A New Algorithm for Switching from Arithmetic to Boolean Masking

Jean-Sébastien Coron and Alexei Tchulkine

Gemplus Card International

34 rue Guynemer, 92447 Issy-les-Moulineaux, France

Differential Power Analysis

Differential Power Analysis

- Introduced by Paul Kocher and al. in 1998
- Consists in extracting information about the secret key of a cryptographic algorithm, by studying the power consumption during the execution of the algorithm
- All algorithms are vulnerable (DES, AES, RSA, HMAC...)

Countermeasures

- Hardware countermeasures: add noise, random delay...
- Software countermeasures: random masking.

Random masking

Random masking

- Proposed by Chari et al. at Crypto 99.
- Consists in masking all intermediary data with a random.
- The masked data and the random are processed separately.
- Boolean masking:
 - A variable x is written as:

$$x = x' \oplus r$$

where x' is the masked variable and r a random. x' and r are manipulated separately (instead of x).

Random masking

Advantage: increased security.

- The data is shared in two (or more) variables.
- The power leakage of an individual share does not reveal any information to the attacker
- The attacker must correlate the shares to get useful information
 - Exponentially more curves are needed.
- Drawback: decreased efficiency.
 - Two shares are processed instead of one.
 - More RAM needed for non-linear functions, such as SBOXes.
 - Issue for smart-cards.

Boolean/arithmetic masking

Boolean masking: $x = x' \oplus r$ \diamond is applicable when \oplus are used, *e.g.* DES. \diamond Let $x_1 = (x'_1, r_1) = x'_1 \oplus r_1$ and $x_2 = (x'_2, r_2)$. \diamond To compute $x_3 = x_1 \oplus x_2 = (x'_3, r_3)$ \checkmark Compute $x'_3 = x'_1 \oplus x'_2$. \checkmark Compute $r_3 = r_1 \oplus r_2$.

Arithmetic masking:

 \blacklozenge A variable x is written as:

$$x = A + r \mod 2^k$$

Applicable when arithmetic operations are used IDEA, RC6, SHA.

09/09/03 5/18 Bull & Innovatron Patents A New Algorithm for Switching from Arithmetic to Boolean Masking

Conversion

- For algorithms combining boolean and arithmetic operations:
 - IDEA, RC6, SHA.
 - Conversion required between boolean and arithmetic masking.
- The conversion must be secure:
 - Let x', r such that $x = x' \oplus r$. We want to compute A such that $x = A + r \mod 2^k$.
 - We can not compute $A = (x' \oplus r) r \mod 2^k$ directly,
 - \blacklozenge since otherwise $x = x' \oplus r$ is leaked.

From boolean to arithmetic masking

- Very efficient and elegant technique invented by Louis Goubin.
 - Provably secure and constant number of operations (CHES 2001).
 - Based in the fact that for all x', the function $f_{x'}(r) = (x' \oplus r) r$ is affine in r
- Let x', r such that $x = x' \oplus r$.
 - We want to compute $A = (x' \oplus r) r \mod 2^k$.
 - \blacklozenge Generate a random k-bit integer r_1 . Then:

$$A = f_{x'}(r) = f_{x'}((r_1 \oplus r) \oplus r_1)$$

= $f_{x'}(r_1 \oplus r) \oplus (f_{x'}(r_1) \oplus x')$

From arithmetic to boolean

Method proposed by Goubin:

- Also provably secure.
- Less efficient than boolean to arithmetic.
- Number of operations: 5k + 5 for k-bit variables.
- Bottleneck in some implementations, for example SHA.
- We propose a more efficient algorithm
 - Provably secure.
 - Based on pre-computed tables.

Conversion for small size

Arithmetic to boolean conversion.

• Given A, r, we must compute $x' = (A + r) \oplus r$.

Precomputed table G of 2^k values of k-bits.

Generate a random k-bit r.

• For A = 0 to $2^k - 1$ do $G[A] \leftarrow (A + r) \oplus r$

 \blacklozenge Output G and r.

Conversion from arithmetic to boolean:

$$x = x' \oplus r = A + r \mod 2^k$$

Given A, return x' = G[A].
Provably resistant to DPA (like classical SBOX randomization).

09/09/03 9/18 Bull & Innovatron Patents

A New Algorithm for Switching from Arithmetic to Boolean Masking

Performances

Comparison between our method and Goubin.

	Our method	Goubin's method
Pre-computation time	2^{k+1}	0
Conversion time	1	5k + 5
Table size	2^k	0

Main limitation of our method:

- Pre-computation time and memory required.
- But pre-computation is done once and every subsequent conversion requires only one step.
- Only feasible for conversion with small sizes (k = 4 or k = 8 bits).

