# Resistance of Randomized Projective Coordinates Against Power Analysis

#### W. Dupuy, S. Kunz-Jacques

DCSSI Crypto Lab Paris, France

September 7, 2005

W. Dupuy, S. Kunz-Jacques Resistance of Randomized Projective Coordinates Against...

# Outline



### Background

- Elliptic Curves
- Randomized Projective Coordinates

#### 2 Attack on Optimized Curves

- Optimized Parameters
- Target of the Attack
- Attack Methodology

- < ≣ → < 3



- New Goubin-style side-channel attack
- Target: scalar multiplication on elliptic curves
- Chosen-ciphertext
- Defeats randomized projective coordinates countermeasure

Elliptic Curves Randomized Projective Coordinates

# Outline



- Elliptic Curves
- Randomized Projective Coordinates

#### Attack on Optimized Curves

- Optimized Parameters
- Target of the Attack
- Attack Methodology

# **Elliptic Curves on Finite Fields**

- set C of solutions of a non-singular cubic equation
- Choices for the ground field K:
   K = F<sub>p</sub> with p a large prime (y<sup>2</sup> = x<sup>3</sup> + a<sub>4</sub>x + a<sub>6</sub>) or K = F<sub>2<sup>n</sup></sub> (y<sup>2</sup> + xy = x<sup>3</sup> + a<sub>2</sub>x<sup>2</sup> + a<sub>6</sub>)
- Group law on the points of the curve together with a "point at infinity" (neutral element)
- Costly operation used in crypto:  $u \rightarrow uP = P + \ldots + P$ ,  $u \in \mathbb{N}, P \in \mathcal{C}$

Elliptic Curves Randomized Projective Coordinates

# Elliptic Curve: example



W. Dupuy, S. Kunz-Jacques Resistance of Randomized Projective Coordinates Against...

# **Randomized Projective Coordinates**

- *P* = (*x*, *y*) ∈ C is represented by (*X*, *Y*, *Z*) = (*xZ*, *yZ*, *Z*), for any *Z* ∈ K − {0}
- avoids computing inverses in computations
- if Z is randomized, is a DPA countermeasure

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

# Goubin Observation (PKC' 03)

- Despite projective randomization, if (X, Y, Z) represents (x, y), x = 0 ⇒ X = 0 (and y = 0 ⇒ Y = 0)
- $\implies$  points with x = 0 are distinguished points:
  - If Hamming weights can be observed, distinguished points can be detected

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

# Why do Distinguished Points Matter?

- Their appearance can be detected in the course of a computation
- $\implies$  Can be used to build tests of the form:

$$\{ \text{ secret bit } b = 0 \} \\ \iff \\ \{ \text{distinguished point appears} \}$$

• We build a class of distinguished points for optimized curves

Optimized Parameters arget of the Attack ttack Methodology

# Outline

### Background

- Elliptic Curves
- Randomized Projective Coordinates

#### 2 Attack on Optimized Curves

- Optimized Parameters
- Target of the Attack
- Attack Methodology

# Optimized Parameters used in EC Cryptography

- group law on C: rational expressions must be computed
- point adding (P + Q) or doubling (P + P) cost measured in number of elementary operations in the ground field K:+,
   ×, square, inverse
- $\implies$  fast operations in the ground field are needed
  - one common technique: use sparse polynomials P (K = F<sub>2<sup>n</sup></sub> = F<sub>2</sub>[X]/P) or sparse primes (K = F<sub>p</sub>): modular reduction easier

Optimized Parameters Target of the Attack Attack Methodology

# Example of Optimized Parameters: fields for NIST Curves

Binary fields:

• 
$$P_{233}(x) = x^{233} + x^{74} + 1$$
  
•  $P_{283}(x) = x^{283} + x^{12} + x^7 + x^5 + 1$   
• ...

Prime fields:

• 
$$p_{192} = 2^{192} - 2^{64} - 1$$
  
•  $p_{224} = 2^{224} - 2^{96} + 1$   
• ...

