Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs

> FX Standaert (S), G Rouvroy, JJ Quisquater, JD Legat

UCL Crypto Group Laboratoire de Microélectronique Université Catholique de Louvain Belgium

Structure of the talk:

- 1. Introduction.
- 2. Hardware description.
- 3. Block cipher description.
- 4. Implementation tradeoffs:
 - (a) Design methodology.
 - (b) Algorithmic optimization.
 - (c) Implementation schemes.
 - (d) Optimal pipeline.

UCL Crypto Group

- 5. Practical results and comparisons.
- 6. Further research and conclusion.

1. Introduction.

- 1. Encryption modes.
- 2. Implementation of Rijndael:
 - (a) Lots of results.
 - (b) Sometimes difficult to compare.
- 3. We present:
 - (a) Definitions for hardware efficiency.
 - (b) A design methodology.
 - (c) Comparison tools.
 - (d) Synthesis works, combination of improvements.
- 4. Practical results: efficiency of best-known designs improved by at least 25%.

2. Hardware description.

FPGA: Xilinx Virtex3200ECG1156-8:

- 1. 4-input LUTs => RAM, MUX, shift registers, ...
- 2. Storage elements: D flip-flops, latches.
- 3. Additional logic: XOR, MUXF5, MUXF6, ...
- 4. 100 RAM blocks: 1 dual-port 4096-bit RAM $\simeq 2$ s-boxes 8 x 8.

3. Block cipher description.a. The round function

$$\rho[K] = \sigma[K] \circ \theta \circ \delta \circ \gamma = \sigma[K] \big(\theta(\delta(\gamma)) \big)$$

- 1. SubBytes, the non-linear layer γ is a non-linear byte substitution, operating on each byte independently. The substitution table (or s-box) is invertible and is constructed by the composition of two operations:
 - (a) The multiplicative inverse in $GF(2^8)$.
 - (b) An affine transform over GF(2).
- 2. The ShiftRows transformation δ is a permutation of the bytes.

3. The MixColumns transformation θ : columns (= 4 bytes) are considered as polynomials over $GF(2^8)$ and multiplied modulo $x^4 + 1$ with a fixed polynomial c(x), given by:

$$c(x) = 03'x^3 + 01'x^2 + 01'x + 02'$$

=> One output byte can be expressed as:

JCL Crypto Group

 $b_0 = 02' \times a_0 \oplus 03' \times a_1 \oplus 01' \times a_2 \oplus 01' \times a_3$

4. The round key addition $\sigma[K]$ is a simple bitwise EXOR with a round key.

b. The key round

=> Complete cipher:

$$\alpha[K_0, K_1, \dots, K_{10}] = \sigma[K_{10}] \circ \delta \circ \gamma \circ (\bigcirc_{r=1}^9 \rho[K_r]) \circ \sigma[K_0]$$

Crypto Group

4. Implementation tradeoffs

4.1 Design methodology:

UCL Crypto Group

FPGAs \Rightarrow implementation constraints:

- 1. In terms of performances, let the efficiency of a block cipher be the ratio Throughput (Mbits/s)/Area (slices).
- 2. In terms of resources, the efficiency is easily tested by computing the ratio *Nbr of LUTs/Nbr of registers*: it should be close to one.

=> Maximum pipeline: $\frac{Nbr.of.LUTs}{Nbr.of.registers}$ =1.

4.2 Algorithmic optimizations:

Implementation of the 8 x 8 substitution box:

1. RAM-based implementation: 1 RAM block = 2 substitution boxes.

2. The multiplexor model:

Component	Nbr of LUT	Nbr of registers
γ	$144 \times 16 = 2304$	$42 \times 16 = 672$

3. Composite field solution: computations in the field $GF(2^8)$ are replaced by computations in the composite field $GF(2^4)^2$ in order to reduce the size of the tables needed for the inversion.

Component	Nbr of LUT	Nbr of registers		
γ	$84 \times 16 = 1344$	$76 \times 16 = 1216$		

Crypto Group

Mixadd combination:

Mixcolum operates on a 4-byte column and corresponds to multiplications and additions in $GF(2^8)$. For example, for the output byte b_0 , we have:

$$b_0 = 02'a_0 + 03'a_1 + 01'a_2 + 01'a_3$$

Crypto Group

5 bits of function X are just shifted:

=> For these ones, only one register is needed to pipeline the diffusion layer. The remaining ones are combined with the key addition. => 2 pipeline stages in place of 3 !

Component	Nbr of LUT	Nbr of registers
ϵ	304	304

Mixadd (at the bit level) :

Crypto Group

4.3 Implementation schemes:

High throughput constraints:

Fully unrolled pipeline scheme

Low area constraints: loop architecture.

Crypto Group

4.4 Optimal pipeline search:

Optimal pipeline search

1. Start from the maximal pipeline, i.e. implement Rijndael with the best ratio $\frac{Nbr.of.LUTs}{Nbr.of.registers}$; 2. After implementation, compute the efficiency $E_{cur} = Throughp^{ut} (Mbits/s)/Area (slices)$; **3.** OK = 0; While OK = 0 do { 1. Remove the pipeline stage that involves the lowest frequency reduction and re-implement Rijndael; 2. After implementation, compute the efficiency $E_{nxt} = Throughp^{ut}$ (*Mbits/s*)/*Area* (*slices*); 3. If $E_{cur} \geq E_{nxt}$ then OK = 1; else $E_{cur} = E_{nxt}$;

4. The final efficiency E_{cur} specifies the optimal pipeline;

🌙 <u>© UCL</u> Crypto Group

5. Practical results and comparisons.

Туре	Nbr of	Nbr of	RAM	Throughput	Throughput/Area
	LUTs	slices	blocks	(Mbits/s)	$(rac{Mbits/s}{slices,LUTs})$
McLoone et al.	/	2222	100	6956	3.1
Our design	3516	2784	100	11776	4.2
Helion tech.	899	/	10	1187	1.32
Our design	877	542	10	1450	1.65
Satoh et al. composite	/	1880	0	589	0.31
Our design	2524	1767	0	2085	1.17
Satoh et al. mux	/	2529	0	833	0.33
Our design	3846	2257	0	2008	0.88

6. Further research and conclusions

- 1. Synthesis work.
- 2. A good methodology may improve the efficiency of existing designs.
- Definitions of HW efficiency, maximum pipeline, optimal pipeline.
- 4. Circuits size is the bottleneck for Rijndael.
- 5. Forthcoming research:
 - (a) Very compact designs.
 - (b) Combinations of encryption and decryption.
 - (c) Encryption modes and algorithms.

Questions?

