) n/w -7] AOPs
per field multiplication)

4. Express cost of field inversion in terms of field
multiplications (MI-ratio).
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(75+2m)T

(148+2m)T

genus-4

h(x)=x

(14+m)T(17+m)T5T(2+m)TDoubling

(65+m)T(22+m)T15T(2+m)TAddition

genus-3

h(x)=1

genus-2

h(x)=x

projectiveaffine

HECCECC

T := [w/2+(n/4+27)s-7]
m := MI-ratio of field library

Total numbers depend on processor type and field library!

TheoreticalTheoretical Analysis (Analysis (contcont.):.):
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ECC (projective)

ECC (affine)

HECC g=2

HECC g=3

HECC g=4

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000
Atomic Operations

ImplementationImplementation of of efficientefficient curvescurves overover fieldsfields of of characteristiccharacteristic 22

TheThe costcost of of oneone inversioninversion isis assumedassumed to to bebe approxapprox. 6 . 6 multiplicationsmultiplications

TheoreticalTheoretical Analysis (Analysis (resultresult):):
Number of atomic operations for 160-bit scalarmultiplication

over F2m, no special automorphisms used:
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EmbeddedEmbedded performanceperformance (ARM7@80MHz):(ARM7@80MHz):

4

3

2

1

Genus

201.89F2472188

72.09F2632189

121.49F2952190

100.01F21912191

Divisor multiplication in msFieldGroup order

ImplementationImplementation of of specialspecial curvescurves overover fieldsfields of of characteristiccharacteristic 2, no 2, no specialspecial endomorphismsendomorphisms usedused;;

partsparts of of thethe librarylibrary byby KoKoçç et al. et al. werewere usedused [[KoKoçç 2000]2000]

ImplementationImplementation
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ImplementationImplementation

Desktop Desktop performanceperformance (P4@1.8GHz):(P4@1.8GHz):

4

3

2

1

Genus

8.05F2472188

3.01F2632189

4.47F2952190

2.78F21912191

Divisor multiplication in msFieldGroup order

ImplementationImplementation of of specialspecial curvescurves overover fieldsfields of of characteristiccharacteristic 2, no 2, no specialspecial endomorphismsendomorphisms usedused
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SummarySummary

SummarySummary::

Improved explicit formulae for genus-3 HECC

First implementation on embedded µP

On embedded processors, genus-3 HECC can
outperform ECC and other HECC (g=2,4)

Proposed new accurate metric for practical
purposes
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FurtherFurther ResearchResearch

FurtherFurther Research:Research:

Further optimization of genus-3 formulae (?)

High-speed implementations for GF(p)

Standardization of HECC/ curves

Parallalization of HECC operations
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ThankThank YouYou!!

Additional Additional informationinformation, , newestnewest resultsresults and and sourcesource codecode availableavailable at:at:

http://http://www.hecc.rub.dewww.hecc.rub.de

Questions?
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