Efficient Hardware for the Tate Pairing Calculation in Characteristic Three

T. Kerins ${ }^{1}$, W.P. Marnane ${ }^{1}$, E.M. Popovici ${ }^{2}$ and P.S.L.M. Barreto ${ }^{3}$

1 Department of Electrical and Electronic Engineering,
${ }^{2}$ Department of Microelectronic Engineering, University College Cork, Ireland
${ }^{3}$ Dept. Computing and Digital Systems Engineering, Escola Politécnica, Universidade de São Paulo, Brazil

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Introduction

- In simple terms a pairing is a mapping from two points on an elliptic curve to an element of the underlying Galois field
- Pairings are an important development in constructive cryptography
- They allow the construction of protocols not readily available from other primitives, for example the Boneh-Franklin IBE scheme

The Tate pairing

- This work focuses on implementing the Tate pairing on supersingular elliptic curves

$$
E_{ \pm}\left(G F\left(3^{m}\right)\right): y^{2}=x^{3}-x \pm 1
$$

The Tate pairing

- This work focuses on implementing the Tate pairing on supersingular elliptic curves

$$
E_{ \pm}\left(G F\left(3^{m}\right)\right): y^{2}=x^{3}-x \pm 1
$$

- maximum security multiplier of $k=6$

The Tate pairing

- This work focuses on implementing the Tate pairing on supersingular elliptic curves

$$
E_{ \pm}\left(G F\left(3^{m}\right)\right): y^{2}=x^{3}-x \pm 1
$$

- maximum security multiplier of $k=6$
- efficiently implementable

The Tate pairing

- This work focuses on implementing the Tate pairing on supersingular elliptic curves

$$
E_{ \pm}\left(G F\left(3^{m}\right)\right): y^{2}=x^{3}-x \pm 1
$$

- maximum security multiplier of $k=6$
- efficiently implementable
- $G F\left(3^{m}\right)$ arithmetic architectures less well studied than $G F\left(2^{m}\right)$ and $G F(p)$

Recent History of Tate Pairing Calculation

- 1986 : Miller's Algorithm - double \& add

Recent History of Tate Pairing Calculation

- 1986 : Miller's Algorithm - double \& add
- 2002 : GHS Algorithm - triple \& add

Recent History of Tate Pairing Calculation

- 1986 : Miller's Algorithm - double \& add
- 2002 : GHS Algorithm - triple \& add
- 2002 : BLKS Algorithm :distortion map and simpler line function evaluation

Recent History of Tate Pairing Calculation

- 1986 : Miller's Algorithm - double \& add
- 2002 : GHS Algorithm - triple \& add
- 2002 : BLKS Algorithm :distortion map and simpler line function evaluation
- 2003 : Duursma-Lee Algorithm : simpler structure, incorporation of distortion map into pairing

Recent History of Tate Pairing Calculation

- 1986 : Miller's Algorithm - double \& add
- 2002 : GHS Algorithm - triple \& add
- 2002 : BLKS Algorithm :distortion map and simpler line function evaluation
- 2003 : Duursma-Lee Algorithm : simpler structure, incorporation of distortion map into pairing
- 2004 : Kwon Algorithm : Modified Duursma-Lee, suitable for efficient implementation on dedicated hardware

The Tate Pairing in hardware

- There has been little published investigation into the hardware implementation aspects of the $p=3$ Tate pairing in hardware ...
- 2004 : Kerins, Marnane and Popovici
- 2004 / 2005 : Granger Page and Stam
- 2005: This conference
- 2005 : Kerins, Marnane Popovici and Barreto (IEE. Trans IT to appear)

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

The Modified Tate Pairing (char 3)

$$
\begin{aligned}
E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] \times E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] & \rightarrow G F\left(3^{6 m}\right)^{*} \\
\left\{P=\left(x_{p}, y_{p}\right)\right\} \times\left\{R=\left(x_{r}, y_{r}\right)\right\} & \rightarrow \tau
\end{aligned}
$$

