
Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 1

 CHES 2005 - Edinburgh

In
fi

n
eo

n

Design of Testable Random
Bit Generators

M. Bucci, R. Luzzi
{marco.bucci, raimondo.luzzi}@infineon.com

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 2

Summary

 Effective entropy of a real RBG device

 Security assumptions, entropy redundancy and compression

 Meaningfulness and limits of statistical tests

 Suppressing pseudo-randomness

 Implementation and implications of pseudo-randomness
suppression: testing online and in “certification” mode

 Detecting and contrasting forcing attacks

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 3

Do we need testability?
We must design for testability!

Someone would like to test an HW system without
schematics and test points?

Someone else would like to test a SW without source
code, logs and (possibly) a debugger?

On these deterministic systems you will have low
probability to find bugs :o)

?
We can not test even a deterministic system as a
black box. Why it should work with RBG’s?
If we want to find bugs and defects, we must design our
system to be testable.

Lets try to make RBG’s testable!

!

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 4

Random
Bit

Generator

Observability
(passive attacks)

Predictability
(intrinsic entropy limitations)

Forceability
(active attacks)

“effective” entropy ?

Effective entropy and robustness of a real RBG device

Effective entropy of an RBG results from its intrinsic entropy, but also
from its possible observability and forceability.

production
variances

severe
environmental

conditions

Robustness with respect of production variances and severe
environmental conditions must be also guaranteed.

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 5

Entropy redundancy and compression

Post-processing
algorithm

Digitizer
Noise

Source

€

n(t)
Output

I/F

internal random number

external random number

Entropy redundancy and compression are always needed to
guarantee correct operation under severe conditions.

Entropy Source
Entropy “distiller”

(compressor)

€

s[i]

€

r[i]

m

Generic architecture of an RBG (following AIS 31 definitions)

A suitable post-processing compression is the only way to
increase the effective entropy of the output.

digitized noise signal

Digitized noise source

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 6

How post-processing should operates?
Can we prove how much is the output entropy?

R
S

€

2l−m

€

2m

€

2l

Post-processing should compress
(hashing) the input in order to “flat” (to
average) the probability of output
symbols.

In practical implementations, post-
processing is a sequential machine
making use of a cryptographic function.

R
G(s)

m

state

l > m

€

s[0], s[1],... s[l −1]

Empirically very powerful, but it is practically impossible to prove how
much is the entropy/bit on the output.

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 7

Can we (at least) test entropy after post-processing?

As a consequence, it seems that, after post-processing, it is
impossible to test the amount of entropy even empirically.

REMARK: the same problem arises on the digitized noise source (i.e.
even without compression) if it is intrinsically pseudo-random.

In case of lack of source entropy, the post-processor, by
construction, acts as a pseudo-random generator: the output will be
“statistically uniform” whatever the input from the source is!

anyway “statistically
uniform” output

whatever random or
deterministic input G(s)

state

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 8

Pseudo-randomness hides the actual amount of
entropy! Let suppress pseudo-randomness!

A pseudo-random generator is basically a system whose free
state evolution (actually a loop) “looks” random.

In case an input is supplied
(e.g. a compressor), the state
is forced to “jump”.

FACT: If the state space degenerates to a point, no pseudo-
randomness is possible: a stateless system cannot behave
pseudo-randomly.

state sequence

free state evolution

input-forced jump€

states = 2# state _ bits

initial state

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 9

What does “stateless” mean?

A stateless system is, in facts, a system without memory.

Whatever system behaves as stateless if its memory is cleared
(i.e. if it is restarted from the same state before generating a new
output).

REMARK: the “starting state” must not necessarily be the “zero-state”.

System

“reset” before each new
output generation

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 10

What does “stateless” imply?

A stateless RBG can produce just independent symbols.

Now statistical tests can be simple and significant: a flat histogram
really means maximal entropy.

Stateless
RBG

Output symbols are
independent

Output Histogram is
significant

Test complexity depends only on the output cardinality.

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 11

What does “stateless” imply for a digitized noise
source?

 Output bits are independent.

 Since the output cardinality is just 2, the source can be easily
tested “on the fly” (online test).

Since there is no state evolution, each transition represents an
“unexpected” (i.e. a random) event.
A simple transition test is enough: no entropy will result in no
transitions.

€

Ntrans = s[i]∑ ⊕ s[i −1]

Stateless
Digitized Noise

Source

€

s[i], s[i +1], s[i + 2], ...

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 12

What does “stateless” imply for the compressor?

The post-processor actually behaves as a combinatorial
function (i.e. same input results in the same output).

Therefore, if output symbols R are generated from independent
strings {s[0], s[1], …, s[l-1]} then they are independent too.

