Efficient Hardware for the Tate Pairing Calculation in Characteristic Three

T. Kerins¹, W.P. Marnane¹, E.M. Popovici² and P.S.L.M. Barreto³

> ¹ Department of Electrical and Electronic Engineering,
> ² Department of Microelectronic Engineering, University College Cork, Ireland

³ Dept. Computing and Digital Systems Engineering, Escola Politécnica, Universidade de São Paulo, Brazil

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Introduction

- In simple terms a pairing is a mapping from two points on an elliptic curve to an element of the underlying Galois field
- Pairings are an important development in constructive cryptography
- They allow the construction of protocols not readily available from other primitives, for example the Boneh-Franklin IBE scheme

• This work focuses on implementing the Tate pairing on *supersingular elliptic* curves

$$E_{\pm}(GF(3^m)): y^2 = x^3 - x \pm 1$$

• This work focuses on implementing the Tate pairing on *supersingular elliptic* curves

$$E_{\pm}(GF(3^m)): y^2 = x^3 - x \pm 1$$

- maximum security multiplier of k = 6

• This work focuses on implementing the Tate pairing on *supersingular elliptic* curves

$$E_{\pm}(GF(3^m)): y^2 = x^3 - x \pm 1$$

- maximum security multiplier of k = 6
- efficiently implementable

• This work focuses on implementing the Tate pairing on *supersingular elliptic* curves

$$E_{\pm}(GF(3^m)): y^2 = x^3 - x \pm 1$$

- maximum security multiplier of k = 6
- efficiently implementable
- $-GF(3^m)$ arithmetic architectures less well studied than $GF(2^m)$ and GF(p)

• 1986 : Miller's Algorithm - double & add

- 1986 : Miller's Algorithm double & add
- 2002 : GHS Algorithm triple & add

- 1986 : Miller's Algorithm double & add
- 2002 : GHS Algorithm triple & add
- 2002 : BLKS Algorithm : *distortion map* and simpler line function evaluation

- 1986 : Miller's Algorithm double & add
- 2002 : GHS Algorithm triple & add
- 2002 : BLKS Algorithm : *distortion map* and simpler line function evaluation
- 2003 : Duursma-Lee Algorithm : simpler structure, incorporation of distortion map into pairing

- 1986 : Miller's Algorithm double & add
- 2002 : GHS Algorithm triple & add
- 2002 : BLKS Algorithm : *distortion map* and simpler line function evaluation
- 2003 : Duursma-Lee Algorithm : simpler structure, incorporation of distortion map into pairing
- 2004 : Kwon Algorithm : Modified Duursma-Lee, suitable for efficient implementation on <u>dedicated hardware</u>

The Tate Pairing in hardware

- There has been little published investigation into the hardware implementation aspects of the p = 3 Tate pairing in hardware ...
 - -2004: Kerins, Marnane and Popovici
 - 2004 / 2005 : Granger Page and Stam
 - -2005: This conference
 - 2005 : Kerins, Marnane Popovici and Barreto (IEE. Trans IT to appear)

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

 $E_{\pm}(GF(3^m))[l] \times E_{\pm}(GF(3^m))[l] \rightarrow GF(3^{6m})^*$ $\{P = (x_p, y_p)\} \times \{R = (x_r, y_r)\} \rightarrow \tau$

Modified Tate pairing : $\hat{e}(P, R) = \tau \in GF(3^{6m})^*$

$$E_{\pm}(GF(3^m))[l] \times E_{\pm}(GF(3^m))[l] \rightarrow GF(3^{6m})^*$$
$$\{P = (x_p, y_p)\} \times \{R = (x_r, y_r)\} \rightarrow \tau$$

Modified Tate pairing : $\hat{e}(P, R) = \tau \in GF(3^{6m})^*$

•
$$\hat{e}(P,R) = e_{e^{3m-1}}(P,\phi(R))^{\epsilon_T}$$
, where $\epsilon_T = 3^{3m-1}$

$$E_{\pm}(GF(3^m))[l] \times E_{\pm}(GF(3^m))[l] \longrightarrow GF(3^{6m})^*$$
$$\{P = (x_p, y_p)\} \times \{R = (x_r, y_r)\} \longrightarrow \tau$$

Modified Tate pairing : $\hat{e}(P, R) = \tau \in GF(3^{6m})^*$

•
$$\hat{e}(P,R) = e_{e^{3m-1}}(P,\phi(R))^{\epsilon_T}$$
, where $\epsilon_T = 3^{3m-1}$