Modified Tate pairing : $\hat{e}(P, R)=\tau \in G F\left(3^{6 m}\right)^{*}$

The Modified Tate Pairing (char 3)

$$
\begin{aligned}
E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] \times E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] & \rightarrow G F\left(3^{6 m}\right)^{*} \\
\left\{P=\left(x_{p}, y_{p}\right)\right\} \times\left\{R=\left(x_{r}, y_{r}\right)\right\} & \rightarrow \tau
\end{aligned}
$$

Modified Tate pairing : $\hat{e}(P, R)=\tau \in G F\left(3^{6 m}\right)^{*}$

- $\hat{e}(P, R)=e_{e^{3 m-1}}(P, \phi(R))^{\epsilon_{T}}$, where $\epsilon_{T}=3^{3 m-1}$

The Modified Tate Pairing (char 3)

$$
\begin{aligned}
E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] \times E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] & \rightarrow G F\left(3^{6 m}\right)^{*} \\
\left\{P=\left(x_{p}, y_{p}\right)\right\} \times\left\{R=\left(x_{r}, y_{r}\right)\right\} & \rightarrow \tau
\end{aligned}
$$

Modified Tate pairing : $\hat{e}(P, R)=\tau \in G F\left(3^{6 m}\right)^{*}$

- $\hat{e}(P, R)=e_{e^{3 m-1}}(P, \phi(R))^{\epsilon_{T}}$, where $\epsilon_{T}=3^{3 m-1}$
- $\phi: E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] \rightarrow E_{ \pm}\left(G F\left(3^{6 m}\right)\right)[l]$

$$
\phi(R)=\left(\rho-x_{r}, \sigma y_{r}\right)
$$

The Modified Tate Pairing (char 3)

$$
\begin{aligned}
E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] \times E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] & \rightarrow G F\left(3^{6 m}\right)^{*} \\
\left\{P=\left(x_{p}, y_{p}\right)\right\} \times\left\{R=\left(x_{r}, y_{r}\right)\right\} & \rightarrow \tau
\end{aligned}
$$

Modified Tate pairing : $\hat{e}(P, R)=\tau \in G F\left(3^{6 m}\right)^{*}$

- $\hat{e}(P, R)=e_{e^{3 m-1}}(P, \phi(R))^{\epsilon_{T}}$, where $\epsilon_{T}=3^{3 m-1}$
- $\phi: E_{ \pm}\left(G F\left(3^{m}\right)\right)[l] \rightarrow E_{ \pm}\left(G F\left(3^{6 m}\right)\right)[l]$

$$
\phi(R)=\left(\rho-x_{r}, \sigma y_{r}\right)
$$

- $\rho^{3}-\rho \mp 1=0, \sigma^{2}+1=0, \rho, \sigma \in G F\left(3^{6 m}\right)$

The Modified Duursma-Lee (Kwon) Algorithm

01

$$
\alpha=x_{p}, \beta=y_{p}, x=x_{r}^{3}, y=y_{r}^{3}, d=(\pm m) \bmod 3
$$

02 loop m times
03

$$
\alpha=\alpha^{9}, \beta=\beta^{9}
$$

(* arith. in $G F\left(3^{m}\right)^{*}$)
04
$\mu=\alpha+x+d$
(* arith. in $G F\left(3^{m}\right)^{*}$)
05 $\gamma=-\mu^{2}-\beta y \sigma-\mu \rho-\rho^{2} \quad\left(*\right.$ arith. in $\left.G F\left(3^{6 m}\right)^{*}\right)$
$06 \quad t=t^{3}$ (* cubing in $G F\left(3^{6 m}\right)^{*}$)
07

$$
t=t * \gamma
$$

(* multiplication in $\operatorname{GF}\left(3^{6 m}\right) *$)
08

$$
y=-y d=(d \mp 1) \bmod 3
$$

(* arith. in $\left.G F\left(3^{m}\right)^{*}\right)$
09 end loop and return t

Calculation of Modified Tate Pairing

- involves ...
- calculation of $e_{3^{3 m-1}}(P, \phi(R))=t \in G F\left(3^{6 m}\right)$
- exponentiation $\hat{e}(P, R)=t^{\epsilon_{1}}=\tau \in G F\left(3^{6 m}\right)$
- Kwon Algorithm is calculated using mainly
- multiplication and cubing in $G F\left(3^{m}\right)$
- multiplication and cubing in $G F\left(3^{6 m}\right)$
- Our contribution : these can be efficiently parallelized on dedicated hardware

