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Introduction

• In simple terms a pairing is a mapping from

two points on an elliptic curve to an element

of the underlying Galois field

• Pairings are an important development in con-

structive cryptography

• They allow the construction of protocols not

readily available from other primitives, for ex-

ample the Boneh-Franklin IBE scheme
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The Tate pairing

• This work focuses on implementing the Tate

pairing on supersingular elliptic curves

E±(GF (3m)) : y2 = x3 − x ± 1

– maximum security multiplier of k = 6

– efficiently implementable

– GF (3m) arithmetic architectures less well

studied than GF (2m) and GF (p)
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Recent History of Tate Pairing

Calculation

• 1986 : Miller’s Algorithm - double & add

• 2002 : GHS Algorithm - triple & add

• 2002 : BLKS Algorithm :distortion map and simpler

line function evaluation

• 2003 : Duursma-Lee Algorithm : simpler structure, in-

corporation of distortion map into pairing

• 2004 : Kwon Algorithm : Modified Duursma-Lee, suit-

able for efficient implementation on dedicated hardware
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The Tate Pairing in hardware

• There has been little published investigation

into the hardware implementation aspects of

the p = 3 Tate pairing in hardware ...

– 2004 : Kerins, Marnane and Popovici

– 2004 / 2005 : Granger Page and Stam

– 2005 : This conference

– 2005 : Kerins, Marnane Popovici and

Barreto (IEE. Trans IT to appear)
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The Modified Tate Pairing (char 3)

E±(GF (3m))[l] × E±(GF (3m))[l] → GF (36m)∗

{P = (xp, yp)} × {R = (xr, yr)} → τ

Modified Tate pairing : ê(P, R) = τ ∈ GF (36m)∗

• ê(P, R) = ee3m−1(P, φ(R))εT , where εT = 33m−1

• φ : E±(GF (3m))[l] → E±(GF (36m))[l]

φ(R) = (ρ − xr, σyr)

• ρ3 − ρ ∓ 1 = 0, σ2 + 1 = 0, ρ, σ ∈ GF (36m)
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The Modified Duursma-Lee

(Kwon) Algorithm

01 α = xp, β = yp, x = x3

r, y = y3

r , d = (±m) mod 3

02 loop m times

03 α = α9,β = β9 (* arith. in GF (3m) *)

04 µ = α + x + d (* arith. in GF (3m) *)

05 γ = −µ2 − βyσ −µρ− ρ2 (* arith. in GF (36m) *)

06 t = t3 (* cubing in GF (36m) *)

07 t = t ∗ γ (* multiplication in GF (36m) *)

08 y = −y d = (d ∓ 1) mod 3 (* arith. in GF (3m) *)

09 end loop and return t
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Calculation of Modified Tate

Pairing

• involves ...

– calculation of e33m−1(P, φ(R)) = t ∈ GF (36m)

– exponentiation ê(P, R) = tε1 = τ ∈ GF (36m)

• Kwon Algorithm is calculated using mainly

– multiplication and cubing in GF (3m)

– multiplication and cubing in GF (36m)

• Our contribution : these can be efficiently parallelized

on dedicated hardware
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Aim of this research

• How efficiently the modified Tate paring can

be performed on dedicated hardware?

• Xilinx FPGA technology was chosen as imple-

mentation platform

• From this insight can be gained into issues re-

lated to and eventual ASIC implementation

• Application as a high performance server ac-

celerator

Cryptographic Hardware and Embedded Systems, CHES 2005
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Arithmetic in GF (3m) -1

• Polynomial basis arithmetic

• 2003 : Efficient digit serial multiplier architec-

ture - Bertoni et al.

• Multiplication in dm/De clock cycles

• Dedicated cubing circuitry in single clock cycle

• Additive operations by simple gate circuits us-

ing a 2 bit encoding for elements of GF (3)
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Representation of GF (36m) - 1

• This is the principal complexity in the imple-

mentation ê(P, R)

• Aim : to simplify this as much as possible ...

