A Very Compact S-box for AES (Advanced Encryption Standard)

D. Canright

dcanright@nps.edu

Applied Mathematics Dept. Naval Postgraduate School Monterey CA 93943, USA

Advanced Encryption Standard (AES)

Algorithm

- AES is symmetric block cipher
- from 128-bit key, a different round key generated for each of 10 rounds
- each 128-bit block processed by rounds

round 0 :

Add Round Key.

rounds 1-9 :

S-Box; Shift Rows; Mix Columns; Add Round Key.

round 10 :

S-Box; Shift Rows; Add Round Key.

step1: Add Round Key

for whole 128-bit block:

in \oplus key \rightarrow out

where \oplus is bitwise exclusive-or (XOR) (For decryption, inverse operation is identical.)

step2: S-Box (Byte Substitution)

for each 8-bit byte a:

- 1. *Inverse*: Let $c = a^{-1}$, the inverse in *GF*(2⁸)
- 2. Affine: The output s is $M \mathbf{c} \oplus \mathbf{b}$:

for 4×4 byte matrix, rotate rows 0–3 accordingly:

$$\begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \rightarrow \begin{pmatrix} a & b & c & d \\ f & g & h & e \\ k & l & i & j \\ p & m & n & o \end{pmatrix}$$

for each 4-byte column C of 4×4 byte matrix:

$$\begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} \longrightarrow \begin{pmatrix} D_0 \\ D_1 \\ D_2 \\ D_2 \\ D_3 \end{pmatrix}$$

where byte multiplication and addition is in $GF(2^8)$

nonlinearity

 the steps Shift Rows, Mix Columns, & Add Round Key are *linear* operations (and easy)

nonlinearity

- the steps Shift Rows, Mix Columns, & Add Round Key are *linear* operations (and easy)
- the S-box function is *nonlinear* due to the *inverse* operation in $GF(2^8)$ (not easy to compute)

Galois Fields

definition

A *field* is a set with two operations, addition \oplus and multiplication \otimes :

- both satisfy closure
- both associative
- both commutative
- each has identity (0 and 1)
- any element a has additive inverse -a
- any nonzero element $a \neq 0$ has multiplicative inverse a^{-1}
- multiplication distributive over addition

finite fields

- A finite field F has p^n elements (prime p, integer n > 0).
- F has characteristic p: for any $a \in F$, $a + a + \cdots + a \ (p \text{ times}) = 0.$
- Fields with same number of elements are *isomorphic*.
- Over a subfield $S \subset F$, of p^j elements with n = jk:
 - F is a vector space of dimension k over S.
 - Each $a \in F$ has minimal polynomial of degree $m \leq k$;
 - the *m* distinct roots a, a^{p^j}, \ldots are *conjugates*, their sum is the *trace* and their product is the *norm* (of *a*).
 - The product of all the minimal polynomials is $x^{p^n} x$

$GF(2^8)$ Representation

standard

• for $GF(2^8)/GF(2)$: $A = a_7x^7 + \cdots + a_1x + a_0$, where $a_i \in \{0, 1\}$ and $x^8 + x^4 + x^3 + x + 1 = 0$.

subfield

- for $GF(2^8)/GF(2^4)$: $A = a_1x + a_0$ or $a_1x_1 + a_0x_0$, where $a_i, T, N \in GF(2^4)$ and $x^2 + Tx + N = 0$;
- then for $GF(2^4)/GF(2^2)$: $A = a_1x + a_0$ or $a_1x_1 + a_0x_0$, where $a_i, T, N \in GF(2^2)$ and $x^2 + Tx + N = 0$;
- then for $GF(2^2)/GF(2)$: $A = a_1x + a_0$ or $a_1x_1 + a_0x_0$, where $a_i \in \{0, 1\}$ and $x^2 + x + 1 = 0$.

(note: *T* is trace and *N* is norm, over subfield)

Implementation

Implementation Goals

Different applications have different constraints & goals.