•
$$\phi: E_{\pm}(GF(3^m))[l] \to E_{\pm}(GF(3^{6m}))[l]$$

 $\phi(R) = (\rho - x_r, \sigma y_r)$

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

$$E_{\pm}(GF(3^m))[l] \times E_{\pm}(GF(3^m))[l] \rightarrow GF(3^{6m})^*$$
$$\{P = (x_p, y_p)\} \times \{R = (x_r, y_r)\} \rightarrow \tau$$

Modified Tate pairing : $\hat{e}(P, R) = \tau \in GF(3^{6m})^*$

•
$$\hat{e}(P,R) = e_{e^{3m-1}}(P,\phi(R))^{\epsilon_T}$$
, where $\epsilon_T = 3^{3m-1}$

•
$$\phi: E_{\pm}(GF(3^m))[l] \to E_{\pm}(GF(3^{6m}))[l]$$

 $\phi(R) = (\rho - x_r, \sigma y_r)$

•
$$\rho^3 - \rho \mp 1 = 0, \ \sigma^2 + 1 = 0, \ \rho, \sigma \in GF(3^{6m})$$

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

The Modified Duursma-Lee (Kwon) Algorithm

01
$$\alpha = x_p, \beta = y_p, x = x_r^3, y = y_r^3, d = (\pm m) \mod 3$$

02 loop *m* times
03 $\alpha = \alpha^9, \beta = \beta^9$ (* arith. in $GF(3^m)$ *)
04 $\mu = \alpha + x + d$ (* arith. in $GF(3^m)$ *)
05 $\gamma = -\mu^2 - \beta y \sigma - \mu \rho - \rho^2$ (* arith. in $GF(3^{6m})$ *)
06 $t = t^3$ (* cubing in $GF(3^{6m})$ *)
07 $t = t * \gamma$ (* multiplication in $GF(3^{6m})$ *)
08 $y = -y d = (d \mp 1) \mod 3$ (* arith. in $GF(3^m)$ *)
09 end loop and return t

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1^{st} Sept 2005.

Calculation of Modified Tate Pairing

- involves ...
 - calculation of $e_{3^{3m-1}}(P,\phi(R)) = t \in GF(3^{6m})$

- exponentiation $\hat{e}(P, R) = t^{\epsilon_1} = \tau \in GF(3^{6m})$

- Kwon Algorithm is calculated using mainly
 - multiplication and cubing in $GF(3^m)$
 - multiplication and cubing in $GF(3^{6m})$
- Our contribution : these can be efficiently parallelized <u>on dedicated hardware</u>

Aim of this research

- How efficiently the modified Tate paring can be performed on dedicated hardware?
- Xilinx FPGA technology was chosen as implementation platform
- From this insight can be gained into issues related to and eventual ASIC implementation
- Application as a high performance server accelerator

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Overview of Presentation

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Arithmetic in $GF(3^m)$ -1

- Polynomial basis arithmetic
- 2003 : Efficient digit serial multiplier architecture - Bertoni *et al.*
- Multiplication in $\lceil m/D \rceil$ clock cycles
- Dedicated cubing circuitry in single clock cycle
- Additive operations by simple gate circuits using a 2 bit encoding for elements of GF(3)

Representation of $GF(3^{6m})$ - 1

- This is the principal complexity in the implementation $\hat{e}(P, R)$
- Aim : to simplify this as much as possible ...
- Represent $GF(3^{6m})$ as an extension field of $GF(3^m)$
- 2004 : Choose the tower field representation defined by the distortion map ϕ Granger / Page / Stam

Representation of $GF(3^{6m})$ -2

- $GF(3^{2m}) \cong GF(3^m)[\sigma]/\sigma^2 + 1$
- $GF(3^{6m}) \cong GF(3^{2m})[\rho]/\rho^3 \rho \mp 1$