Extension for larger sizes

Conversion for $\ell \cdot k$ -bit variables.

- We use two k-bit tables G and C.
- Example: k = 4 and $\ell = 8$ for 32-bit variables: two 4-bit tables require 16 bytes of RAM.
- Otherview of the algorithm
 - We separate the 32-bit variable into 8 nibbles of 4 bits.
 - We apply the previous conversion method to each nibble using table G.
 - We propagate the carry among the nibbles, using a randomized carry table C.

The algorithm for large size

Let A, R such that $x = A + R \mod 2^{\ell \cdot k}$. \bullet A and R are $\ell \cdot k$ bit variables. • Let $A = A_1 || A_2$, $R = R_1 || R_2$ where A_2, R_2 are k-bit. $x = (A_1 || A_2) + (R_1 || R_2) \mod 2^{\ell k}$ Splitting via carry computation. • If $A_2 + R_2 \ge 2^k$, let $A_1 \leftarrow A_1 + 1 \mod 2^{(\ell-1)k}$. \bullet Then if $x = x_1 || x_2$, we have: $x_1 = A_1 + R_1 \mod 2^{(\ell-1)k}$ $x_2 = A_2 + R_2 \mod 2^k$ We can apply the conversion recursively to (A_1, R_1) and (A_2, R_2) .

09/09/03 12/18 Bull & Innovatron Patents

A New Algorithm for Switching from Arithmetic to Boolean Masking

GEMPLUS

The algorithm (2)

Conversion of $x_2 = A_2 + R_2 \mod 2^k$ We use the previous table *G* with $r = R_2$

$$x_2' \leftarrow G[A_2]$$

We obtain
$$x_2 = x'_2 \oplus R_2$$
.

- We apply the same method recursively to $x_1 = A_1 + R_2 \mod 2^{(k-1) \cdot \ell}$.
 - We obtain x'_1 such that $x_1 = x'_1 \oplus R_1$.
 - Letting $x' = x'_1 || x'_2$, we obtain as required:

$$x = x' \oplus R$$

Carry computation

Problem with carry computation:

- We cannot compute $A_2 + R_2$ directly, since this would leak information about x.
- Instead, we use a carry table C:
 - Randomized carry table generation: 1. Generate a random k-bit γ .
 - 2. For A = 0 to $2^k 1$ do $C[A] \leftarrow \begin{cases} 0 + \gamma, \text{ if } A + R_2 < 2^k \\ 1 + \gamma \mod 2^k, \text{ if } A + R_2 \ge 2^k \end{cases}$

Instead of testing if $A_2 + R_2 \ge 2^k$, we let:

$$A_1 \leftarrow (A_1 + C[A_2]) - \gamma \mod 2^{(\ell-1)k}$$

Security of the new method

- The new algorithm is secure against first order DPA.
 - All intermediate data have the uniform distribution
 - The attacker learns nothing by observing an individual step.
- The attacker must correlate the power consumption of at least two steps (High-Order DPA).
 - This requires more curves.
 - This might be infeasible if there is a counter that limits the number of executions with the same key.

Performances

- Number of elementary operations for *i*-bit variables with a *j*-bit microprocessor with k = 4.
 - \bullet Our new method: $T_{i,j}$.
 - Goubin's method: $G_{i,j}$

	$T_{8,8}$	$T_{8,32}$	$T_{32,8}$	$T_{32,32}$	$G_{8,8}$	$G_{8,32}$	$G_{32,8}$	$G_{32,32}$
Pre-computation time	64	64	64	64	0	0	0	0
Conversion time	10	10	76	40	45	45	660	165
Table size	32	32	32	32	0	0	0	0

- Our method is more advantageous for 32-bit variables on 8-bit microprocessor.
 - Our method works with intermediate 4 bits variable, whereas Goubin's method always works with full 32-bit variables.

Application to SHA-1

Motivation:

MAC algorithms:

$$\mathsf{MAC}_K(x) = \mathsf{SHA-1}(K_1 \| x \| K_2)$$

 $\mathsf{HMAC}_{K}(x) = \mathsf{SHA-1}(K_2 \| \mathsf{SHA-1}(x \| K_1))$

Without appropriate countermeasure:

 \blacklozenge A straightforward DPA recovers the secret-key K.

Masking Countermeasure:

- SHA-1 combines 32-bit boolean operations with 32-bit arithmetic operations
- Conversion is required.

Performances for SHA-1

Number of elementary operations for each of the 80 iterations step.

	8-bit micro	32-bit micro
Our method	344	155
Goubin's method	864	216

Conclusion:

An implementation of SHA-1 secure against DPA will be roughly 2.7 times faster using our method than using Goubin's method on a 8-bit microprocessor.