- speed : throughput and/or latency (by parallelism, pipelining) Morioka & Satoh, Int'l Conf. Computer Design (2002), IEEE Weaver & Wawrzynek, (2002) Jarvinen et al., FPGA 03 (2003) ACM
- low power : e.g., for smart cards Morioka & Satoh, CHES2002 (2003), *LNCS* 2523
- small size : for limited ciruitry, e.g., also smart cards Rudra et al., CHES2001 (2001), LNCS 2162 Satoh et al., ASIACRYPT (2001), LNCS 2248 Wolkerstorfer et al., CT-RSA (2002), LNCS 2271 Chodowiec & Gaj, CHES2003 (2003), LNCS 2779 Mentens et al., CT-RSA (2005), LNCS 3376

prior smallest: Satoh et al., used nested fields for S-box

- prior smallest: Satoh et al., used nested fields for S-box
- recent improvement: Mentens et al., considered other isomorphisms (64)

- prior smallest: Satoh et al., used nested fields for S-box
- recent improvement: Mentens et al., considered other isomorphisms (64)
- current work: more improvement —

- prior smallest: Satoh et al., used nested fields for S-box
- recent improvement: Mentens et al., considered other isomorphisms (64)
- current work: more improvement
 - considered more isomorphisms (432), incl. normal bases

- prior smallest: Satoh et al., used nested fields for S-box
- recent improvement: Mentens et al., considered other isomorphisms (64)
- current work: more improvement
 - considered more isomorphisms (432), incl. normal bases
 - fully optimized basis-change matrices

- prior smallest: Satoh et al., used nested fields for S-box
- recent improvement: Mentens et al., considered other isomorphisms (64)
- current work: more improvement
 - considered more isomorphisms (432), incl. normal bases
 - fully optimized basis-change matrices
 - Iogic-gate substitution (NOR for NAND and XORs)

merged S-box, S-box $^{-1}$

 Satoh architecture shares inverter
between S-box and S-box⁻¹
(left pathways for encryption right pathways for decryption)

merged S-box, S-box $^{-1}$

- Satoh architecture shares inverter
 between S-box and S-box⁻¹
 (left pathways for encryption right pathways for decryption)
- This also allows *pairs* of transformations (input and output) to be optimized together

Main Operations - formulas

using roots of $x^2 + Tx + N$, where *T* is trace, *N* is norm *polynomial* basis [*x*, 1] inverse & multiplication:

 $[\Gamma_1, \Gamma_0]^{-1} = (\Gamma_1^2 N + \Gamma_1 \Gamma_0 T + \Gamma_0^2)^{-1} \otimes [\Gamma_1, \Gamma_0 + \Gamma_1 T]$ $[\Gamma_1, \Gamma_0] \otimes [\Delta_1, \Delta_0] = [\Gamma_1 \Delta_0 + \Gamma_0 \Delta_1 + \Gamma_1 \Delta_1 T, \Gamma_0 \Delta_0 + \Gamma_1 \Delta_1 N]$ *normal* basis $[x_1, x_2]$ inverse & multiplication:

 $[\Gamma_1, \Gamma_0]^{-1} = (\Gamma_1 \Gamma_0 T^2 + (\Gamma_1^2 + \Gamma_0^2) N)^{-1} \otimes [\Gamma_0, \Gamma_1]$

 $[\Gamma_1, \Gamma_0] \otimes [\Delta_1, \Delta_0] = [\Gamma_1 \Delta_1 T + (\Gamma_1 + \Gamma_0)(\Delta_1 + \Delta_0)NT^{-1}, \\ \Gamma_0 \Delta_0 T + (\Gamma_1 + \Gamma_0)(\Delta_1 + \Delta_0)NT^{-1}]$

May choose T = 1 or N = 1 or $NT^{-1} = 1$; best is T = 1.

Main Operations - diagrams

polynomial inverter

polynomial multiplier

normal inverter

normal multiplier

Both polynomial and normal bases require same number and type of subfield operations.

Main Operations - diagrams

Both polynomial and normal bases require same number and type of subfield operations. Note that in normal inverter, each factor to multiplier is shared with another multiplier.

factoring transformation matrices

- factoring transformation matrices
 - prior work: greedy algorithm

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions
 - shared factors in inverters

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions
 - shared factors in inverters
 - bit sums for square&scale

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions
 - shared factors in inverters
 - bit sums for square&scale
- logic gate substitution

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions
 - shared factors in inverters
 - bit sums for square&scale
- logic gate substitution
 - XNOR for NOT XOR

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions
 - shared factors in inverters
 - bit sums for square&scale
- logic gate substitution
 - XNOR for NOT XOR
 - NAND for AND

- factoring transformation matrices
 - prior work: greedy algorithm
 - current: full optimization by tree search
- common subexpressions
 - shared factors in inverters
 - bit sums for square&scale
- logic gate substitution
 - XNOR for NOT XOR
 - NAND for AND
 - a NOR b for a XOR b XOR a NAND b

Results

Best Case Results

our smallest implementation of: merged S-box & inverse (Satoh architecture, with shared inverter); S-box alone; and inverse S-box alone.

best	XOR	NAND	NOR	NOT	MUX	total gates
merged	94	34	6	2	16	234
S-box	80	34	6	0	0	180
$(S-box)^{-1}$	81	34	6	0	0	182

Best Case Results

our smallest implementation of: merged S-box & inverse (Satoh architecture, with shared inverter); S-box alone; and inverse S-box alone.

best	XOR	NAND	NOR	NOT	MUX	total gates
merged	94	34	6	2	16	234
S-box	80	34	6	0	0	180
$(S-box)^{-1}$	81	34	6	0	0	182

 20% smaller than previous smallest merged S-box of Satoh, at 294 gates.

Best Case Results

our smallest implementation of: merged S-box & inverse (Satoh architecture, with shared inverter); S-box alone; and inverse S-box alone.

best	XOR	NAND	NOR	NOT	MUX	total gates
merged	94	34	6	2	16	234
S-box	80	34	6	0	0	180
$(S-box)^{-1}$	81	34	6	0	0	182

- 20% smaller than previous smallest merged S-box of Satoh, at 294 gates.
- same basis that gives smallest merged S-box also gives smallest separate S-box.

Size of $GF(2^8)$ inverter with increasing levels of optimization:

inverter	XOR	NAND	NOR	total gates
hierarchical	88	36	0	190
w/ shared oper.	66	36	0	152
w/ NOR subst.	56	34	6	138

Size of $GF(2^8)$ inverter with increasing levels of optimization:

inverter	XOR	NAND	NOR	total gates
hierarchical	88	36	0	190
w/ shared oper.	66	36	0	152
w/ NOR subst.	56	34	6	138

- sharing operations saves 20%.
- the NOR substitution saves an additional 9%.

Comparison of four choices of basis: our best case; best case of Mentens et al.; basis of Satoh et al.; and our worst case.

basis	merged	S-box	S-box $^{-1}$
ours	253	195	195
Mentens	271	204	206
Satoh	275	211	209
worst	293	223	222

worst-basis merged S-box bigger than best by 16%.

Full optimization of matrices often improves upon the greedy algorithm, but may require much computation.

matrix	matrices	#	matrices		
size	optimized	1 XOR	2 XORs	3 XORs	improved
8 × 8	1728	613	138	11	44%
16 × 8	55	24	10	6	73%

criteria for comparing matrices before optimization:

number of ones vs. opt.

greedy algorithm vs. opt.

comparisons of matrices based on:

'number of ones' incorrect for 37% of 8×8 and 44% of 16×8 greedy algorithm incorrect for 20% of 8×8 and 31% of 16×8

Conclusions

 considering other bases for subfields; of 432 cases, best uses all normal bases

- considering other bases for subfields; of 432 cases, best uses all normal bases
- full matrix optimization improves on the greedy algorithm

- considering other bases for subfields; of 432 cases, best uses all normal bases
- full matrix optimization improves on the greedy algorithm
- the NOR substitution gives further improvement

- considering other bases for subfields; of 432 cases, best uses all normal bases
- full matrix optimization improves on the greedy algorithm
- the NOR substitution gives further improvement
- the resulting merged S-box is 20% smaller than that of Satoh

- considering other bases for subfields; of 432 cases, best uses all normal bases
- full matrix optimization improves on the greedy algorithm
- the NOR substitution gives further improvement
- the resulting merged S-box is 20% smaller than that of Satoh
- this smaller size could save chip area in ASICs, or allow more copies for parallelism and pipelining