Representation of $GF(3^{6m})$ -2

- $GF(3^{2m}) \cong GF(3^m)[\sigma]/\sigma^2 + 1$
- $GF(3^{6m}) \cong GF(3^{2m})[\rho]/\rho^3 \rho \mp 1$
- elements of $GF(3^{6m})$ are represented as 6-tuples of $GF(3^{6m})$ elements, basis defined by

$$\{1, \sigma, \rho, \sigma\rho, \rho^2, \sigma\rho^2\}$$

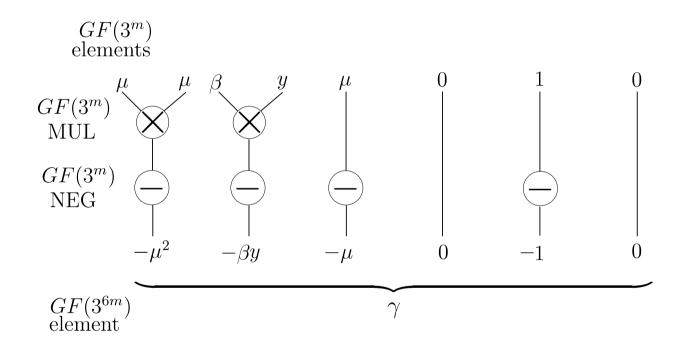
• $GF(3^{6m})$ elements σ and ρ required in Step 05 of Kwon algorithm have simple representation

$$\sigma = [0, 1, 0, 0, 0, 0] \qquad \rho = [0, 0, 1, 0, 0, 0]$$

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

Efficient calculation of γ (Step 05)

• recall :
$$\gamma = -\mu^2 - \beta y \sigma - \mu \rho - \rho^2$$



• requires only 2 $GF(3^m)$ multiplications, performed in parallel

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005. Slide: 18

Multiplication in $GF(3^{2m})$ -1

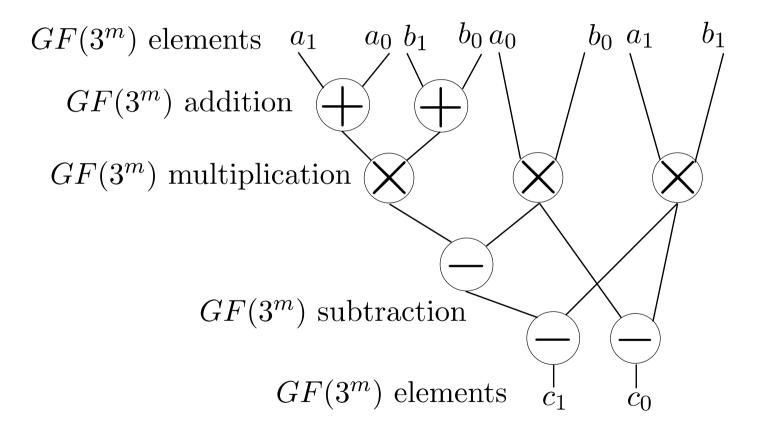
•
$$\tilde{c} = \tilde{a}\tilde{b} \in GF(3^{2m}), \ \tilde{a} = a_1\sigma + a_0, \ \tilde{b} = b_1\sigma + b_0$$

• Performed by Karatsuba Multiplication

$$\begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} a_0b_0 - a_1b_1 \\ (a_1 + a_0)(b_1 + b_0) - a_1b_1 - a_0b_0 \end{bmatrix}$$

- Requires three multiplications in $GF(3^m)$
- These multiplications can be performed in parallel

Multiplication in $GF(3^{2m})$ -2



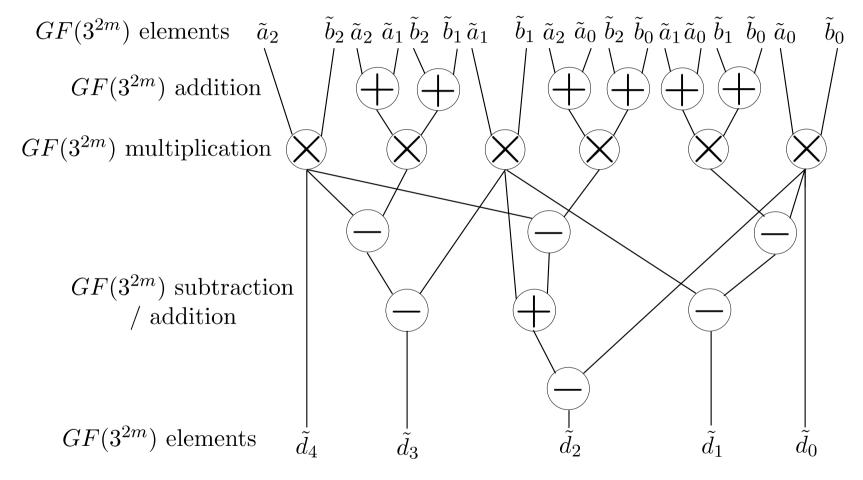
Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

