Secure Data Management in Trusted Computing

Ulrich Kühn Deutsche Telekom Laboratories, TU Berlin

Klaus Kursawe (KU Leuven) Stefan Lucks (U Mannheim) Ahmad-Reza Sadeghi (RU Bochum) Christian Stüble (RU Bochum)

CHES 2005

Introduction

Problems with Sealed Data

Platform Updates

Hardware Migration

Conclusion

Trusted Computing Group: Industry consortium to devolop specifications to

[...] protect and strengthen the computing platform against software-based attacks.

Key Idea: Base Trusted Computing Base on small piece of secure hardware.

Recent developments: TNC

Our Motivation: TCG hardware widely deployed → Combine with secure operating systems to increase security Here: Address problems and propose solutions.

Trusted Platform Module

Main components:

Cryptographic engine

- Non-volatile tamper resistant storage
 - ▶ Storage Root Key SRK → virtual shielded storage
- Endorsement Key
- Platform Configuration Registers PCR
 - write access only via Extend operation

Needs support by Trusted Software inside TCB.

Main TCG Mechanisms

Integrity measurement

Establish platform configuration at boot time

Attestation

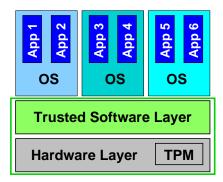
- Attest platform configuration to remote party
- (Subset of) PCRs signed with Attestation Identity Key

Sealing

- Exclusive availability of information for certain configurations
- TPM-enforced
- Maintenance for hardware migration

Integrity & Boot Process

Establish Chain of Trust for TCB:


- Start from the Core Root of Trust
- Measure: $c \leftarrow SHA1$ (next software chunk)
- **Extend** PCR: $PCR_i \leftarrow SHA1(PCR_i, c)$
- Execute software chunk
 - might enter another measure-extend-execute cycle

Results:

- PCRs specific for current platform configuration
- Link between PCRs and software / security properties?
- Changed software not blocked but detected

Architecture of Trustworthy Platforms

Use TCB comprised of hardware and software:

- ► TPM
- Trusted software
- OS runs on top

Sealing

Places data in encrypted blob:

- Availability of data depends on predefined PCR values
- ▶ TPM delivers data only if those PCRs are present
- otherwise data remains encrypted

Usage Scenarios:

- Cryptographic keys for accessing networks
- Documents, Media files, etc.

Key question:

What happens to sealed data when patching the TCB?

Introduction

Problems with Sealed Data

Platform Updates Hardware Migration

Platform Updates

Hardware Migration

Conclusion

Sealed Data & Platform Updates

Consequences of integrity measurement:

- Changing software in TCB changes hashes
- Results in changed PCR values
- Unseal does not release sealed data
- Intended for malicious / non-trustworthy "TCB"
- What about patches?
 - Typically preserve security properties
 - Should close security holes

Cannot distinguish good and bad changes!

Sealed Data & Hardware Migration

Maintenance procedure:

- Process is optional
- To our knowledge not implemented in existing TPMs
- ► Works only for TPMs of same vendor
- Needs interaction with vendor
 - Vendor out of business?
 - Price?

Availability of sealed data when HW breaks?

Introduction

Problems with Sealed Data

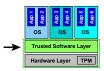
Platform Updates

Software-Supported Updates TPM-Supported Updates Property-Based Sealing

Hardware Migration

Conclusion

Platform Updates


Requirements for a patched TCB:

- Security: Remote party wants that new platform configuration still adheres to security policy.
- Availability: Owner / User wants information available after patch.

Our solutions:

- Software-supported
- TPM-supported
- Property-based sealing

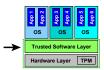
Software-Supported Updates

TCB component "Update Manager":

- Keep record of sealed data blobs
- Know new PCR values
- Ensure adherence to security policy
 - \blacktriangleright Signature by Trusted Third Party \rightarrow Key management
- Be fail-safe

- Works with current TCG hardware
- Handles only data sealed for current configuration
- Requirements for TCB design
- Difficult for parallel OS instances, e.g. bootloader updates

TPM-Supported Updates


Key ideas:

- New TPM command TPM_UpdateSeal:
 - ▶ Data sealed for S_i is resealed for S_j
- **•** Delegate decision on equivalence of PCR values S_i and S_j
- Trusted Third Party issues update certificate

$$cert_{update} = \mathsf{Sign}(S_i, S_j)$$

- New TPM command, but should be easy to implement
- Avoids problems of software-only solution

Property-Based Sealing

Key Ideas:

- Seal data for abstract properties
 - e.g. "Strong Process Isolation"

Mapping between properties and binary measurements

- Better model for security functionality
- Resolves problems with handling sealed data
- ► Hides concrete binary measurements → privacy
- To do: describe useful properties

Implementing Property-Based Sealing

Use TPM-support for property-based sealing:

- Describe properties by abstract configuration
- Data is sealed for abstract configurations only
- TPM_UpdateSeal translates to binary measurements
- Update certificate states that configuration implements security properties

- Elegant solution for update problem
- Avoids discrimination of operating systems

Introduction

Problems with Sealed Data

Platform Updates

Hardware Migration

Requirements Migration Protocol

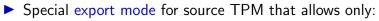
Conclusion

Migrating to another Hardware Platform

Requirements for TPM migration:

- Completeness: Move secret state of source TPM to destination TPM; clear source afterwards.
- Security: Migration only if destination TPM at least as secure as source TPM.
 - \rightarrow Delegate decision to trusted third party.
- Fairness: openly specified process
 - No need for interaction with vendor

Design of Migration Protocol


Key ideas:

Secure export of non-volatile memory etc. under SRK

Delegate decision on equivalent security of TPMs

- Trusted TPM Migration Authority TMA
- Migration certificate on TPM identities (endorsement keys) EK_s and EK_d

 $cert_{mig} = Sign(Hash(EK_s), Hash(EK_d))$

- Extract SRK_s encrypted under EK_d
- Clear TPM

Summary and Conclusion

Update & migration problems with sealed data

Proposed solutions for update issue

- Software-only
- TPM-supported
- Property-based sealing
- Combining TPM-supported with property-based solution
- Proposed secure & fair migration protocol
 - Improves over currently optional maintenance feature

 Ongoing work: TC-project at RU Bochum implements property-based sealing and attestation, see

www.emscb.org