Aim of this research

- How efficiently the modified Tate paring can be performed on dedicated hardware?
- Xilinx FPGA technology was chosen as implementation platform
- From this insight can be gained into issues related to and eventual ASIC implementation
- Application as a high performance server accelerator

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Arithmetic in $G F\left(3^{m}\right) \mathbf{- 1}$

- Polynomial basis arithmetic
- 2003 : Efficient digit serial multiplier architecture - Bertoni et al.
- Multiplication in $\lceil m / D\rceil$ clock cycles
- Dedicated cubing circuitry in single clock cycle
- Additive operations by simple gate circuits using a 2 bit encoding for elements of $G F(3)$

Representation of $G F\left(3^{6 m}\right)$ - $\mathbf{1}$

- This is the principal complexity in the implementation $\hat{e}(P, R)$
- Aim : to simplify this as much as possible ...
- Represent $G F\left(3^{6 m}\right)$ as an extension field of $G F\left(3^{m}\right)$
- 2004 : Choose the tower field representation defined by the distortion map ϕ - Granger / Page / Stam

Representation of $G F\left(3^{6 m}\right) \mathbf{- 2}$

- $G F\left(3^{2 m}\right) \cong G F\left(3^{m}\right)[\sigma] / \sigma^{2}+1$
- $G F\left(3^{6 m}\right) \cong G F\left(3^{2 m}\right)[\rho] / \rho^{3}-\rho \mp 1$

Representation of $G F\left(3^{6 m}\right) \mathbf{- 2}$

- $G F\left(3^{2 m}\right) \cong G F\left(3^{m}\right)[\sigma] / \sigma^{2}+1$
- $G F\left(3^{6 m}\right) \cong G F\left(3^{2 m}\right)[\rho] / \rho^{3}-\rho \mp 1$
- elements of $G F\left(3^{6 m}\right)$ are represented as 6-tuples of $G F\left(3^{6 m}\right)$ elements, basis defined by

$$
\left\{1, \sigma, \rho, \sigma \rho, \rho^{2}, \sigma \rho^{2}\right\}
$$

- $G F\left(3^{6 m}\right)$ elements σ and ρ required in Step 05 of Kwon algorithm have simple representation

$$
\sigma=[0,1,0,0,0,0] \quad \rho=[0,0,1,0,0,0]
$$

Efficient calculation of γ (Step 05)

- recall : $\gamma=-\mu^{2}-\beta y \sigma-\mu \rho-\rho^{2}$

- requires only $2 G F\left(3^{m}\right)$ multiplications, performed in parallel

Multiplication in $G F\left(3^{2 m}\right) \mathbf{- 1}$

- $\tilde{c}=\tilde{a} \tilde{b} \in G F\left(3^{2 m}\right), \tilde{a}=a_{1} \sigma+a_{0}, \tilde{b}=b_{1} \sigma+b_{0}$
- Performed by Karatsuba Multiplication

$$
\left[\begin{array}{c}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
a_{0} b_{0}-a_{1} b_{1} \\
\left(a_{1}+a_{0}\right)\left(b_{1}+b_{0}\right)-a_{1} b_{1}-a_{0} b_{0}
\end{array}\right]
$$

- Requires three multiplications in $G F\left(3^{m}\right)$
- These multiplications can be performed in parallel

Multiplication in $G F\left(3^{2 m}\right) \mathbf{- 2}$

Multiplication in $G F\left(3^{6 m}\right)$-1

$\bullet a \in G F\left(3^{6 m}\right): a=\underbrace{\left(a_{0}+a_{1} \sigma\right)}_{\tilde{a}_{0}}+\underbrace{\left(a_{2}+a_{3} \sigma\right)}_{\tilde{a}_{1}} \rho+\underbrace{\left(a_{4}+a_{5} \sigma\right)}_{\tilde{a}_{2}} \rho^{2}$