ヘロト 人間 ト ヘヨト ヘヨト

∃ \$\\$<</p>

Optimized Parameters Target of the Attack Attack Methodology

# Sparsity

• 
$$P = X^n + 1 + \sum_{i=0}^{I} X^{a_i}$$
  
•  $p = 2^n - 1 + \sum_{i=0}^{I} \varepsilon_i 2^{a_i}, \ \varepsilon_i = \pm 1$ 

sparsity: I small

Optimized Parameters Target of the Attack Attack Methodology

# Multiplication by the Generator in an Optimized Field

- $\mathbb{K} = \mathbb{F}_p$ : if  $p = 2^n 1$  (Mersenne prime), multiplication by 2 = left circular shift  $(2^n = 1 \mod p)$
- $\mathbb{K} = \mathbb{F}_{2^n}$ : same with  $P = X^n + 1$ , multiplication by X
- if p = 2<sup>n</sup> − 1+ few terms, multiplication by 2 ≃ left circular shift

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimized Parameters Target of the Attack Attack Methodology

Multiplication by the Generator in an Optimized Field

• 
$$z = \sum \alpha_i u^i$$
,  $\alpha_i = \mathsf{bit}$ 

- generator u = X ( $\mathbb{K} = \mathbb{F}_{2^n}$ ) or u = 2 ( $\mathbb{K} = \mathbb{F}_p$ )
- H(z) : hamming weight of z

$$u imes z \simeq z <<< 1$$
  
 $\mathsf{H}(u^{\lambda} imes z) \simeq \mathsf{H}(z) ext{ if } \lambda ext{ small}$ 

W. Dupuy, S. Kunz-Jacques Resistance of Randomized Projective Coordinates Against...

**Observable Point in Projective Coordinates** 

Suppose  $P = (u^{\lambda}, y) \in C$ ,  $\lambda$  small (u = 2 if  $\mathbb{K} = \mathbb{F}_p$ , u = X if  $\mathbb{K} = \mathbb{F}_{2^n}$ )

# For any projective representation (X, Y, Z) of P, $H(X) \simeq H(Z)$

Indeed,  $X = u^{\lambda}Z$ .

Like the distinguished points of Goubin, these points can be observed through hamming weights.

イロト 不得 とくほ とくほとう

# Target of the Attack

- A black-box performing P → k × P on a known optimized curve;
  - k secret
  - P controlled by the attacker
- uses a standard anti-SPA scalar multiplication algorithm (eg double-and-add-always)
- randomized projective coordinates are used
- no exponent randomization

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

# Double-and-add always algorithm

Input: 
$$P \in C, k = \sum_{i=0}^{n} k_i 2^i$$
 an integer  
Output:  $R = nP$   
 $R_0 \leftarrow 0$   
for  $i = n$  downto 0 do  
 $R_0 \leftarrow 2R_0$   
 $R_1 \leftarrow R_0 + P$   
 $R_0 \leftarrow R_{k_i}$   
end for  
return  $R_0$ 

イロト 不得 トイヨト イヨト

# Attack Initiation

Ο ...

- Build a distinguished point P<sub>0</sub>: find the smallest λ s.t. there exists P<sub>0</sub> = (u<sup>λ</sup>, y) on the curve (NIST recommended curves: λ ≤ 5)
- input  $\frac{1}{2}P_0$  to the black box
- If the MSB k<sub>n</sub> of k is 0, P<sub>0</sub> is observed in the first step of double-and-add
- Knowing  $k_n$  and assuming  $k_{n-1} = b$ ,  $P_0$  is observed in second pass on input  $\frac{1}{2k_n+b}P_0$

Optimized Parameters Target of the Attack Attack Methodology

# Attack Methodology

Once k<sub>n</sub>,...k<sub>i+1</sub> are known, some μ<sub>i</sub> can be computed s.t.
 P<sub>0</sub> is observed during pass n - i on input