Multiplication in
$$GF(3^{6m})$$
 -1

•
$$a \in GF(3^{6m})$$
: $a = \underbrace{(a_0 + a_1\sigma)}_{\tilde{a}_0} + \underbrace{(a_2 + a_3\sigma)}_{\tilde{a}_1}\rho + \underbrace{(a_4 + a_5\sigma)}_{\tilde{a}_2}\rho^2$

- Multiplication in $GF(3^{6m})$ performed by multiplication of elements of $GF(3^{2m})$
- 2000 : Bailey / Paar method
- Requires 6 multiplications in $GF(3^{2m})$
- .. this implies 18 multiplications in $GF(3^m)$ required for arbitrary multiplication in $GF(3^{6m})$
- but all multiplications may be carried out in parallel

Multiplication in $GF(3^{6m})$ -2



Dataflow for composition stage of multiplication in $GF(3^{6m})$

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

Multiplication in $GF(3^{6m})$ -3

- Brought to out attention by Keith Harrison ...
- Some coefficients of γ from Kwon algorithm are guaranteed to be $0 \in GF(3^m)$
- Full multiplication in GF(3^{6m}) is in fact not required in Step 07 of Kwon algorithm
- ... in fact can be performed in 13 multiplications in $GF(3^m)$
- However it is interesting to consider the general case (18 multiplications) as this is also applicable to other Tate pairing algorithms

Cubing in
$$GF(3^{2m})$$

•
$$\tilde{c} = c_0 + \sigma c_1 \in GF(3^{2m})$$

$$\left[\begin{array}{c} c_0 \\ c_1 \end{array}\right] = \left[\begin{array}{c} a_0^3 \\ -a_1^3 \end{array}\right]$$

- involves two cubing operations in $GF(3^m)$
- which may be performed in parallel

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

Cubing in $GF(3^{6m})$ -1

- Cubing in $GF(3^{6m})$ involves 3 cubing operations in $GF(3^{2m})$
- ... which implies that in total 6 cubing operations in $GF(3^m)$ are required
- as well as additive operations
- As these six cubing operations can be carried out in parallel
- and $GF(3^m)$ cubing can be performed in a single clock cycle
- Cubing in $GF(3^{6m})$ is possible in a single clock cycle

Raising to Tate Power $\epsilon_T = 3^{3m-1}$ -1

• The basis

$$\{1, \sigma, \rho, \rho\sigma, \rho^2, \sigma\rho^2\}$$

is converted to the other basis defined by ϕ

$$\{1, \rho, \rho^2, \sigma, \rho\sigma, \rho\sigma^2\}$$

by a simple rewiring in hardware

• Now $a \in GF(3^{6m})$

$$a = \underbrace{(a_0 + a_1\rho + a_2\rho^2)}_{\check{a}_0} + \underbrace{(a_3 + a_4\rho + a_5\rho^2)}_{\check{a}_1}\sigma$$

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005.

Raising to Tate Power
$$\epsilon_T = 3^{3m-1}$$
 -2

•
$$a^{3^{3m}} = (\check{a}_0 + \sigma \check{a}_1)^{3^{3m}} = \check{a}_0 - \sigma \check{a}_1$$
 for m odd as $\sigma = \sqrt{-1}$

• SO ...

$$a^{\epsilon_T} = \frac{\check{a}_0 - \sigma\check{a}_1}{\check{a}_0 + \sigma\check{a}_1} = \left[1 + \check{a}_1^2\nu^{-1}\right] + \sigma\left[1 - (\check{a}_0 + \check{a}_1)^2\nu^{-1}\right]$$

where $\nu = (\check{a}_0^2 + \check{a}_1^2)$

- involves 5 multiplications in $GF(3^{3m})$
- Inversion in $GF(3^{3m})$ requires only a single inversion in $GF(3^m)$ and a number of multiplications
- 2004 : Inverter circuit for $GF(3^m)$ Kerins *et al.*