- Multiplication in $G F\left(3^{6 m}\right)$ performed by multiplication of elements of $G F\left(3^{2 m}\right)$
- 2000 : Bailey / Paar method
- Requires 6 multiplications in $G F\left(3^{2 m}\right)$
- .. this implies 18 multiplications in $G F\left(3^{m}\right)$ required for arbitrary multiplication in $G F\left(3^{6 m}\right)$
- but all multiplications may be carried out in parallel

Multiplication in $G F\left(3^{6 m}\right) \mathbf{- 2}$

Dataflow for composition stage of multiplication in $G F\left(3^{6 m}\right)$

Multiplication in $G F\left(3^{6 m}\right)$-3

- Brought to out attention by Keith Harrison ...
- Some coefficients of γ from Kwon algorithm are guaranteed to be $0 \in G F\left(3^{m}\right)$
- Full multiplication in $G F\left(3^{6 m}\right)$ is in fact not required in Step 07 of Kwon algorithm
- ... in fact can be performed in 13 multiplications in $G F\left(3^{m}\right)$
- However it is interesting to consider the general case (18 multiplications) as this is also applicable to other Tate pairing algorithms

Cubing in $G F\left(3^{2 m}\right)$

- $\tilde{c}=c_{0}+\sigma c_{1} \in G F\left(3^{2 m}\right)$

$$
\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
a_{0}^{3} \\
-a_{1}^{3}
\end{array}\right]
$$

- involves two cubing operations in $G F\left(3^{m}\right)$
- which may be performed in parallel

Cubing in $G F\left(3^{6 m}\right)$-1

- Cubing in $G F\left(3^{6 m}\right)$ involves 3 cubing operations in $G F\left(3^{2 m}\right)$
- ... which implies that in total 6 cubing operations in $G F\left(3^{m}\right)$ are required
- as well as additive operations
- As these six cubing operations can be carried out in parallel
- and $G F\left(3^{m}\right)$ cubing can be performed in a single clock cycle
- Cubing in $G F\left(3^{6 m}\right)$ is possible in a single clock cycle

Raising to Tate Power $\epsilon_{T}=3^{3 m-1} \mathbf{- 1}$

- The basis

$$
\left\{1, \sigma, \rho, \rho \sigma, \rho^{2}, \sigma \rho^{2}\right\}
$$

is converted to the other basis defined by ϕ

$$
\left\{1, \rho, \rho^{2}, \sigma, \rho \sigma, \rho \sigma^{2}\right\}
$$

by a simple rewiring in hardware

- Now $a \in G F\left(3^{6 m}\right)$

$$
a=\underbrace{\left(a_{0}+a_{1} \rho+a_{2} \rho^{2}\right)}_{\tilde{a}_{0}}+\underbrace{\left(a_{3}+a_{4} \rho+a_{5} \rho^{2}\right)}_{\tilde{a}_{1}} \sigma
$$

Raising to Tate Power $\epsilon_{T}=3^{3 m-1} \mathbf{- 2}$

- $a^{3^{3 m}}=\left(\check{a}_{0}+\sigma \check{a}_{1}\right)^{3^{3 m}}=\check{a}_{0}-\sigma \check{a}_{1}$ for m odd as $\sigma=\sqrt{-1}$
- SO ...

$$
a^{\epsilon_{T}}=\frac{\check{a}_{0}-\sigma \check{a}_{1}}{\check{a}_{0}+\sigma \check{a}_{1}}=\left[1+\check{a}_{1}^{2} \nu^{-1}\right]+\sigma\left[1-\left(\check{a}_{0}+\check{a}_{1}\right)^{2} \nu^{-1}\right]
$$

where $\nu=\left(\check{a}_{0}^{2}+\check{a}_{1}^{2}\right)$

- involves 5 multiplications in $G F\left(3^{3 m}\right)$
- Inversion in $G F\left(3^{3 m}\right)$ requires only a single inversion in $G F\left(3^{m}\right)$ and a number of multiplications
- 2004 : Inverter circuit for $G F\left(3^{m}\right)$ - Kerins et al.

