A New Algorithm for Switching from Arithmetic to Boolean Masking

Jean-Sébastien Coron and Alexei Tchulkine

Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France

Differential Power Analysis

■ Differential Power Analysis
Introduced by Paul Kocher and al. in 1998
Consists in extracting information about the secret key of a cryptographic algorithm, by studying the power consumption during the execution of the algorithm
All algorithms are vulnerable (DES, AES, RSA, HMAC...)

■ Countermeasures

- Hardware countermeasures: add noise, random delay...
Software countermeasures: random masking.

Random masking

■ Random masking Proposed by Chari et al. at Crypto 99. Consists in masking all intermediary data with a random.
The masked data and the random are processed separately.

- Boolean masking:

A variable x is written as:

$$
x=x^{\prime} \oplus r
$$

where x^{\prime} is the masked variable and r a random.
x^{\prime} and r are manipulated separately (instead of x).

Random masking

- Advantage: increased security.
- The data is shared in two (or more) variables. The power leakage of an individual share does not reveal any information to the attacker The attacker must correlate the shares to get useful information

Exponentially more curves are needed.
■ Drawback: decreased efficiency.
Two shares are processed instead of one. More RAM needed for non-linear functions, such as SBOXes.

- Issue for smart-cards.

Boolean/arithmetic masking

\square Boolean masking: $x=x^{\prime} \oplus r$
is applicable when \oplus are used, e.g. DES.
Let $x_{1}=\left(x_{1}^{\prime}, r_{1}\right)=x_{1}^{\prime} \oplus r_{1}$ and $x_{2}=\left(x_{2}^{\prime}, r_{2}\right)$.
To compute $x_{3}=x_{1} \oplus x_{2}=\left(x_{3}^{\prime}, r_{3}\right)$
Compute $x_{3}^{\prime}=x_{1}^{\prime} \oplus x_{2}^{\prime}$.
Compute $r_{3}=r_{1} \oplus r_{2}$.

- Arithmetic masking:

A variable x is written as:

$$
x=A+r \bmod 2^{k}
$$

Applicable when arithmetic operations are used IDEA, RC6, SHA.

Conversion

\square For algorithms combining boolean and arithmetic operations:

- IDEA, RC6, SHA.

Conversion required between boolean and arithmetic masking.
\square The conversion must be secure:
Let x^{\prime}, r such that $x=x^{\prime} \oplus r$. We want to compute A such that $x=A+r \bmod 2^{k}$.
We can not compute $A=\left(x^{\prime} \oplus r\right)-r \bmod 2^{k}$ directly,
since otherwise $x=x^{\prime} \oplus r$ is leaked.

From boolean to arithmetic masking

\square Very efficient and elegant technique invented by Louis Goubin.

- Provably secure and constant number of operations (CHES 2001).
- Based in the fact that for all x^{\prime}, the function $f_{x^{\prime}}(r)=\left(x^{\prime} \oplus r\right)-r$ is affine in r
- Let x^{\prime}, r such that $x=x^{\prime} \oplus r$.

We want to compute $A=\left(x^{\prime} \oplus r\right)-r \bmod 2^{k}$.
Generate a random k-bit integer r_{1}. Then:

$$
\begin{aligned}
A & =f_{x^{\prime}}(r)=f_{x^{\prime}}\left(\left(r_{1} \oplus r\right) \oplus r_{1}\right) \\
& =f_{x^{\prime}}\left(r_{1} \oplus r\right) \oplus\left(f_{x^{\prime}}\left(r_{1}\right) \oplus x^{\prime}\right)
\end{aligned}
$$

From arithmetic to boolean

■ Method proposed by Goubin:
Also provably secure.
Less efficient than boolean to arithmetic.
Number of operations: $5 k+5$ for k-bit variables.
Bottleneck in some implementations, for example SHA.

■ We propose a more efficient algorithm
Provably secure.
Based on pre-computed tables.

Conversion for small size

\square Arithmetic to boolean conversion.
Given A, r, we must compute $x^{\prime}=(A+r) \oplus r$.
■ Precomputed table G of 2^{k} values of k-bits.
Generate a random k-bit r.
For $A=0$ to $2^{k}-1$ do $G[A] \leftarrow(A+r) \oplus r$
Output G and r.
\square Conversion from arithmetic to boolean:

$$
x=x^{\prime} \oplus r=A+r \quad \bmod 2^{k}
$$

- Given A, return $x^{\prime}=G[A]$.

Provably resistant to DPA (like classical SBOX randomization).

Performances

Comparison between our method and Goubin.

	Our method	Goubin's method
Pre-computation time	2^{k+1}	0
Conversion time	1	$5 k+5$
Table size	2^{k}	0

\square Main limitation of our method:

- Pre-computation time and memory required. But pre-computation is done once and every subsequent conversion requires only one step.
- Only feasible for conversion with small sizes ($k=4$ or $k=8$ bits).