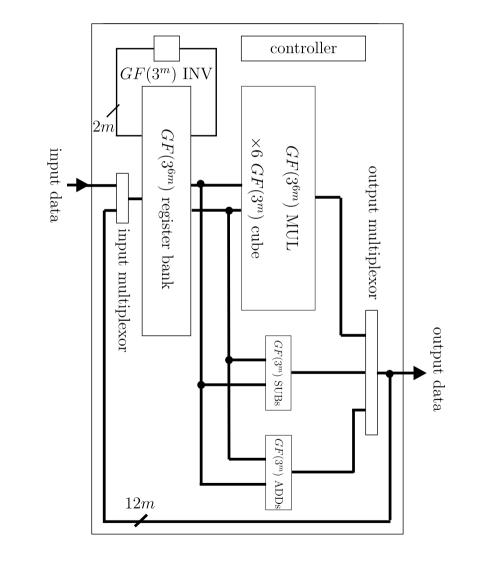
- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

A Hardware Architecture -1

- Consider number of clock cycles required for each iteration of the Kwon algorithm
- Assume <u>eighteen</u> $GF(3^m)$ digit serial multipliers (digit size D, calculation in $d = \lceil m/D \rceil$ clock cycles)
- and also <u>six</u> $GF(3^m)$ cubing circuits (calculation in a single clock cycle) are available in parallel
- Also 2m bit registers for storage of elements of GF(3^m) and 12m bit data lines for propagation of elements of GF(3^{6m})
- and simple gate circuitry for additive operations

A Hardware Architecture -2



Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1^{st} Sept 2005.

Clock cycles for iteration of Kwon Algorithm

Step	operations	$GF(3^m)$ logic	clock cycles
03	$\alpha=\alpha^9,\beta=\beta^9$	$\times 4$ cube	2+2
04	$\mu = \alpha + x + d$	combinational	0 + 2
05	γ	$\times 2$ mul	d+2
06	$t = t^3$	$\times 6$ cube	1 + 2
07	$t = t\gamma$	$\times 18 \text{ mul}$	$d+n_m+2$
08 09	$y = -y, d = d \mp 1$	combinational	0+2

Calculation time for $\hat{e}(P, R)$ on this Architecture

- Kwon Algorithm : $e_{3^{3m-1}}(P, \phi(R)) = t \in GF(3^{6m})$ $m(\lceil m/D \rceil + 17 + n_m)$ clock cycles
- Raising to Tate power : $\hat{e}(P, R) = \tau = t^{\epsilon_T}$

 $9(\lceil m/D \rceil + n_m) + 2m$ clock cycles

• Assume (worst case) that $n_m \approx \lceil m/D \rceil$ to get a calculation time of

$$\frac{3m(\lceil m/D\rceil+17)+18\lceil m/D\rceil+2m}{}$$

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

- Introduction and some related work
- The Modified Duursma-Lee algorithm in characteristic p = 3
- Tower-field arithmetic for Tate pairing calculation
- The advantage(s) of designing dedicated hardware for the Tate pairing calculation
- Some results and conclusions

Implementation Aspects of $GF(3^m)$ Arithmetic

- How practical is an architecture with eighteen $GF(3^m)$ multiplier circuits?
- On the Xilinx Virtex2Pro125 device designed for the field $GF(3^{97})/x^{97} + x^{16} + 1$
 - D = 4 multiplier architecture (multiplication in 25 clock cycles) occupies 1,821 FPGA slices (3 %)
 - cubing circuit (single clock cycle) occupies 314 FPGA slices (0.5 %)

$GF(3^{6m})$ Multiplier Architecture

- Most complex part of the proposed architecture
- Occupies 32,403 FPGA slices including routing (58 %)
- m = 97, multiplication in 25 clock cycles
- Post place-and-route frequency 29.3 MHz
- Multiplication time of 0.9 μs

$GF(3^{97})$ Tate Pairing Architecture

- Remaining 40 % of device can easily accommodate the remaining logic
- Using D = 4 the calculation of $\hat{e}(P, R)$ can be performed in 12,866 clock cycles
- Assuming a conservative 15 MHz for entire architecture
- ... $\hat{e}(P,R)$ calculation in 0.85 ms
- Recent software implementations have reported > 4 ms for same calculation

Conclusions

- Modified Tate pairing can accelerated on dedicated hardware
- Improvement over software on serial general purpose processors
- Modern FPGAs are capable of accommodating such parallel architectures
- With changes in control hardware can be reused to accelerate other operations in pairing based protocols
- Even higher performance is possible on other technologies ...??

Thank You

Questions?

timk@rennes.ucc.ie liam@rennes.ucc.ie

Cryptographic Hardware and Embedded Systems, CHES 2005 Edinburgh, Scotland, 1st Sept 2005. Slide: 40