• 
$$\frac{1}{\mu_i} P_0$$
 if  $k_i = 0$   
•  $\frac{1}{\mu_i + 1} P_0$  if  $k_i = 1$ 

•  $\mu_i$  might not be coprime with the order of  $P_0$ , in that case  $\mu_i + 1$  is

# Detecting the point $P_0$

- Assume that when P = (X, Y, Z) is manipulated, H(X) and H(Z) can be observed (possibly up to some noise)
- Statistical test on U = H(X) H(Z)
- If  $P = P_0$ ,  $H(X) \simeq H(Z)$
- If P ≠ P<sub>0</sub> it is reasonable to expect that H(Z) and H(X) are uncorrelated

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

# Point Detection: **Basic** Statistical Test

- Estimate through several measures the standard deviation of U = H(X) - H(Z)
- For a threshold *t*, we decide P = P<sub>0</sub> if σ(U) < t and P ≠ P<sub>0</sub> otherwise
- With probability 1/2,  $P = P_0$ : compute a threshold s.t.

$$P(\text{deciding } P = P_0 | P \neq P_0) = P(\text{deciding } P \neq P_0 | P = P_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

# Point Detection: Better Statistical Test

- Compute the distribution of *U* under the hypotheses  $P = P_0$ ,  $P \neq P_0$
- Perform several experiments and choose the hypothese for which the observed values are the most likely (Neyman-Pearson test)
- Case P ≠ P<sub>0</sub>: computation easy (uncorrelated Hamming weights); P = P<sub>0</sub>: harder, esp. in the prime field case, because of carries
- Theoretically, Neyman Pearson test is optimal
- Because of approximations made, basic test better

くロト (過) (目) (日)

Optimized Parameters Target of the Attack Attack Methodology

# Simulated Results on NIST Curves

| Curve                   | Experiments per bit | Ιλ |
|-------------------------|---------------------|----|
| <i>p</i> <sub>192</sub> | 6                   | 2  |
| $p_{224}$               | 10                  | 6  |
| <i>p</i> 256            | 11                  | 12 |
| <i>p</i> <sub>384</sub> | 7                   | 3  |
| <i>p</i> <sub>521</sub> | 3                   | 0  |
| <i>B</i> <sub>233</sub> | 2                   | 1  |
| B <sub>283</sub>        | 7                   | 15 |
| B <sub>409</sub>        | 2                   | 1  |
| <i>B</i> <sub>571</sub> | 4                   | 15 |

Table: Experiments Required for a 90% Confidence Level (no added noise)

ヘロト 人間 ト ヘヨト ヘヨト

# Simulated Results and Curve Properties

- Two key parameters:
  - Number I of parasistic terms in field definition
  - $\lambda$  for the distinguished point  $(u^{\lambda}, y)$  found on the curve
- Number of measures per bit required roughly  $\propto I\lambda$
- In the prime (resp. binary case),  $V(U) = I\lambda/2$  (resp  $\simeq (I+1)\lambda/2$ )

# Conclusion

- Favour cryptosystems where the secret is not used for scalar multiplication
- Use exponent randomization (or more specific countermeasures)
- Need to better understand the effect of optimizations on security

イロト イポト イヨト イヨト

# BRIP (Mamiya et Al, CHES' 04)

**Input:**  $P \in C, k = \sum_{i=0}^{n} k_i 2^i$  an integer Output: *nP*  $R_0 \leftarrow \text{random point } R$  $R_1 \leftarrow -R_0$  $R_2 \leftarrow P - R_0$ for i = n downto 0 do  $R_0 \leftarrow 2R_0$  $R_0 \leftarrow R_0 + R_{k+1}$ end for return  $R_0 + R_1$ 1

works because *R* is added 
$$2^n - \sum_{i=0}^{n-1} 2^i - 1 = 0$$
 times

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで