A New Baby-Step Giant-Step Algorithm and Some Applications to Cryptanalysis 30/08/2005

J.S. Coron, G. Poupard and D. Lefranc

$>$ Introduction : the GPS scheme
> A new type of private keys for GPS [CHES'04]
$>$ Description
> Cryptanalysis

First improvement of cryptanalysis

Second improvement of cryptanalysis
> Conclusion

Introduction : the GPS scheme

Introduction : the GPS scheme (1)

The scheme
> Introduced by Girault in 1991
>Proved secure by Poupard and Stern in 1998
> Parameters/keys
$>$ Public key

- n a RSA modulus
- g an invertible element in (Z/nZ)*
- v an element of $\langle g\rangle$; i.e. $v=g^{-s} \bmod n$
$>$ Private key
- s in [0, ord(g)[

Introduction : the GPS scheme (2)

Off-line

$v=g^{-s} \bmod n_{\text {computation }}$

$$
\stackrel{c}{\longleftarrow} c \in\left[0,2^{k}[\right.
$$

$$
\underset{\substack{\text { On-line } \\ \text { computation }}}{y=r+S C} \xrightarrow{\mathrm{y}}
$$

Introduction : the GPS scheme (3)

If used with the precomputation of $W=g^{r} \bmod n$
$>$ Very efficient scheme for the prover : only $y=r+s c$
>Eventually in RFID tags

- few computation capabilities

-Improvement of GPS for a better integration?
At CHES'04, Girault and Lefranc suggested 3 improvements : one is a new type of private keys

A new type of private keys for GPS

New private keys for GPS : description (1)

The new type of private keys :
$>s=s_{1} s_{2}$ with s_{1} in X_{1} and s_{2} in X_{2}

- s_{1} and s_{2} with a low Hamming weight
- the computation of $S_{x} c$ is improved

New private keys for GPS : security (1)

The new type of private keys: $s=s_{1} s_{2}$ with s_{1} in X_{1} and s_{2} in X_{2}
$>$ Security?
$>$ In a group of known order q

$$
v=g^{s_{1} s_{2} \bmod q} \bmod p \Rightarrow v^{s_{1}^{-1} \bmod q} \bmod p=g^{s_{2}} \bmod p
$$

- With a BSGS-like algorithm : recovers the key in $O\left(\left|X_{1}\right|+\left|X_{2}\right|\right)$ group exp.
> GPS : group order is unknown. This attack is not possible

New private keys for GPS : security (2)

The new private key: $s=s_{1} s_{2}$ with s_{1} in X_{1} and s_{2} in X_{2}
$>$ Security?
$>$ GPS uses a RSA modulus

- ord(g) unknown to the enemy
- $\mathrm{s}_{1}^{-1} \bmod \operatorname{ord}(g)$ infeasible
- No better known attack than an exhaustive search In time $O\left(\left|X_{1}\right| x\left|X_{2}\right|\right)$ group exp.
>Note :Stinson's attack for low Hamming weight private keys
we present here two new algorithms to better the cryptanalysis of such private keys
$>$ One general improvement for product in groups of unknown order
>One specific improvement for such private keys

First improvement of cryptanalysis

First improvement of cryptanalysis (1)

$>$ Basic idea :

$$
v=g^{s_{1} s_{2} \bmod q} \bmod p \Rightarrow v^{s_{1}-1} \bmod q \bmod p=g^{s_{2}} \bmod p
$$

Inverting is infeasible, but :

$$
\left(v^{s_{1}^{-1} \bmod q}\right) \prod_{j \in X_{1}}^{j}=\left(g^{s_{2}}\right)_{j \in X_{1}} j
$$

$$
\Leftrightarrow v^{\prod_{\left.j \in X_{1} \backslash s_{1}\right\}} j}=\left(g^{\prod_{j \in X_{1}} j}\right)^{s_{2}}
$$

>BSGS-like algorithm can be performed

First improvement of cryptanalysis (2)