• Represent GF (36m) as an extension field of

GF (3m)

• 2004 : Choose the tower field representation

defined by the distortion map φ - Granger /

Page / Stam
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Representation of GF (36m) -2

• GF (32m) ∼= GF (3m)[σ]/σ2 + 1

• GF (36m) ∼= GF (32m)[ρ]/ρ3 − ρ ∓ 1

• elements of GF (36m) are represented as 6-tuples of GF (36m)

elements, basis defined by

{1, σ, ρ, σρ, ρ2, σρ2}

• GF (36m) elements σ and ρ required in Step 05 of Kwon

algorithm have simple representation

σ = [0, 1, 0, 0, 0, 0] ρ = [0, 0, 1, 0, 0, 0]
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Efficient calculation of γ (Step 05)

• recall : γ = −µ2 − βyσ − µρ − ρ2

• requires only 2 GF (3m) multiplications, performed in

parallel
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Multiplication in GF (32m) -1

• c̃ = ãb̃ ∈ GF (32m), ã = a1σ + a0, b̃ = b1σ + b0

• Performed by Karatsuba Multiplication




c0

c1



 =




a0b0 − a1b1

(a1 + a0)(b1 + b0) − a1b1 − a0b0





• Requires three multiplications in GF (3m)

• These multiplications can be performed in

parallel
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Multiplication in GF (32m) -2
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Multiplication in GF (36m) -1

• a ∈ GF (36m) : a = (a0 + a1σ)
︸ ︷︷ ︸

ã0

+ (a2 + a3σ)
︸ ︷︷ ︸

ã1

ρ+(a4 + a5σ)
︸ ︷︷ ︸

ã2

ρ2

• Multiplication in GF (36m) performed by multiplication

of elements of GF (32m)

• 2000 : Bailey / Paar method

• Requires 6 multiplications in GF (32m)

• .. this implies 18 multiplications in GF (3m) required for

arbitrary multiplication in GF (36m)

• but all multiplications may be carried out in parallel
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Multiplication in GF (36m) -2

Dataflow for composition stage of multiplication in GF (36m)
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Multiplication in GF (36m) -3

• Brought to out attention by Keith Harrison ...

• Some coefficients of γ from Kwon algorithm are

guaranteed to be 0 ∈ GF (3m)

• Full multiplication in GF (36m) is in fact not required in

Step 07 of Kwon algorithm

• ... in fact can be performed in 13 multiplications in

GF (3m)

• However it is interesting to consider the general case (18

multiplications) as this is also applicable to other Tate

pairing algorithms
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Cubing in GF (32m)

• c̃ = c0 + σc1 ∈ GF (32m)




c0

c1



 =




a3

0

−a3

1





• involves two cubing operations in GF (3m)

• which may be performed in parallel
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Cubing in GF (36m) -1

• Cubing in GF (36m) involves 3 cubing operations in GF (32m)

• ... which implies that in total 6 cubing operations in

GF (3m) are required

• as well as additive operations

• As these six cubing operations can be carried out in

parallel

• and GF (3m) cubing can be performed in a single clock

cycle

• Cubing in GF (36m) is possible in a single clock cycle
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Raising to Tate Power εT = 33m−1 -1

• The basis

{1, σ, ρ, ρσ, ρ2, σρ2}
is converted to the other basis defined by φ

{1, ρ, ρ2, σ, ρσ, ρσ2}

by a simple rewiring in hardware

• Now a ∈ GF (36m)

a = (a0 + a1ρ + a2ρ
2)

︸ ︷︷ ︸

ǎ0

+ (a3 + a4ρ + a5ρ
2)

︸ ︷︷ ︸

ǎ1

σ

Cryptographic Hardware and Embedded Systems, CHES 2005
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Raising to Tate Power εT = 33m−1 -2

• a3
3m

= (ǎ0 + σǎ1)
3
3m

= ǎ0 − σǎ1 for m odd as σ =
√
−1

• so ...