Extension for larger sizes

\square Conversion for $\ell \cdot k$-bit variables.
We use two k-bit tables G and C.
Example: $k=4$ and $\ell=8$ for 32 -bit variables: two 4 -bit tables require 16 bytes of RAM.
\square Otherview of the algorithm
We separate the 32 -bit variable into 8 nibbles of 4 bits.
We apply the previous conversion method to each nibble using table G.
We propagate the carry among the nibbles, using a randomized carry table C.

The algorithm for large size

\square Let A, R such that $x=A+R \bmod 2^{\ell \cdot k}$.
A and R are $\ell \cdot k$ bit variables. Let $A=A_{1}\left\|A_{2}, R=R_{1}\right\| R_{2}$ where A_{2}, R_{2} are k-bit.

$$
x=\left(A_{1} \| A_{2}\right)+\left(R_{1} \| R_{2}\right) \quad \bmod 2^{\ell k}
$$

\square Splitting via carry computation.
\checkmark If $A_{2}+R_{2} \geq 2^{k}$, let $A_{1} \leftarrow A_{1}+1 \bmod 2^{(\ell-1) k}$. Then if $x=x_{1} \| x_{2}$, we have:

$$
\begin{aligned}
& x_{1}=A_{1}+R_{1} \quad \bmod 2^{(\ell-1) k} \\
& x_{2}=A_{2}+R_{2} \bmod 2^{k}
\end{aligned}
$$

We can apply the conversion recursively to $\left(A_{1}, R_{1}\right)$ and $\left(A_{2}, R_{2}\right)$.

The algorithm (2)

\square Conversion of $x_{2}=A_{2}+R_{2} \bmod 2^{k}$
We use the previous table G with $r=R_{2}$

$$
x_{2}^{\prime} \leftarrow G\left[A_{2}\right]
$$

We obtain $x_{2}=x_{2}^{\prime} \oplus R_{2}$.

- We apply the same method recursively to

$$
x_{1}=A_{1}+R_{2} \bmod 2^{(k-1) \cdot \ell} .
$$

\checkmark We obtain x_{1}^{\prime} such that $x_{1}=x_{1}^{\prime} \oplus R_{1}$.
Letting $x^{\prime}=x_{1}^{\prime} \| x_{2}^{\prime}$, we obtain as required:

$$
x=x^{\prime} \oplus R
$$

Carry computation

- Problem with carry computation:
- We cannot compute $A_{2}+R_{2}$ directly, since this would leak information about x.
- Instead, we use a carry table C :

Randomized carry table generation:

1. Generate a random k-bit γ.
2. For $A=0$ to $2^{k}-1$ do

$$
C[A] \leftarrow\left\{\begin{array}{l}
0+\gamma, \text { if } A+R_{2}<2^{k} \\
1+\gamma \bmod 2^{k}, \text { if } A+R_{2} \geq 2^{k}
\end{array}\right.
$$

Instead of testing if $A_{2}+R_{2} \geq 2^{k}$, we let:

$$
A_{1} \leftarrow\left(A_{1}+C\left[A_{2}\right]\right)-\gamma \quad \bmod 2^{(\ell-1) k}
$$

Security of the new method

\square The new algorithm is secure against first order DPA. All intermediate data have the uniform distribution The attacker learns nothing by observing an individual step.
\square The attacker must correlate the power consumption of at least two steps (High-Order DPA).

This requires more curves.
This might be infeasible if there is a counter that limits the number of executions with the same key.

Performances

\square Number of elementary operations for i-bit variables with a j-bit microprocessor with $k=4$.

- Our new method: $T_{i, j}$.
\checkmark Goubin's method: $G_{i, j}$

	$T_{8,8}$	$T_{8,32}$	$T_{32,8}$	$T_{32,32}$	$G_{8,8}$	$G_{8,32}$	$G_{32,8}$	$G_{32,32}$
Pre-computation time	64	64	64	64	0	0	0	0
Conversion time	10	10	76	40	45	45	660	165
Table size	32	32	32	32	0	0	0	0

\square Our method is more advantageous for 32-bit variables on 8-bit microprocessor.

- Our method works with intermediate 4 bits variable, whereas Goubin's method always works with full 32-bit variables.

Application to SHA-1

- Motivation:

MAC algorithms:

$$
\begin{gathered}
\operatorname{MAC}_{K}(x)=\operatorname{SHA}-1\left(K_{1}\|x\| K_{2}\right) \\
\operatorname{HMAC}_{K}(x)=\operatorname{SHA}-1\left(K_{2} \| \operatorname{SHA}-1\left(x \| K_{1}\right)\right)
\end{gathered}
$$

- Without appropriate countermeasure:

A straightforward DPA recovers the secret-key K.

- Masking Countermeasure:
- SHA-1 combines 32-bit boolean operations with 32-bit arithmetic operations
- Conversion is required.

Performances for SHA-1

- Number of elementary operations for each of the 80 iterations step.

	8-bit micro	32-bit micro
Our method	344	155
Goubin's method	864	216

- Conclusion:

An implementation of SHA-1 secure against DPA will be roughly 2.7 times faster using our method than using Goubin's method on a 8-bit microprocessor.