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

A Hardware Architecture -1

- Consider number of clock cycles required for each iteration of the Kwon algorithm
- Assume eighteen $G F\left(3^{m}\right)$ digit serial multipliers (digit size D, calculation in $d=\lceil m / D\rceil$ clock cycles)
- and also six $G F\left(3^{m}\right)$ cubing circuits (calculation in a single clock cycle) are available in parallel
- Also $2 m$ bit registers for storage of elements of $G F\left(3^{m}\right)$ and $12 m$ bit data lines for propagation of elements of $G F\left(3^{6 m}\right)$
- and simple gate circuitry for additive operations

A Hardware Architecture -2

Clock cycles for iteration of Kwon Algorithm

Step	operations	$G F\left(3^{m}\right)$ logic	clock cycles
03	$\alpha=\alpha^{9}, \beta=\beta^{9}$	$\times 4$ cube	$2+2$
04	$\mu=\alpha+x+d$	combinational	$0+2$
05	γ	$\times 2$ mul	$d+2$
06	$t=t^{3}$	$\times 6$ cube	$1+2$
07	$t=t \gamma$	$\times 18 \mathrm{mul}$	$d+n_{m}+2$
0809	$y=-y, d=d \mp 1$	combinational	$0+2$

Calculation time for $\hat{e}(P, R)$ on this Architecture

- Kwon Algorithm : $e_{3^{3 m-1}}(P, \phi(R))=t \in G F\left(3^{6 m}\right)$

$$
m\left(\lceil m / D\rceil+17+n_{m}\right) \text { clock cycles }
$$

- Raising to Tate power : $\hat{e}(P, R)=\tau=t^{\epsilon_{T}}$

$$
9\left(\lceil m / D\rceil+n_{m}\right)+2 m \text { clock cycles }
$$

- Assume (worst case) that $n_{m} \approx\lceil m / D\rceil$ to get a calculation time of

$$
\underline{3 m(\lceil m / D\rceil+17)+18\lceil m / D\rceil+2 m}
$$

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic $p=3$
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Implementation Aspects of $G F\left(3^{m}\right)$ Arithmetic

- How practical is an architecture with eighteen $G F\left(3^{m}\right)$ multiplier circuits?
- On the Xilinx Virtex2Pro125 device designed for the field $G F\left(3^{97}\right) / x^{97}+x^{16}+1$
- $D=4$ multiplier architecture (multiplication in 25 clock cycles) occupies 1,821 FPGA slices (3 \%)
- cubing circuit (single clock cycle) occupies 314 FPGA slices (0.5 \%)

$G F\left(3^{6 m}\right)$ Multiplier Architecture

- Most complex part of the proposed architecture
- Occupies 32,403 FPGA slices including routing (58 \%)
- $m=97$, multiplication in 25 clock cycles
- Post place-and-route frequency 29.3 MHz
- Multiplication time of $0.9 \mu \mathrm{~s}$

$G F\left(3^{97}\right)$ Tate Pairing Architecture

- Remaining 40% of device can easily accommodate the remaining logic
- Using $D=4$ the calculation of $\hat{e}(P, R)$ can be performed in 12,866 clock cycles
- Assuming a conservative 15 MHz for entire architecture
- ... $\hat{e}(P, R)$ calculation in 0.85 ms
- Recent software implementations have reported $>4 \mathrm{~ms}$ for same calculation

Conclusions

- Modified Tate pairing can accelerated on dedicated hardware
- Improvement over software on serial general purpose processors
- Modern FPGAs are capable of accommodating such parallel architectures
- With changes in control hardware can be reused to accelerate other operations in pairing based protocols
- Even higher performance is possible on other technologies ...???

Thank You

Questions?

timk@rennes.ucc.ie

liam@rennes.ucc.ie