Stateless
Post-processor

€

R
m

REMARK: independence amongst s[i] symbols of the same input
string is not needed.

€

s[0], s[1], ..., s[l −1]

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 13

On-line and off-line (e.g. certification) testing

Notice: since it is extremely short, the online test can be used to
adjust in real time the compression ratio. In this way, each delivered
output symbol is guaranteed to have the requested entropy.

Stateless
Post-processor

€

s[i]

€

R
mStateless

Digitized Noise
Source

Online test
(transition count)

Off-line test
(histogram)

Possible real-time
compression adjustment

€

s[i]∑ ⊕ s[i −1]

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 14

Implementation (example)

 In principle this schema is applicable to every kind of source and
compressor.

 Only requirement is a fast recovery from the reset (starting) state.

R
G(x)

m

state

word start reset

Digitized Noise
Source

bit start reset

Example:

l = 32;
m = 8 => | R | = 256

REMARK: if the source test is not performed, also the source can be
reset just at word start.

Certification mode

€

s[0], s[1], ..., s[l −1]

Post-processor

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 15

How secure is the normal “operation mode” with
respect of the “certification mode”?

In case the compressor is linear, the “operation
mode” is equivalent to the “certification mode”
xored with the compressor in free evolution from
the previous state.

G(x)

state

G(x)
state

reset

G(x)

state

preset
previous state

0

The “operation mode” is very likely more
secure than the “certification mode”:
residual entropy from previous history is
not lost.

Therefore the operation mode is proven to be not less secure than the
certification one

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 16

Stateless digitized noise source example:
“An offset-compensated oscillator-based random bit source for security
applications” (CHES 2004)

Tslow

Tfast

x[i]

start stop

Tfast

x[i]

Tslow

start

“classic”

stateless

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 17

A simplified model for a RBG under observing/forcing
attack

Compressor
G(•)

€

sDigitized Noise
Source

Compressor
G(•)€

e

actual output

observing/forcing
error

source
observing/forcing

error

observing/forcing
channel

expected output

€

R =G(s)

€

G(s⊕ e)€

G(s)⊕G(s⊕ e)

We consider attacks focused on the source which is intrinsically the
most vulnerable part. The robustness of the compressor can be
approached by the techniques used for digital devices.

RBG

Attacker

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 18

Effective entropy of an RBG under observing/forcing
attack (case of a linear compression function)

Assuming this model, the compression factor must be fixed
considering a source consisting in the (estimated) residual error of the
attacker.

Linear
Compressor

G(•)

€

e

observing/forcing
error

€

G(e)

€

G(s)⊕G(s⊕ e) =G(e)

In case the compressor function is linear with respect of the x-or operation:

In other words, the attacker “sees” an RBG having a “virtual source”
consisting in his error in observing/forcing the real source.

source
observing/forcing

error

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 19

Forcing attacks: scenario

An attacker can try to superimpose an its own “random”, signal d(•)
to the entropy source n(•).

Attack
detection

Digitizer
Noise

Source

€

n(t)

Attacker

Digitized noise source

+

€

d(t)

€

s[i]

€

ˆ n (t)

€

PN

0 1

€

PS

REMARK: No way to detect the attack after quantization (i.e. no
statistic anomalies if d(•) is random or pseudo-random).

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 20

Source probability distribution:
under normal condition and under attack

REMARK: in order to actually reduce the entropy, the attacker needs to
obtain a small residual error. Hence he needs to inject a signal d(•) having
a large amplitude.

Source distribution under normal conditions

Conditional source distribution under attack
and residual error of the attacker

-4 -2 20 4

€

P s i[] = 0 / d i[] = ˆ d { }

€

P s i[] =1 / d i[] = − ˆ d { }

€

− ˆ d

€

ˆ d

€

PS

-4 -2 2 4O

€

P s i[] = 0{ }

€

P s i[] =1{ }

€

PS

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 21

Detection of forcing attacks

An attacker cannot force the source without increasing its intensity.

Therefore, a forcing attack can be easily detected testing the source
intensity (assuming its typical value is known).

As an example, a simple statistical test can consist in counting the
number of samples beyond two prefixed thresholds t− and t+.

€

t−

€

t+

€

PS

-4 -2 20 4

Copyright © Infineon Technologies 2005. All rights reserved.

M. Bucci, R. Luzzi
IFDA DCGR CC CM
Page 22

Conclusions

 The entropy of a stateless RBG can be easily tested after
post-processing.

Therefore:

 The main merit figure of an entropy source is its
entropy/second (entropy throughput) and not anymore its
statistical quality or entropy/bit.

 The design of the entropy source is not anymore constrained
by its “quality” and can be more focused on its actual
robustness with respect of:

– Attacks

– Faults

– Production defects

