Resistance of Randomized Projective Coordinates Against Power Analysis

W. Dupuy, S. Kunz-Jacques

DCSSI Crypto Lab
Paris, France
September 7, 2005

Outline

(9) Background

- Elliptic Curves
- Randomized Projective Coordinates

2 Attack on Optimized Curves

- Optimized Parameters
- Target of the Attack
- Attack Methodology

Overview

- New Goubin-style side-channel attack
- Target: scalar multiplication on elliptic curves
- Chosen-ciphertext
- Defeats randomized projective coordinates countermeasure

Outline

(9) Background

- Elliptic Curves
- Randomized Projective Coordinates

2) Attack on Optimized Curves

- Optimized Parameters
- Target of the Attack
- Attack Methodology

Elliptic Curves on Finite Fields

- set \mathcal{C} of solutions of a non-singular cubic equation
- Choices for the ground field \mathbb{K} :
$\mathbb{K}=\mathbb{F}_{p}$ with p a large prime $\left(y^{2}=x^{3}+a_{4} x+a_{6}\right)$
or $\mathbb{K}=\mathbb{F}_{2^{n}}\left(y^{2}+x y=x^{3}+a_{2} x^{2}+a_{6}\right)$
- Group law on the points of the curve together with a "point at infinity" (neutral element)
- Costly operation used in crypto: $u \rightarrow u P=P+\ldots+P$, $u \in \mathbb{N}, P \in \mathcal{C}$

Elliptic Curve: example

Randomized Projective Coordinates

- $P=(x, y) \in \mathcal{C}$ is represented by $(X, Y, Z)=(x Z, y Z, Z)$, for any $Z \in \mathbb{K}-\{0\}$
- avoids computing inverses in computations
- if Z is randomized, is a DPA countermeasure

Goubin Observation (PKC' 03)

- Despite projective randomization, if (X, Y, Z) represents $(x, y), x=0 \Longrightarrow X=0($ and $y=0 \Longrightarrow Y=0)$
\Longrightarrow points with $x=0$ are distinguished points:
- If Hamming weights can be observed, distinguished points can be detected

Why do Distinguished Points Matter?

- Their appearance can be detected in the course of a computation
\Longrightarrow Can be used to build tests of the form:

$\{$ secret bit $b=0\}$

 \{distinguished point appears\}

- We build a class of distinguished points for optimized curves

Outline

(1) Background

- Elliptic Curves
- Randomized Projective Coordinates
(2) Attack on Optimized Curves
- Optimized Parameters
- Target of the Attack
- Attack Methodology

Optimized Parameters used in EC Cryptography

- group law on \mathcal{C} : rational expressions must be computed
- point adding $(P+Q)$ or doubling $(P+P)$ cost measured in number of elementary operations in the ground field $\mathbb{K}:+$, \times, square, inverse
\Longrightarrow fast operations in the ground field are needed
- one common technique: use sparse polynomials P $\left(\mathbb{K}=\mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] / P\right)$ or sparse primes $\left(\mathbb{K}=\mathbb{F}_{p}\right)$: modular reduction easier

Example of Optimized Parameters: fields for NIST Curves

Binary fields:

- $P_{233}(x)=x^{233}+x^{74}+1$
- $P_{283}(x)=x^{283}+x^{12}+x^{7}+x^{5}+1$
- ...

Prime fields:

- $p_{192}=2^{192}-2^{64}-1$
- $p_{224}=2^{224}-2^{96}+1$
- ...

Sparsity

- $P=X^{n}+1+\sum_{i=0}^{I} X^{a_{i}}$
- $p=2^{n}-1+\sum_{i=0}^{I} \varepsilon_{i} 2^{a_{i}}, \varepsilon_{i}= \pm 1$
- sparsity: I small

Multiplication by the Generator in an Optimized Field

- $\mathbb{K}=\mathbb{F}_{p}$: if $p=2^{n}-1$ (Mersenne prime), multiplication by 2 $=$ left circular shift $\left(2^{n}=1 \bmod p\right)$
- $\mathbb{K}=\mathbb{F}_{2^{n}}$: same with $P=X^{n}+1$, multiplication by X
- if $p=2^{n}-1+$ few terms, multiplication by $2 \simeq$ left circular shift

Multiplication by the Generator in an Optimized Field

- $z=\sum \alpha_{i} u^{i}, \alpha_{i}=\mathrm{bit}$
- generator $u=X\left(\mathbb{K}=\mathbb{F}_{2^{n}}\right)$ or $u=2\left(\mathbb{K}=\mathbb{F}_{p}\right)$
- $\mathrm{H}(z)$: hamming weight of z

$$
\begin{gathered}
u \times z \simeq z \lll 1 \\
\mathrm{H}\left(u^{\lambda} \times z\right) \simeq \mathrm{H}(z) \text { if } \lambda \text { small }
\end{gathered}
$$

Observable Point in Projective Coordinates

Suppose $P=\left(u^{\lambda}, y\right) \in \mathcal{C}, \lambda$ small $\left(u=2\right.$ if $\mathbb{K}=\mathbb{F}_{p}, u=X$ if $\left.\mathbb{K}=\mathbb{F}_{2^{n}}\right)$

For any projective representation (X, Y, Z) of $P, \mathrm{H}(X) \simeq \mathrm{H}(Z)$

Indeed, $X=u^{\lambda} Z$.
Like the distinguished points of Goubin, these points can be observed through hamming weights.