$\left\{v^{\prod^{j \in X_{1} \backslash a b}}{ }^{j}, a \in X_{1}\right\}$

$$
\left\{\left(g^{\prod_{j \in X_{1}}{ }^{j}}\right)^{b}, b \in X_{2}\right\}
$$

$>$ Search a same element for a given a and b

- The private key is equal to $a \times b$

First improvement of cryptanalysis (3)

Complexity?

$$
\left\{v^{v_{\left.j \in X_{1} \backslash a\right\}} j}, a \in X_{1}\right\} ?
$$

- With a basic method, in time $O\left(\left|X_{1}\right|^{2}\right)$ group exp.
$>$ Computation of
$\prod_{j}$$\left\{\left(g^{\prod_{j \in X_{1}}^{j}}\right)^{b}, b \in X_{2}\right\}$?
- Once $g^{j \in X_{1}}$ is computed : in time $O\left(\left|X_{2}\right|\right)$ group exp.

First improvement of cryptanalysis (4)

The computation of $\left\{v^{\prod_{\left.i \in X_{1} \forall a\right\}} j}, a \in X_{1}\right\}$ in time $O\left(\left|X_{1}\right|^{2}\right)$ group exp. must be improved
$>$ Otherwise :

- the BSGS algorithm in time $O\left(\left|X_{1}\right|^{2}+\left|X_{2}\right|\right)$ group exp.
- An exhaustive search in time $O\left(\left|X_{1}\right| x\left|X_{2}\right|\right)$ group exp.

Not a better cryptanalysis!
We present a new method in time $O\left(\left|X_{1}\right| \ln \left(\left|X_{1}\right| \mid\right)\right.$ group exp.

First improvement of cryptanalysis (5)

The trick for an efficient computation :
$>$ Use of a binary tree structure

- The tree does not need to be saved
$>$ Description for a set $X=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ of cardinality $8=2^{3}$

First improvement of cryptanalysis (5)

First improvement of cryptanalysis (6)

Analysis of the algorithm :
$>$ Depth of the tree : $\operatorname{In}|X|$
$>$ Each step involves exactly $|X|$ group exp.
Time complexity : $O(|X| \ln |X|)$ group exp.

First improvement of cryptanalysis (7)

Complexity of the full BSGS-like algorithm :

$$
O\left(\left|X_{2}\right|+\left|X_{1}\right| \ln \left|X_{1}\right|\right) \text { group exp. }
$$

$>$ In comparison with the exhaustive search in

$$
O\left(\left|X_{2}\right| x\left|X_{1}\right|\right) \text { group exp. }
$$

First improvement of cryptanalysis (8)

Numerical application

$>s_{2}$ a 142-bit number with 17 non-zero bits
$>\mathrm{s}_{1}$ a 19-bit number with 6 non-zero bits

- Exhaustive search in 2^{80} group exp.
- With the new BSGS-like algorithm : in time 2^{69} group exp.

Second improvement of cryptanalysis

Second improvement of cryptanalysis (1)

The new private key: $s=s_{1} s_{2}$ with s_{1} in X_{1} and s_{2} in X_{2}
$>s_{1}$ and s_{2} with a low Hamming weight

$$
v=g^{s_{1} s_{2}} \Leftrightarrow v=\left(g^{s_{1}}\right)^{s_{2}}=h^{s_{2}}
$$

$>$ in base h, v has a low hamming weight

- Stinson attack can be applied for each possible h

Second improvement of cryptanalysis (2)

Numerical application

$>s_{2}$ a 142-bit number with 17 non-zero bits
$>\mathrm{s}_{1}$ a 19-bit number with 6 non-zero bits

- Exhaustive search in 2^{80} group exp.
- With the new BSGS-like algorithm : 2^{69} group exp.
- The new attack : 2^{54} group exp.

Conclusion

> 2 improvements of cryptanalysis for new GPS private keys
>One is a new BSGS algorithm for product in group of unknown order

- Almost the same complexity as in groups of known order
$>$ One specific to the new private keys.