aεT =
ǎ0 − σǎ1

ǎ0 + σǎ1

=
[
1 + ǎ2

1
ν−1

]
+ σ

[
1 − (ǎ0 + ǎ1)

2ν−1
]

where ν = (ǎ2

0
+ ǎ2

1
)

• involves 5 multiplications in GF (33m)

• Inversion in GF (33m) requires only a single inversion in

GF (3m) and a number of multiplications

• 2004 : Inverter circuit for GF (3m) - Kerins et al.
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A Hardware Architecture -1

• Consider number of clock cycles required for each

iteration of the Kwon algorithm

• Assume eighteen GF (3m) digit serial multipliers (digit

size D, calculation in d = dm/De clock cycles)

• and also six GF (3m) cubing circuits (calculation in a

single clock cycle) are available in parallel

• Also 2m bit registers for storage of elements of GF (3m)

and 12m bit data lines for propagation of elements of

GF (36m)

• and simple gate circuitry for additive operations

Cryptographic Hardware and Embedded Systems, CHES 2005

Edinburgh, Scotland, 1st Sept 2005.

Slide: 30



Efficient Hardware for the Tate Pairing Calculation in Characteristic Three

A Hardware Architecture -2
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Clock cycles for iteration of Kwon

Algorithm

Step operations GF (3m) logic clock cycles

03 α = α9, β = β9 ×4 cube 2+2

04 µ = α + x + d combinational 0+2

05 γ ×2 mul d + 2

06 t = t3 ×6 cube 1 + 2

07 t = tγ ×18 mul d+nm+2

08 09 y = −y, d = d ∓ 1 combinational 0+2
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Calculation time for ê(P, R) on this

Architecture

• Kwon Algorithm : e33m−1(P, φ(R)) = t ∈ GF (36m)

m(dm/De + 17 + nm) clock cycles

• Raising to Tate power : ê(P, R) = τ = tεT

9(dm/De + nm) + 2m clock cycles

• Assume (worst case) that nm ≈ dm/De to get a calcu-

lation time of

3m(dm/De + 17) + 18dm/De + 2m

Cryptographic Hardware and Embedded Systems, CHES 2005
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Implementation Aspects of GF (3m)

Arithmetic

• How practical is an architecture with eighteen GF (3m)

multiplier circuits?

• On the Xilinx Virtex2Pro125 device designed for the

field GF (397)/x97 + x16 + 1

– D = 4 multiplier architecture (multiplication in 25

clock cycles) occupies 1,821 FPGA slices (3 % )

– cubing circuit (single clock cycle) occupies 314 FPGA

slices (0.5 % )
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GF (36m) Multiplier Architecture

• Most complex part of the proposed architec-

ture

• Occupies 32,403 FPGA slices including routing

(58 %)

• m = 97, multiplication in 25 clock cycles

• Post place-and-route frequency 29.3 MHz

• Multiplication time of 0.9 µs
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GF (397) Tate Pairing Architecture

• Remaining 40 % of device can easily accommodate the

remaining logic

• Using D = 4 the calculation of ê(P, R) can be performed

in 12,866 clock cycles

• Assuming a conservative 15 MHz for entire architecture

• ... ê(P, R) calculation in 0.85 ms

• Recent software implementations have reported > 4 ms

for same calculation

Cryptographic Hardware and Embedded Systems, CHES 2005

Edinburgh, Scotland, 1st Sept 2005.

Slide: 38



Efficient Hardware for the Tate Pairing Calculation in Characteristic Three

Conclusions

• Modified Tate pairing can accelerated on dedicated hard-

ware

• Improvement over software on serial general purpose

processors

• Modern FPGAs are capable of accommodating such par-

allel architectures

• With changes in control hardware can be reused to ac-

celerate other operations in pairing based protocols

• Even higher performance is possible on other

technologies ...???
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Thank You

Questions?

timk@rennes.ucc.ie liam@rennes.ucc.ie
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