Target of the Attack

- A black-box performing $P \rightarrow k \times P$ on a known optimized curve;
- k secret
- P controlled by the attacker
- uses a standard anti-SPA scalar multiplication algorithm (eg double-and-add-always)
- randomized projective coordinates are used
- no exponent randomization

Double-and-add always algorithm

Input: $P \in \mathcal{C}, k=\sum_{i=0}^{n} k_{i} 2^{i}$ an integer
Output: $R=n P$
$R_{0} \leftarrow 0$
for $i=n$ downto 0 do
$R_{0} \leftarrow 2 R_{0}$
$R_{1} \leftarrow R_{0}+P$ $R_{0} \leftarrow R_{k_{i}}$
end for
return R_{0}

Attack Initiation

- Build a distinguished point P_{0} : find the smallest λ s.t. there exists $P_{0}=\left(u^{\lambda}, y\right)$ on the curve (NIST recommended curves: $\lambda \leq 5$)
- input $\frac{1}{2} P_{0}$ to the black box
- If the MSB k_{n} of k is $0, P_{0}$ is observed in the first step of double-and-add
- Knowing k_{n} and assuming $k_{n-1}=b, P_{0}$ is observed in second pass on input $\frac{1}{2 k_{n}+b} P_{0}$
- ...

Attack Methodology

- Once $k_{n}, \ldots k_{i+1}$ are known, some μ_{i} can be computed s.t. P_{0} is observed during pass $n-i$ on input

$$
\begin{aligned}
& \text { - } \frac{1}{\mu_{i}} P_{0} \text { if } k_{i}=0 \\
& \text { - } \frac{1}{\mu_{i}+1} P_{0} \text { if } k_{i}=1
\end{aligned}
$$

- μ_{i} might not be coprime with the order of P_{0}, in that case $\mu_{i}+1$ is

Detecting the point P_{0}

- Assume that when $P=(X, Y, Z)$ is manipulated, $\mathrm{H}(X)$ and $\mathrm{H}(Z)$ can be observed (possibly up to some noise)
- Statistical test on $U=\mathrm{H}(X)-\mathrm{H}(Z)$
- If $P=P_{0}, \mathrm{H}(X) \simeq \mathrm{H}(Z)$
- If $P \neq P_{0}$ it is reasonable to expect that $\mathrm{H}(Z)$ and $\mathrm{H}(X)$ are uncorrelated

Point Detection: Basic Statistical Test

- Estimate through several measures the standard deviation of $U=\mathrm{H}(X)-\mathrm{H}(Z)$
- For a threshold t, we decide $P=P_{0}$ if $\sigma(U)<t$ and $P \neq P_{0}$ otherwise
- With probability $1 / 2, P=P_{0}$: compute a threshold s.t.

$$
P\left(\text { deciding } P=P_{0} \mid P \neq P_{0}\right)=P\left(\text { deciding } P \neq P_{0} \mid P=P_{0}\right)
$$

Point Detection: Better Statistical Test

- Compute the distribution of U under the hypotheses $P=P_{0}, P \neq P_{0}$
- Perform several experiments and choose the hypothese for which the observed values are the most likely (Neyman-Pearson test)
- Case $P \neq P_{0}$: computation easy (uncorrelated Hamming weights); $P=P_{0}$: harder, esp. in the prime field case, because of carries
- Theoretically, Neyman Pearson test is optimal
- Because of approximations made, basic test better

Simulated Results on NIST Curves

Curve	Experiments per bit	$I \lambda$
p_{192}	6	2
p_{224}	10	6
p_{256}	11	12
p_{384}	7	3
p_{521}	3	0
B_{233}	2	1
B_{283}	7	15
B_{409}	2	1
B_{571}	4	15

Table: Experiments Required for a 90\% Confidence Level (no added noise)

Simulated Results and Curve Properties

- Two key parameters:
- Number I of parasistic terms in field definition
- λ for the distinguished point $\left(u^{\lambda}, y\right)$ found on the curve
- Number of measures per bit required roughly $\propto I \lambda$
- In the prime (resp. binary case), $V(U)=I \lambda / 2$ (resp
$\simeq(I+1) \lambda / 2)$

Conclusion

- Favour cryptosystems where the secret is not used for scalar multiplication
- Use exponent randomization (or more specific countermeasures)
- Need to better understand the effect of optimizations on security

BRIP (Mamiya et Al, CHES' 04)

Input: $P \in \mathcal{C}, k=\sum_{i=0}^{n} k_{i} 2^{i}$ an integer
Output: $n P$
$R_{0} \leftarrow$ random point R
$R_{1} \leftarrow-R_{0}$
$R_{2} \leftarrow P-R_{0}$
for $i=n$ downto 0 do
$R_{0} \leftarrow 2 R_{0}$
$R_{0} \leftarrow R_{0}+R_{k_{i}+1}$
end for
return $R_{0}+R_{1}$
works because R is added $2^{n}-\sum_{i=0}^{n-1} 2^{i}-1=0$ times

